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ABSTRACT

The dynamics of downwelling fronts observed along the steep and elongated southern shore of Lake
Ontario are investigated by considering the nonlinear response to surface forcing of one-layer and two-
layer fluids on a rotating, semi-infinite plane. Analytical and numerical solutions for idealized
situations exhibit typical characteristics of the observed fronts such as offshore propagation and
periodic recurrence with near-inertial periods. A numerical simulation of an actual downwelling episode
in Lake Ontario shows that this type of model reproduces the observed behavior of the thermocline as
well as the associated oscillatory currents. It is concluded that the fronts are to be visualized as
internal surges associated with the oscillatory rather than the quasi-geostrophic response of a lake to wind.

1. Introduction

Surfaces of apparent density discontinuity occur
in nature in many different forms and the governing
dynamics vary greatly as a function of time and
space scales involved. Large-scale oceanic fronts
resemble their atmospheric counterparts and this
analogy may be useful to explore the associated
water circulation (Rao and Murty, 1973). An in-
teresting example is the quasi-permanent frontal
zone off the Oregon Coast during the upwelling
season (Mooers et al., 1976), which is intimately
connected with baroclinic alongshore currents. By
contrast, there are small-scale frontal zones such
as the boundaries of river plumes in salt water
bodies (Garvine and Monk, 1974) and the quasi-
discontinuous temperature distributions associated
with the steepening of internal waves in a stratified
fluid. The latter have an hydraulic analogy in the
form of an internal surge in a two-layer system
where the effects of rotation are negligible. Internal
bores have been observed, for example, in long
narrow lakes (Thorpe, 1971; Hunkins and Fliegel,
1973), in coastal waters (Winant, 1974), and at the
interface between Atlantic and Mediterranean water
in the Straits of Gibraltar (Boyce, 1975).

Recently, temperature distributions with frontal
characteristics, but somewhat peculiar dynamics,
have been observed by high-resolution measure-
ments in Lake Ontario (Boyce and Mortimer, 1978).
These temperature fronts were generated by strong
downwelling along the steep, elongated southern
shore of the Lake and were seen to persist over
at least a few inertial periods. The initial down-
welling was caused by the passage of a brief but
intense westerly wind impulse. Following the storm,
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a steep thermal front was found to separate warm
near-shore water from cooler water in the open
lake. The front displayed distinct near-inertial
properties such as periodic offshore progressions
accompanied by surge-like features. Simultaneous
observations for three north-south cross-sections of
Lake Ontario indicated that this phenomenon ex-
tended along the whole south shore, suggesting
that its dynamics are essentially independent of the
alongshore coordinate.

As discussed by Mortimer (1977), the fronts ap-
pear to belong to the class of internal surges,
but the near-inertial periodicities in their behavior
and the simultaneous presence of quasi-geostrophic
coastal jets suggest that the earth’s rotation must
play an important role in their dynamics. At times
they do indeed appear as intensifications and slight
lateral displacements of the downward sloping
thermocline which is presumably in approximate
balance with vertical shears of alongshore cur-
rents. The purpose of this study is to evaluate
the relationships between such downwelling fronts
and the oscillatory and the quasi-geostrophic re-
sponse of near-shore waters to wind forcing.

2. The model

The dynamics of the system will be investigated
by starting from the model used in Cahn’s (1945)
study of the geostrophic adjustment problem and
then extending the solutions to a two-layer system.
In particular, the analysis will recall recent appli-
cations of this model by Houghton (1969) and
Crepon (1967) dealing with nonlinear effects and the
near-shore response to wind forcing, respectively.
The model consists of a hydrostatic and homogene-
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ous layer of fluid with a free upper boundary
and a flat bottom in a rotating coordinate system,
but the solutions are assumed to be independent
of one of the horizontal coordinates. The equations
are conveniently written in nondimensional form
by defining

t=ftr, x=x/R, h=h/H ] )
(u,v) = (' ')/C, (1,1,) = (rhry)/pfHC)’

where the primes denote the original dimensional
variables and ¢ is time, x the space coordinate along
which the solutions are allowed to vary, h the
thickness of the fluid layer, « and v are the com-
ponents of the vertically averaged velocity along the
x coordinate and normal to it, respectively, 7, and
T, are the corresponding components of the surface
stress, f is the Coriolis parameter, H a reference
depth, C = (gH)"? the corresponding wave speed,
R = C/f the Rossby radius of deformation and p
water density. With the usual approximation for
the nonlinear terms, the vertically averaged equa-
tions of motion and the continuity equation may
be written :

ou ou oh T,

— v tu—+ — =12

ot ox ox h

LA cu D ¢))
ot ox h

—% + _8_ (hu) = 0

ot 0x

The above one-layer model is a convenient tool
for an analysis of the behavior of a stratified lake
which may be represented by a two-layer system. A
discussion of this generalization of the one-layer
results will be presented, but for the moment it
is sufficient to realize that the above equations
describe the dynamics of the upper layer of a two-
layer system when the second layer is much deeper
than the first and the wave-speed C is replaced by
the corresponding internal phase speed. In partic-
ular, then, a positive change of depth /& can be
identified with a downward displacement of the
thermocline in a stratified body of water.

In the following, some of the solutions to the
above equations and the corresponding two-layer
system will be obtained by numerical integration.
In all these cases use is made of a two-step
version of the method proposed by Lax and
Wendroff (1960), which is known to be suitable for
the present kind of problem. The scheme damps
higher wavenumbers and hence the oscillations
which tend to form in the vicinity of a front are
suppressed. As a result, the total energy of the
model will decrease noticeably when the slope of a
wave front becomes vertical to form a hydraulic
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“‘jump’’. The validity of numerical integration be-
yond this point may be in doubt because of this
artificial smoothing and also because the hydro-
static assumption can no longer be justified. The
subsequent comparison with observations, how-
ever, indicates that the primary physical processes
are probably represented in an acceptable manner.

Since it is desirable to conserve both mass and
momentum in the numerical computations, the sys-
tem of equations is written in terms of the trans-
port components (U,V) = (hu,hv) as

2 2
L YL T,

N

ot ax\ h 2

oV 8 [ UV

oV, U+—(—) Y )
ot ox\ h

oh  oU

Zi+Z o

at ox J

The numerical integration over one time incre-
ment Az consists of the following two steps. First,
tentative values of all variables are predicted at
time level ¢ + 12A¢ for locations centered between
two grid points. In this step the initial values at
time ¢t and the Coriolis terms are averaged over
two adjacent mesh points and the space derivatives
are approximated by centered differences. Next,
new values at time ¢ + Atr are predicted at the
grid points by stepping forward from the original
time level ¢ and using the tentative values at
t + ¥2At to evaluate the Coriolis terms and the
space derivatives. Stability is insured if the space
increment Ax is greater than the maximum value.
of At(u + h'%), in nondimensional variables.

3. Nonlinear effects

The nonlinear aspects of the above system of
equations may be conveniently illustrated by re-
calling Houghton’s (1969) treatment of the problem
in the absence of wind forcing. Consider, then, a
simple gravity wave, initially containing no v com-
ponent of fluid velocity and propagating into an
environment which is at rest relative to the rotating
frame of reference. In terms of the nondimen-
sional variables (1) the initial conditions are

"= la(l - |x|/,8), |x| =8
0, le > B (4)'

2
v =0, h=(1+%), all x

Clearly, a represents the initial Froude number at
the crest of the wave, while B is the ratio of the
initial wavelength to the radius of deformation. In
the absence of rotation, this type of wave will form
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Fi1G. 1. Time and space variations of surface elevation and fluid velocity for a
simple gravity wave on a rotating infinite plane (top) and on a haif-plane bounded
by a solid wall (bottom). All variables are nondimensionalized according to

Eq. (.

a jump because the slope of the characteristics is
equal to u + A%, and the crest of the wave will
tend to overtake the leading edge. The purpose of
Houghton’s study was to determine to what extent
jump formation is opposed by the dispersion due to
the earth’s rotation. The analysis was carried out
for 0 < a < 0.5 and 0 < 8 < 1, and showed that
delay of jump formation and reduction of jump
amplitude were proportional to increasing 8 and
decreasing «, i.e., increasing effects of rotation
and decreasing nonlinear effects, respectively.

By recourse to the linear solution for the wind-
forced downwelling problem to be discussed next,
an appropriate length scale may be taken to be
B = 1, while the value of « will be determined
by the wind stress at the surface and the resulting
inertial motion away from the shore. For a typical

value of a = 0.5, the formation of a jump would
be delayed by about 0.2 nondimensional time units,
while the amplitude would be reduced by not more
than 20% according to Houghton’s (1969) Figs. 4-5.
To illustrate the solution for these parameter values,
the upper part of Fig. 1 shows the configuration
of this type of wave as a function of nondi-
mensional time and space. It will be noted that the
initial conditions differ from Eq. (4) behind the wave
crest, but this does not affect the leading side of the
wave. The solution was obtained by the afore-
mentioned Lax-Wendroff scheme with a spatial
resolution of Ax = 0.015, which is essentially
equivalent to Houghton’s numerical method.

The above results can be interpreted in terms of
the present problem by the following argument.
Behind the wave crest in the upper part of Fig. 1,
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inertial motion develops as a result of the Coriolis
force. We now impose an initial velocity ¥ = —a
on the whole system. In the absence of rotation,
this would be equivalent to a steady translation of
the coordinate system, but in the present case, the
result will be an inertial motion ahead of the wave.
To the left of the initial position of the wave
crest the effects are in first approximation the
same as in the absence of rotation, in which case
the fluid would be at rest behind this wave. Thus
the solution for positive x is only weakly affected
by a solid boundary at x = 0, as demonstrated
at the bottom of Fig. 1. It may be noted that the
initial superposition of the negative u component
leads not only to inertial-type fluid motion ahead
of the wave but also to a nonsteady wave speed.
Thus, the wave slows down when it moves against
the current (0 < ¢ < 7r/2) and it speeds up when it
moves with the flow (7/2 <t < 7).

4. Wind forcing

Before turning to the complete nonlinear problem
of wind-induced motions near a shore, it is useful
to consider the salient features of corresponding
linear solutions. The linearized version of the system
of nondimensional equations (3) reads

oU oh v
— - V+—=7, —+U=n1,,
ot ox 0]
8h
ot ax
with initial conditions U =0, V=0, h = 1, and

boundary conditions U = 0 at the wall (x = 0) and
U, V, h finite for x — «. The solutions are con-
- veniently obtained by separating the two cases
» =0, 7, # 0 (alongshore wind) and 7, =0,
7, # 0 (wind normal to shore), and by eliminating
h and V in the first case and 4 and U in the second.
The respective equations are

02U zU
- +U=m7,
or? Ox? 6
2V 9V  ©
— V=-1,
or? ox?

where the boundary condition at the wall for the
second equation is V = 0, owing to the original
boundary condition and the second of Egs. (5).
Consider the response to a wind suddenly applied
at t = 0 and remaining constant afterward. This is
a special case of the problem solved by Crepon
(1967) in the form of convolution integrals and
Bessel functions, by employing the method of La-
place transforms. A simple and illuminating solution
for the present case may be obtained by realizing
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that the solution should be the sum of the solution
to the time-independent forced equation plus a solu-
tion to the homogeneous equation which cancels
the former at the initial time. The same argument
was employed by Csanady (1973) to illustrate the
corresponding channel problem. The appropriate
forced solutions to (6) are clearly given by U
= 71,1 — exp(—x)] and V = —7,[1 — exp(—x)] for
the two wind directions, respectively, with the cor-
responding solutions for the remaining variables
determined from (5). The free oscillations are
combinations of trigonometric functions with argu-
ment (kx — ot), where o2 = 1 + k% and k is the
wavenumber, such that the initial conditions and the
boundary conditions are satisfied. By recalling the
Fourier integral representations

J""ksmkx . 2J"’°
1+ K ‘o o

2 J" smkx — 1,

(see, e.g., Carslaw, 1930, Chap. 10) it can be readily
verified that the desired solutions are

U/ry=1—-¢*
2 [ )
- = | ko ?sinkxcosotdk
m Jo
2 o Ty = 0,
V/ir, = te™® + — J k'o3 sinkx sinotdk
™ Jo
2 (= .
Sh/t, = —te™* +— J o3 coskx sinotdk )
o )
2 o0
Uty = — J k~o~! sinkx sinctdk
T Jo
Vitg,=e¢%— 1
2 (= s7y, =0,
+ — J k~'o~?sinkx cosotdk
™ Jo
2 {+ ]
Shjr, = —e™* +— j o2 coskx cosatdk
m™ Jo -’

where 84 = h — 1. It is seen that the contributions
from the higher wavenumbers decrease in propor-
tion to some power of o and the oscillatory
solutions will exhibit periodicities which tend to, but
never attain, the inertial period. Another property
of the solutions, which is more apparent from
Cahn’s (1945) and Crepon’s (1967) presentations in
terms of Bessel functions, is that the leading edge
of the perturbation moves away from the wall with
the shallow water wave speed C.

For practical applications, it is of interest to
consider a suddenly imposed wind of finite duration.
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Fi1G. 2. Linear and nonlinear solutions for surface variations caused by a wind
impulse toward the shore (top) and a wind impulse alongshore with the shore

on the right (bottom).

The solution follows from (7) by superposition of
the solution for a negative wind impulse with a
suitable shift in time. It is seen from (7) that the
oscillatory component, for a given wind speed, will
be greatest if the nondimensional wind duration
approximates an odd multiple of #. The surface
variations caused by this type of forcing are il-
lustrated by the dashed curves of Fig. 2 for winds
blowing toward the shore and along the shore (with
the shore on the right), respectively. The times
selected are those for which the shoreward com-
ponent of the inertial motion in open water is
zero and hence the oscillatory surface deflections
tend to approach their extreme values. For com-
parison of the convergence of various solution

methods, the linear solutions were also computed
from Crepon’s (1967) integrals and by the numerical
integration procedure used for the nonlinear
problem.

The nonlinear effects will depend on the mag-
nitude and the duration of the forcing and the
solutions cannot be presented with the same
generality. With a view to the strongly periodic
character of the observations to be discussed, the
present experiments will concentrate on a wind
impulse of duration 7. With regard to the relation
between nonlinear effects and the magnitude of the
stress, it is useful to consider the wind-induced
motion away from the shore. In open water the
above wind impulse will cause a pure inertial
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F1G. 3. Hodographs of currents in a nonlinear model for a
wind impulse toward the shore (left) and parallel to the shore
(right).

motion with nondimensional amplitude 27, which
may be compared with the Froude number « in (4).
This relationship allows for a direct comparison
with the wave problem illustrated in Fig. 1.

Fig. 2 presents nonlinear solutions for the sur-
face elevations as a function of time, distance
from shore and wind stress, all in nondimensional
form as defined by (1). Typical hodographs of the
computed currents are shown in Fig. 3. It will be
seen that, starting from ¢ = # for the case of a wind
blowing toward the shore, and from ¢ = 37/2 for
wind along the shore, the solutions are comparable
to the lower part of Fig. 1 after 1 = 7/2. At these
" times the oscillatory surface deflections reach large
positive values, while the inertial current is aligned
with the shore. It is also seen that a secondary
front may form during the next cycle of the surface
oscillation, similar to the observations considered in
this study. In the hodographs of Fig. 3, the signature
of the front appears as a sudden increase in the
current component away from the shore, which also
may be seen from Fig. 1.

It was noted before that the wave front
cannot propagate with a uniform velocity due to the
rotating fluid motion ahead of the wave. This effect
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is illustrated in Fig. 4, which shows the positions of
the fronts as a function of time and nonlinear effects
depending on wind stress. The black circles indicate
the times for which the solutions were shown in
Fig. 2. There are two effects causing changes in
propagation speed of the wave. The first one is a net
increase in wave displacement over a complete
inertial period (time interval 27), as expected from
nonlinear solutions without rotation. The second
effect is a periodic variation of propagation speed
superimposed on the former. This effect could be
incorporated in the linear solutions by including a
linearized advection term with the shoreward com-
ponent of the inertial motion acting as the ad-
vecting velocity.

5. Two-layer system

We next consider a stratified fluid with a rigid
upper surface but the depth a function of distance
from the shore. The stratification is assumed to be
concentrated at a single interface and the hydro-
static and the Boussinesq approximations are em-
ployed. The equations for each layer are then of the
same general form as those for the single-layer
model. For easy comparison with the foregoing, it
is convenient to express the mass transport in the
lower layer in terms of the transport in the upper
layer and the total transport, and to eliminate the
surface pressure gradients by subtracting the equa-
tions for the two layers. If again the solutions are
taken to be independent of y, then the total mass
transport normal to the shore must vanish by virtue
of the continuity equation and the boundary condi-
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FiG. 4. Position of wave fronts of Fig. 2 as a function
of time. Black circles indicate times for which solutions
are shown in Fig. 2.
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tion at the shore, and the equations become

—_ 2 2
gy DM O (U )]
ot D lox\ h 2 p

2
S -
D{ox\D —h
.?X+fU+D_h[_a_(_.[_J.K>—2:| - (8)
ot D ax\ h p
h[a uv - UM oM
() ] -
D[ dx\ D-—nh ot
ot ox J

where (U,V) = (hu,hv) is the mass transport in the
upper layer, h the upper layer depth, D(x)
the total water depth, M the component of the total
mass transport along the shore, € = Ap/p the
density difference across the interface, and all
variables are dimensional but the primes used in (1)
have been dropped.

In the linearized system the baroclinic solutions
are independent of M, which can be verified by
defining the shear-variable V* = V — hM/D or by
deriving the wave equations corresponding to (6).
This uncoupling of barotropic and baroclinic modes
occurs here because the total transport is along the
isobaths. For a complete description of the non-
linear system, an equation for the barotropic flow
component may be derived. The general procedure
is to eliminate the surface pressure by forming
the vorticity equation for the vertically averaged
flow, which in this case reduces to

82(M)+6{16 UV+UV—UM)

0tdx\ D ax Dax(h D-h
_i}zo,
pD

This equation shows that the shallow water near
the shore will tend to move faster in the direction
of the wind than the deeper water, owing to the
‘‘bottom slope vorticity’’ (Groen and Groves, 1962).
In fact, an integration with respect to x gives

6M+6(UV+UV~UM)
ot ox\ h D~ h
Ty

— ¥ = D x constant (¢),
p

where the integration constant is actually a surface
pressure gradient acting against 7,. For the semi-
infinite plane the constant may be written as
(M, /3t — 7,/p)/D. since the nonlinear terms will
vanish in open water (x — ). This expression will

®
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be negative for any pressure gradient acting against
7, and thus not only the mean current speed but
also the integrated transport tends to be greater
near the shore than in deep water. For the special
case of a channel with additional boundary condi-
tion U = 0 for x = L, the integration constant can
be evaluated from the mass conservation condition
M = 0, where the bar indicates an average over
the width of the channel (Bennett, 1973). By virtue
of the boundary conditions, the constant is not
affected by the nonlinear terms and is equal to
7,/pD. The latter will be used in the computations
for Lake Ontario.

The linearized versions of Eqs. (8) reduce to the
barotropic wave Egs. (6) if only the depth is re-
placed by the equivalent depth H(D — H)/D and
the stress multiplied by (D — H)/D, where H is the
equilibrium value of 4. Within the restrictions of the
linearization procedure, the lower layer depth is al-
lowed to vary with distance from shore. The
mathematical effect is that Eqgs. (6) will contain
coefficients which are functions of the space co-
ordinate x. Thus the free oscillations will be solu-
tions to the characteristic-value problem

— 2
e HD = H) 26
D ox2

+Ap=0, 6=0 for x=0,L,

and the frequencies will follow from the eigen-
values A by the relationship 0,2 = A\, + f%. For a
given depth profile, the eigenvalues and correspond-
ing eigenvectors are readily obtained by numerical
methods. Computations for a typical Lake Ontario
cross section show that the lowest few eigen-
values are up to 10% larger than those cor-
responding to the averaged equivalent depth, while
the higher eigenvalues are smaller than their con-
stant-depth counterparts. Thus the lower modes
sense a greater-than-average equivalent depth, the
higher modes feel the shallower depths. The eigen-
functions are very similar to the trigonometric
functions obtained for constant depth.

The nonlinear baroclinic equations (8) also reduce
to the barotropic system (2) if the upper layer is
much shallower than the total depth. In that case,
therefore, the results of Figs. 1-4 immediately
apply to the upper layer of the present model,
with the understanding that the effective accelera-
tion of gravity is reduced by a factor € and that a
positive surface displacement is to be interpreted as
a negative thermocline deflection. Effects of deeper
upper layers may be estimated by recalling Long’s
(1956) solutions for large-amplitude interface
perturbations in the absence of rotation or depth
variations. Long (1956) considered the initial-value
problem of an interface disturbance moving into a
region of undisturbed shear flow. Noting that in the
present case the mean transport normal to the shore
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Fi1G. 5. Nondimensional speed of disturbance of interface
depth 4 propagating into a region of undisturbed two-layer flow
with upper layer depth equal to 0.1 D and nondimensional upper
layer velocity given by u,.

must vanish, and dividing both the upper layer fluid
velocity and the wave propagation speed by the
value of the internal wave speed ahead of the
disturbance and in the absence of shear, the
perturbation is found to move with nondimen-
sional speed

K
[ro(1 — ro)]"?
(1 — K2)1/2

where K = 2rquy + (1 — 2ro){1 — [ro/(1 — ro)lug®}2,
r is the ratio of upper layer depth to total depth,
u the nondimensional upper layer velocity, and the
subscript zero refers to the undisturbed flow.

By way of illustration, Fig. 5 shows the solu-
tion as a function of perturbation depth ratio r, for
the case r, = 0.1 and u, ranging from —1to 1. Itis
seen that the speed of propagation has a maximum
in each case and thus only the portion of a wave
profile corresponding to the solid lines tends to
steepen. As shown by Long (1956), the maximum
shifts to higher r values when r; is increased, but
slower than r, itself. In particular, when the upper
layer becomes deeper than the lower, the maximum
wave speed for u, = 0 occurs for r < r; and hence
an interface elevation tends to steepen. In that case,
one would expect to see upwelling surges, but it must
be recalled that the stress is multiplied by the
ratio of lower layer to total depth and hence will be
less effective. For the Lake Ontario simulation, the
depth ratio agrees approximately with Fig. 5, and
thus the conditions are favorable for the formation
of depression fronts.

c=3(1-2n[r(1 — ]

~[1—=6r(1 —r)]

s
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6. Comparison with observations

The present study was inspired by observations
of temperature fronts associated with a period of
strong downwelling along the south shore of Lake
Ontario in August 1972. The measurements were
part of the International Field Year on the Great
Lakes and were concerned with the short-term
behavior of internal waves (Boyce and Mortimer,
1978). Simultaneous scans of temperature-depth
distributions for three cross sections of Lake
Ontario were made by ships shuttling between the
north and south shores for periods of 5 days. The
time required to traverse each section was less than
4 h so that usually four transects were completed
in one inertial period. The distance between the
shores is about 70 km and the separation between
adjacent transects was approximately equal to that.

By a fortunate coincidence, the most pro-
nounced wind impulse of the 1972 summer season
occurred while the transect cruises of 7—12 August
were in progress. The storm and the response of the
lakewide circulation and temperature distribution
have been discussed in detail by Simons (1975a).
The wind field was associated with an atmospheric
front moving from west to east across the lake
during the late afternoon of 9 August 1972. During
the passage of the trough, a strong west wind built
up, followed by a wind impulse from the north-
west behind the front. As a result, strong downwell-
ing was initiated along the steep south shore of the
Lake. This was observed in all three cross sections
with a time lag corresponding to the eastward move-
ment of the atmospheric system of 8 ms™!, i.e.,
~3 h between the western and the central sec-
tions. This propagation is an order of magnitude
faster than the internal wave speed in the Lake and,
consequently, the thermocline response may be ap-
proximated by the rotating, 'one-dimensional model
adopted in the previous pages. The assumptions
of the model are likely best justified for the central
transect which has been discussed in considerable
detail by Mortimer (1977) and which is selected
here for comparison with model results.

Model solutions were obtained by numerical
integration of the two-layer equations (8)—(9) as
applied to the central north-south cross section of
Lake Ontario. The section has a length of 70 km
and a maximum depth of 170 m, with a steep
southern shore and a gradually sloping northern
shore. Density differences across the thermocline
were estimated from observed temperatures. The
values were held constant in time for the whole
episode, but the observed increase from less than
1 x 102 in deep water to about 1.5 X 1073 near
the warm downwelling shore was incorporated. The
initial thermocline was taken to be horizontal ex-
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F1G. 6. Eastward (solid line) and northward (dashed line) com-
ponents of wind stress derived from buoy observations in the
middle of Lake Ontario for a constant drag coefficient of
1.8 x 1073, Stress shown includes ratio of air to water density.

cept for a region near the north shore where it
was taken to slope downward in geostrophic
balance with a vertical shear of the current. This
was done to avoid the numerical complications of
an upwelling thermocline intersecting the surface
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Fic. 7. Computed interface displacements in a two-layer
cross-section model of Lake Ontario, after the storm of 9 August
1972 (Fig. 6). Indicated times are reckoned from 0000 GMT
10 August and refer to whole north-south thermocline profile.
The alternating long and short dashes indicate initial, geo-
strophically balanced thermocline on the morning of 9 August.
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and because the earlier transects and the coastal
chain data (Csanady and Pade, 1973) on 8 August
indicated a deepening of the thermocline toward the
north shore.

The integrations covered the period from the
morning of 9 August, well before the onset of the
storm, to the time of the last transect on 11
August. Wind observations were taken from the
meteorological buoy network operating during the
1972 field year. Fig. 6 shows the surface stress
in the middle of the Lake for a constant drag co-
efficient of 1.8 x 1073. This corresponds to typical
mean values obtained for the field year by Simons
(1975b) and is considerably smaller than the value
required for a successful simulation of the lakewide
response to this storm (Simons, 1975a). Recent
measurements and simulations of wind stress in re-
lation to surface waves by Donelan (1977) actually
tend to support the larger value used before.
Furthermore, Donelan’s concepts lead to a steep
increase of the drag coefficient while the waves
are building up at the onset of the storm, and a

Rochester distance [km)

30 40 50 60

Presqu'ile

o

depth [m]

40

Fic. 8. Observed depths of 10°C isotherms for the same
cross section and the same storm as Fig. 7. Times indicate
beginning and end of repeated transects (from Boyce and
Mortimer, 1976).
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F1G. 9. Position of fronts of Figs. 7 and 8 as a function of
distance from south shore and time reckoned from 0000 GMT
10 August. Curves represent computed frontal positions, circles
were obtained from Mortimer (1977, Fig. 57).

drastic reduction in the stress when the wind speed
drops below the phase speed of the waves after the
peak of the storm. Consequently, the oscillatory
response of the Lake is likely underestimated by
the present simulation.

Fig. 7 presents computed thermocline configura-
tions at intervals of 3 h for 10 August 1972. The
solutions were computed with a grid spacing of
0.5 km, but calculations with larger and smaller mesh
sizes gave essentially the same results. Computa-
tions with a different staggered-grid model required
some smoothing by an artificial horizontal dif-
fusion term, but again the results were basically
the same. For comparison, Fig. 8 shows the depths
of the 10°C isotherm as observed during the
transects of 10—11 August (Boyce and Mortimer,
1978). Northward (left to right) transects are de-
noted by solid lines, southward transects by dashed
lines, and the times of beginning and end of each
transect are shown in hours and minutes. The ex-
tension of one of the isotherms into the shallow
north shore region is based on simultaneous
coastal chain data (Csanady and Pade, 1973). It
appears that the basic kinematics of the downwell-
ing front are simulated by the simple two-
layer model.

The positions of the fronts are shown in Fig. 9
as a function of distance from the downwelling
shore and time reckoned from 0000 GMT 10 August.
The curves represent computed fronts while the
circles have been obtained from Mortimer (1977,
Fig. 57). Finally, computed upper layer currents at
distances of 10 and 35 km from the downwelling
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shore are compared with observations in Fig. 10.
The observed current for 35 km has been measured
at a depth of 10 m in the present cross section of
the Lake. Since no near-shore measurements are
available for this cross section, the observed cur-
rent for 10 km has. been taken from the western
cross section. This current was measured at a depth
of 15 m. All times are indicated at 8 h intervals,
again reckoned from 0000 GMT 10 August, for
easy comparison with Figs. 7-9. In view of the time
lag of the forcing between the western and central
transects of the lake (~3 h), the currents at the
times indicated in the lower right-hand hodograph
may be expected to correspond to those accentuated
in the other three hodographs. Indeed, the observed
near-shore current exhibits the signature of the front
about 1 h before 0000 GMT 10 August, while the
computed front is seen to pass this point shortly
after 0200 GMT. Like the computed current, the
observed currents confirm the expected phase rela-
tionship between thermocline displacements and
inertial motions. The reason that the former appear
to be underestimated while the latter are over-
estimated in the model may be that the currents were
measured relatively close to the thermocline.

7. Conclusions

This study attempted to identify the primary
dynamical mechanisms responsible for the genera-

computed observed
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Fic. 10. Hodographs of upper layer model currents com-
pared with measured currents at distances of 10 and 35 km from
the south shore. Offshore current was observed at depth of
10 m on the same transect as Figs. 7 and 8, nearshore
current at depth of 15 m on the western transect. All indicated
times reckoned from 0000 GMT 10 August as in Figs. 7-9.
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tion and propagation of downwelling fronts observed
in Lake Ontario. Adopting the simple model of a
two-layer system on a rotating, semi-infinite plane,
it was recalled that under certain conditions the
solutions would approach those of a single-layer
model. Analytical and numerical solutions were ob-
tained for the response of the system to a wind
impulse of finite duration, and it was shown that
strong nonlinear effects, in particular internal
surges, could occur without invoking excessive
wind speeds. A numerical simulation was carried
out for actual conditions in Lake Ontario, in
order to allow for a quantitative evaluation of
the model.

Inasmuch as the episode simulations agree with
the observations, it is concluded that the basic
dynamics of the downwelling front are explained
by the nonlinear wave principles considered here.
The recurrence of the front after an inertial period
and the proper phase relationship between thermo-
cline deflections and inertial currents, confirm that
the observed downwelling fronts are intimately con-
nected with the oscillatory action of the inertial
motion in deep water. Thus, while less detailed
observations of similar temperature distributions
could easily be interpreted as manifestations of
baroclinic jets, the fronts are to be visualized
as part of the oscillatory rather than the quasi-
geostrophic response of the Lake to wind. Although
disturbances from the opposite upwelling shore may
eventually combine with those from the downwell-
ing shore to create standing Poincaré waves
(Mortimer, 1977), the scale of the frontal zone is
sufficiently small that it can be treated independ-
ently of this effect. Thus, similar phenomena can
be expected to occur in any near-shore region
for suitable stratification conditions.
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