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Parameter estimation of S-distributions
with alternating regression
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Abstract

We propose a novel 3-way alternating regression (3-AR) method as an effective strategy for the
estimation of parameter values in S-distributions from frequency data. The 3-AR algorithm is very
fast and performs well for error-free distributions and artificial noisy data obtained as random
samples generated from S-distributions, as well as for traditional statistical distributions and for
actual observation data. In rare cases where the algorithm does not immediately converge, its
enormous speed renders it feasible to select several initial guesses and search settings as an effective
countermeasure.
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1 Introduction

Motivated by a distribution family based on S-systems (Savageau, 1982), the S-
distribution was introduced in the early 1990s as a convenient univariate, unimodal four-
parameter distribution that is capable of modelling a wide range of shapes and skewness
(Voit, 1992). Due to its rich shape flexibility and relatively simple mathematical

*Address for correspondence: 1-Chun Chou, Eberhard O. Voit. The Wallace H. Coulter Department of Biomedical
Engineering at Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332,
U.S.A. E-mail: gtg392p@mail.gatech.edu, Eberhard.Voit@bme.gatech.edu. Harald Martens. CIGENE/IKBM,
Norwegian U. of Life Sciences, P.O. Box 5003, N-1432 As, Norway. Email: harald.martens @matforsk.no.
Received: January 2007
Accepted: April 2007



56 Parameter estimation of S-distributions with alternating regression

format, the S-distribution has been shown to constitute a good general-purpose default
distribution, especially for data of unknown structure. The S-distribution may also be
used in lieu of the traditional distributions, because it always has the same structure
and, with an appropriate choice of parameter values, rather accurately approximates
many continuous central and non-central distributions, as well as a wide variety of
discrete distributions (Voit, 1992; Voit and Yu, 1994; Yu and Voit, 1996). In addition,
the S-distribution allows for combinations of parameter values that do not correspond
to traditional distributions and permits a spectrum of distributions with long or heavy
tails and with skewness to the left or right. Thus, one might in many cases expect a
better fit than is possible with traditional distributions. As a specific application of the
combination of its flexibility and small number of parameters, the S-distribution is well
suited for the non-trivial characterization of trends of distributions that change mean,
variance, shape, and even skewness over time (Voit, 1996; Sorribas, March and Voit,
2000; Voit and Sorribas, 2000).

The S-distribution is formulated as a differential equation, which renders the
estimation of parameter values from data a challenge. Several methods have been
suggested for this task, including nonlinear regression (Voit, 1992; Sorribas, March
and Voit, 2000), a graphical method (Voit, 1992), constrained maximum likelihood
estimation (Voit, 2000), and techniques based on quantiles (Voit and Schwacke, 2000;
Hernéndez-Bermejo and Sorribas, 2001). Here, we propose an entirely different method
called 3-way alternating regression (3-AR), which was motivated by a 2-way alternating
regression method used for the estimation of parameters in multivariate S-systems
(Chou, Martens and Voit, 2006). The main appeal of 3-AR is its enormous speed and
robustness. In this article, we discuss the method and apply it to several artificial and
actual examples.

2 S-distribution

The S-distribution is a four-variable distribution that emphasizes the cumulative density
function (cdf) F, which is formulated as a differential equation with respect to random
variable X and reads

_dF

f_ﬁ:a(Fg—F"), Fy=F (X €(0,1). ()

Because the probability density function (pdf) f is the derivative of F, the S-
distribution can be seen as an algebraic function f(F). The first parameter of the
distribution, X,, characterizes the location of the distribution. The second parameter,

a, is a positive real number, which determines the scale. The remaining two parameters,
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g and h, may be any real numbers as long as g < h; they determine the shape of the
distribution.!

3 Alternating Regression

Suppose the S-distribution is characterized through N values of the random variable, X,
Xoye ooy Xpoe .., Xy, and that X, F(X;) and f(X,) are observed or obtainable for each k
(see later sections for further discussion on the construction of pdfs and cdfs). For the
purpose of parameter estimation, the original differential equation can then be analyzed
in the form of N uncoupled algebraic equations as

X)) ~ a/(Fg(Xl) - Fh(Xl)) )
f(X0) = a(F4(X;) - Fh(Xz)),

f(X) = a (F4(Xp) — FM(XY), 2)

fXy) = a (Fg(XN) - Fh(XN)) .

The ~ symbol is used because the data may only be representable in approximation
by the S-distribution format. As a consequence of this decoupling step, substitution of
the derivative of F with f allows us to estimate the S-distribution parameters «, g, and h
in a purely algebraic system (cf. Voit and Almeida, 2000). We propose for this estimation
purpose a new method called 3-way alternating regression (3-AR).

In previous work, we have shown that alternating regression (AR), applied to S-
system models of the form

dX; e N
—r=al [xy g |xi= 12, 3)
1 j=1

J=

and combined with methods for slope estimation and decoupling systems of differential
equations, provides a fast tool for identifying parameter values from time series data
(Chou, Martens and Voit, 2006). The key feature of AR is the reduction of the nonlinear
inverse problem of parameter estimation into iterative steps of two phases of linear
regression. In the first phase, the parameters of the S-term, g; and h;;, are set to some
reasonable values. Given measurements of all X; at N time points and estimates S ;(#;) of

1. Throughout the paper, random variables and cdf's are represented as upper-case italics, while pdf's are given
by the corresponding lower-case italic symbols (X, F, f). An upper-case boldface variable (L) represents a matrix
of regressor columns and a lower-case boldface variable (y) represents a regressand column in a linear statistical
regression model.
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the slope of X; at these points, the S-term becomes a number at each time point, and this
number is added to both sides of Equation (3). Taking the logarithm of the equation for
each time point, one obtains a linear regression problem with the slope and the S-term
as a real number on the left-hand side, and a linear expression on the right hand side:

log [S[(tk) + B l_l X?U(tk)J ~ log (&;) + Z 8iilog (X(t0) + €ix “4)

=1

The regression with the NV equations of this type at time points 7, now yields estimates
for @; and all g;;. In the second step of AR, these estimates are used in an analogous
fashion to compute g; and h;;. The algorithm switches back and forth and usually
converges fast (see Chou, Martens and Voit (2006) for details).

The S-distribution is obviously a special case of an S-system, with the notable feature
that by definition @ = S. This feature is important for AR methods, because a and 3 are
no longer independent of each other, and it turns out to be inconvenient to constrain @
to be the same in both phases of the regression. Therefore, we modify the 2-way AR
approach here into a three-cycle 3-AR method specifically for S-distribution estimation.

Similar to the original AR, 3-AR works by iteratively cycling between phases of
linear regression. The first phase begins with guesses of the values of g and /& and
uses these to solve for the value of parameter . Experience has shown that it is more
expedient to start the algorithm with g and 4, rather than g and « or / and «, presumably
due to the fact that the typical ranges of g and & are much smaller than that of @ and
because h is per definition constrained by g. The second phase takes estimates of & and
h to solve for g, while the third phase takes estimates of @ and g to solve for 4 and thus
improve the parameter guesses or estimates from the previous phases. The phases are
iterated until a solution is found or AR terminates for other reasons. The overall flow of
the method is shown in Figure 1, and specific steps of the 3-AR algorithm are detailed
below.

Steps of the 3-AR Algorithm

{1} Define L; and Ly as 2 X N matrices of logarithms of regressors f and F, respectively:

[ 1 log(f (X)) |
1 log(f(X3))

I log(f (X)) ®)

[ 1 log(f(Xy)) |



I-Chun Chou, Harald Martens, Eberhard O. Voit 59

[ 1 log (F (X)) |
1 log (F (X>))

1 log (F (X)) ©

[ ! log (F‘ Xy) |

L; is used in the first phase of AR to determine «, and Ly is used in the second and
third phases of AR to determine g and #.

MI PDF CDF

s

[ Compute Lf and LF ]

L

[ Guess values for g and h ]

Phase Il

Figure 1: Flow of parameter estimation by 3-way alternating regression.
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{2} Select values for g and & in accordance with experience about S-distribution
parameters (see Voit (1992) for relationships between parameter values and
distributional shape).

{3} Forall X;, k=1,2,..., N, compute F? (Xk)—FE (X;), using values F(X;) from the data
distribution. Here g and / denote the estimators of g and / after the 2 iteration, while
during the 1* iteration, § and  are the initial guesses for g and h, respectively. Determine
the index I, of all positive quantities F? (X;) — F' h (Xi). The number of qualified points
then becomes N,,, where N, is the length of 1,. Quantities restricted to IV, instead of all N
points are identified in the following with an additional subscript @. Note: Theoretically
F¢(X;) should always be greater than F" (X,), because g < h, or at most equal, for
F =0and F = 1. However, because of noise, this may not always be true, suggesting
temporary exclusion of some data points.

{4} After logarithmic transformation and rearrangement, Equation (1) can be written
as log(g) = log(F¢ — F"). Therefore, compute the N,-dimensional vector y, =

log (F t_F g) for N, points, as well as L , where the subscript @ limits the computation
to qualified points.

{5} Based on the linear regression model

A

Yo = Lg,bo + €, @)

estimate the regression coefficient vector ﬁu = [13(,1, ZA)(YZ]T over the N, qualified points,
to obtain an estimate of a. In other words, this equation may be written as y, =
log(é) + log (f,) + &, so that 1301 is equivalent to log(é) and 1302 is the coeflicient of
log (f,), which is expected to converge to 1. Thus, b, is estimated with any of the
methods of linear regression, e.g., by ordinary least squares regression (OLSR) as

Bo = (LIL,) Ly, (8)

As an alternative to OLSR, weighted or robust estimators could be used. If L, does
not have full column rank, i.e., if LELf‘! has a small eigenvalue, one could also use a
small ridge regression constant « for stabilization and compute b, as

N

B, = (LILy, +«1) Lly,. )

{6} For the estimation of g, reformulate Equation (1) as ﬁ + F" = F#. Thus, using values
of f(X;) and F(X,) that are directly obtained from the data (see later sections), compute
% + F'(X,) for all X;, k = 1,2,...,N. Here h denotes the estimator of / after the 2"

iteration, while during the 1* iteration, h is the initial guess for A. Find the index I, of



I-Chun Chou, Harald Martens, Eberhard O. Voit 61

positive quantities @ + F"(X,). The number of qualified points for this step becomes
N,, where N, is the length of I,.

{7} Compute the N,-dimensional vector y, = log (% +F S) for N, points, as well as Ly, .

{8} Based on the linear regression model

A

¥ = Lp, by + &, (10)

and in analogy to step {5}, estimate the regression coefficient vector ﬁg = [Bgl,Bgz]T by
regression over the N, time points as

A

b, = (LT Li) LIy, (11)

or with an alternative regression method. The estimator 13g2 is the parameter of interest,
&; estimator b,, is expected to be zero in the model.

{9} For the estimation of A, reformulate Equation (1) as F¢ — ﬁ = F" and compute
F8 (X)) — @ for all X;, k = 1,2,...,N, again using the values of f(X;) and F(X,).
Determine the index I, of positive quantities F? (X;) — % The number of qualified
points for this step becomes N,, where N, is the length of I,.

{10} Compute the N-dimensional vector y, = log (F ,‘f - %) for N, points, as well as Ly, .
{11} Based on the linear regression model
¥ = L, by, + &, (12)

and in analogy to steps {5} and {8}, estimate the regression coeflicient vector b, =
[by,, by, 1" by regression over the N, time points as

by = (LLLs,) LLyi. (13)

or with an alternative regression method. The estimator IA),,2 is the parameter of interest,
h; estimator b, is expected to be zero in the model.

{12} Iterate steps {3} — {11} until a solution is found or some termination criterion is
satisfied.

At each phase of 3-AR, lack-of-fit criteria are estimated and used for monitoring
the iterative process and to define termination conditions. We use here specifically the
logarithm of the sums of squared y-errors (SSE,, SSE,, and SSE,,) as optimization criteria
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for the three regression phases. Upon convergence, we also compute the residual error
SSE of the fit and the standard deviation S.D. = /SSE/(N — p) of the pdf, as well as the
cdf and f-F plots, where p is the number of estimated parameters, which in all cases
here is 3.

The location parameter X, is not explicit in the method, because it does not appear
in the algebraic formulation of the pdf as a function of the cdf. However, it is easily
estimated directly as the observed or estimated median or by optimizing the horizontal
position of the distribution with parameters @, g, and h (Voit, 2000).

4 Results

We tested the 3-AR method with a large number of representative cases, including
estimations based on “data” from error-free distributions, artificial noisy data
obtained as random samples generated from S-distributions with known parameters,
traditional statistical distributions (using Matlab®), and from actual observation data.
Representative details of each case are discussed in this section.

4.1 Fitting distributions without noise

In order not to confuse the features of 3-AR with possible effects of noise in the data,
we begin the exploration of convergence properties by using true S-distribution cdf's
and pdf's, which are evaluated directly from Equation (1) at a number of values for the
random variable. Specifically, we choose 50 equally spaced instances of the random
variable and compute the corresponding f and F values from Equation (1) to obtain
the “true” pdf and cdf. Figure 2 shows an example of a typical convergence pattern.
Starting from the (essentially arbitrary) initial guesses g = 3 and & = 6, it takes the 3-AR
algorithm just 51 iterations to converge to the true solution, requiring 0.0742 seconds
on a Pentium® D (~3.4GHz) machine. Since we use noise-free data, the residual error
should approach 0, which corresponds to —oco in logarithmic coordinates. We use —9
instead as one of the termination criteria, which corresponds to a result very close to
the true value, but allows for issues of machine precision and numerical inaccuracies.
The low error tolerance causes the algorithm to need 51 iterations. However, as Figure
2 indicates, the estimates are already very close to the true optimum after just a few
initial iterations. Big jumps in the beginning do not negatively affect convergence time.
For instance, using the same error tolerance and initial guesses ¢ = 10, & = 10.5
or g = 100 and & = 120, respectively, the algorithm needs 57 iterations (0.0535
second) or 63 iterations (0.0567 second) to converge to the true parameter values. Thus,
somewhat different from results for general S-systems (Chou, Martens and Voit, 2006),
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the speed of convergence here does not depend much on initial guesses. Also in contrast
to observations with S-systems, the convergence patterns for «, g, and & are often not
monotonic, and each parameter may temporarily increase or decrease during the initial
iterations.

While convergence is almost always extremely fast, as in the example described
above, some initial values cause 3-AR not to converge at all. In such rare cases, the
value of a typically increases without bound, while g and & converge toward each
other and ultimately become the same. This case corresponds to the trivial solution
g — 0 « F¢ — F" in Equation (1) and is easy to detect and discard.

Figure 3 combines results for several noise-free S-distributions and essentially
exhaustive sets of initial guesses for g and / satisfying g < h, as required. The selected
distributions are representative for different shapes and skewness, which are reflected in
different categories of parameter values (cf. Voit, 2000):

1. g > 0and & > 0: as exemplified in Figure 3A and 3B;
2. g <0and & > 0: as exemplified in Figure 3C;
3. g<0and h <O.

In addition, samples from all categories must by definition satisfy the condition g < h.
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Figure 2: Convergence pattern of 3-AR. For this example, 50 instances of the random variable were chosen
[from a parent distribution with parameters a = 20, g = 2, h = 3, and Fy = 0.01. Initial guesses were chosen
as g = 3 and h = 6, but do not affect convergence much. No initial guess for « is needed in 3-AR.
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The left panels in Figure 3 exhibit the cdf and pdf of each distribution. Inserts show
the so-called f-F plots, where the pdf is plotted against the corresponding cdf. These
plots are important because they are the basis for 3-AR and many other estimation
methods for S-distributions. The right-hand panels present “heat maps” of convergence:
the x- and y-axes represent the initial guesses of 4 and g, respectively, and the gray bar
represents the logarithm (base 10) of the number of iterations needed for convergence.
Once the predetermined error level is reached, 3-AR stops and the number of iterations
is recorded as a measure for the speed of convergence. In each case shown here, 25
instances of the random variable were chosen and the corresponding noise-free f and F
values were obtained according to the selected random variables. Black areas represent
divergence to the trivial solution @ ~ oo, g = h.

As discussed above, the convergence time for a given distribution does not vary
much with different initial guesses, and the basin of convergence within each heat map
is therefore almost monochrome. However, the heat maps of different distributions are
quiet different. For instance, the times needed to generate the heat maps in Figures
3A, 3B, and 3C for a total of 57,600 initial values shown are 14,957, 1,197, and 1,094
seconds on a single PC, respectively, thus yielding average convergence times of 0.26,
0.021, and 0.019 seconds per case. While reasons for the wide variations in convergence
times among distributions are unclear, the convergence patterns are similar in all cases:
3-AR takes big steps during the first few iterations, already coming very close to the true
solution, and then spends many iterations on fine-tuning. The convergence area in each
case is relatively large, and it seems to be a good general strategy to choose rather large,
similar initial values for g and &, such as 10 and 10.5, to avoid divergence. Of importance
is that each iteration consists essentially of three linear regressions, which are very fast.
Thus, even if one encounters a rare case of divergence, the choice of alternative initial
settings is computationally cheap and provides for effective estimation results.

Examples with g < 0 and & < 0 or with different & values are not shown in Figure 3,
but 3-AR performed in a similar fashion for all cases tested. Most of the estimation tasks
were solved very effectively, except for cases where the difference between g and £ is
large, for instance, g = 0.1 and & = 6. In such cases, the algorithm sometimes converges
to sets of values between the true g and 4 and oscillates between them. A possible reason
for this behaviour may be that in the 3" phase of regression (estimation of k), the slope
of the regression line in the y,,-Ly, plot (which is reflected in the high value of #) is large
and greatly affected by small errors, especially when f and F values are small so that
their logarithms dominate the regression. In this case, the algorithm may not converge
to exactly the right solution, but the oscillation happens within a reasonable range of
parameter values. If it is desirable to obtain only one g and 4, instead of ranges of
oscillation that bound these values, a possible solution is to exclude some of the small
F values. In the cases we tested, this omission heuristically resulted in the algorithm
converging to the true optimum.
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Figure 3. Summary of convergence patterns of 3-AR. Panels on the left show the pdf, cdf, and f-F plot
(insert) of each distribution. Panels on the right present heat maps of convergence as functions of starting
values of g and h, with gray bar indicating the logarithm (base 10) of the number of iterations needed for
convergence. Each asterisk represents the true value of g or h. Case A: @ = 1, g = 0.25, h = 0.5, Fy = 0.01.
Case B:a=1,¢g=12,h =3 Fy =001 Case C: @ =1, g = =02, h = 0.5, Fy = 0.01. Twenty-five
instances of the random variable were chosen in each case.
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Figure 4: Data sampled from an S-distribution with parameter values a = 1, g = 0.75, h = 1.5 and fits with
the parent S-distribution (dashed lines) and with an S-distribution obtained with 3-AR and initial guesses
g = 10 and h = 10.5 (solid lines). Optimal parameter estimates are obtained as o = 0.80, g = 0.78,
h = 1.87. (a) pdfs; (b) cdfs; (c) f-F plot showing the pdf as algebraic function of the cdf. SSE of the
3-AR optimized distribution is 0.0041 (S.D. = 0.0151), while SSE for the parent S-distribution is 0.0064
(S.D. =0.0189).

4.2 Fitting distributions with noise

The preceding section discussed 3-AR for error-free samples from S-distributions. In
this section we analyze finite random samples from S-distributions, which result in
artificial datasets that appear noisy. To create these data, we use the quantile method,
as discussed in Voit (2000). Specifically, we consider the inverted cdf equation

dX 1

iF - ey F(0.5) = median (14)
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and draw random numbers R; from the uniform distribution over (0,1), which are used as
quantiles. Solving Equation (14) numerically upwards or downwards from the median
to F = R, yields in X; the desired S-distributed random number. The S-distributed
random numbers are collected and form the equivalent of an observed data sample,
whose “noise” depends on the sample size.

The performance of 3-AR in fitting these artificial data is shown in Figure 4 with an
example, where five hundred random numbers were generated from an S-distribution
and categorized into 21 bins of a relative frequency histogram (Figure 4a). The pdf was
constructed from the resulting histogram without smoothing and easily yielded the cdf
(Figure 4b). The 3-AR algorithm converged within 47 iterations from the initial guesses
g = 10 and & = 10.5 to the estimated solution. Interestingly, the fit with this solution
is associated with a lower SSE than a fit with the parent S-distribution, from which the
“data” were sampled, which confirms similar earlier observations (e.g., Sorribas, March
and Voit, 2000). To assess dependence on sample size, we also tested the algorithm with
smaller sample sizes, e.g., n = 100, and 3-AR performed similarly well.

To explore the flexibility of the S-distribution, we repeated the example shown
in Figure 4 several times with 500 points each. The results (Figure 5) show slightly
different fits with SSEs around 0.0045-0.0047 (Figure 5A), 0.0054-0.0057 (Figure 5B),
and 0.0096 (Figure 5C), which are driven by the degree with which each random sample
truly represents the underlying distribution. Within each class, the relationships between
the estimates «, g, and & are similar, again confirming earlier results (Sorribas, March
and Voit, 2000), where classes of quasi-equivalent S-distributions with quite similar
SSEs were produced by fixing the value of @ and fitting g and /. In each class, g and &
exhibit an almost linear relationship between each other and with log(a) and converge
to each other when a becomes larger. Even though the parameter sets within each class
are clearly different, the resulting distributions are essentially indistinguishable.

In some cases, the 3-AR algorithm does not converge to a single value. Instead, it
oscillates between reasonable candidate solutions. This is probably due to noise in the
data, causing 3-AR to find the best “local” fit for each phase, which however is not the
best fit for other phases. This behaviour is commonly seen in nonlinear algorithms. It is
easy to find a suitable solution by choosing from among the candidate solutions, based
on their SSEs.

4.3 Fitting traditional statistical distributions

The selection of a traditional distribution for fitting data is often difficult because the
“true” parent distribution is typically not known. Testing candidate distributions one by
one is cumbersome, and all-encompassing distribution families (e.g., Savageau, 1982)
often contain so many parameters that over-fitting and redundancy become complicating
issues. Instead, the S-distribution may be used as an inclusive model that is capable of
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Figure 5: Quasi-equivalent S-distributions. Parameters are estimated for different samples randomly
generated from a given distribution (¢ = 1, g = 0.75, h = 1.5). The residual errors SSEs are recorded
and classified into three classes based on the value of SSE. The plots of g or h versus log(«) and of g versus

h are generated in each class. A: SSE between 0.0045 and 0.0047; B: SSE between 0.0054 and 0.0057; C:
SSE equal to 0.0096.
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Figure 6: Fitting traditional distributions. The gray dots represent data used in the regressions, while the
solid curves represent the estimated S-distributions. The SSEs are calculated for the f-F plot.A: noncentral
tg s-distribution, SSE = 0.00007, S.D. = 0.0032; B: Fg 00-distribution, SSE = 0.00066, S.D. = 0.0097; C:
Xﬁ—distribution, SSE = 0.00026, S.D. = 0.0045.
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representing many traditional statistical distributions in sufficiently close approximation.
The strategy thus becomes to fit data of unknown structure with an S-distribution and
to identify which traditional distributions have similar shapes (Voit, 1992; Voit and Yu,
1994; Yu and Voit, 1996). This section explores how well 3-AR identifies S-distributions
for random samples from traditional distributions.

The S-distribution contains only two classical distributions as special cases: the
exponential distribution for g = 0 and 2 = 1 and the logistic distribution for g = 1
and i = 2. Fitting these two distributions yield SSEs equal to 0 (results not shown). All
other classical distributions incur some unavoidable approximation error when modelled
as S-distributions. Figure 6 shows the results of 3-AR fitting of three examples that
are not special cases, namely a noncentral ¢-distribution, an F-distribution, and a y*-
distribution; the initial guesses were again chosen as g = 10 and & = 10.5. As before,
3-AR converges to a solution within a few iterations for these and many other examples.
The only convergence problems occurred when fitting traditional distributions requiring
g = h (see Voit (1992) for these uncommon cases). A possible reason is presumably that
the S-distribution is not a very good model for such distributions.

4.4 Fitting observed data

The ultimate measure of success of any fitting algorithm is the modelling of actual data.
Figure 7 shows the performance of 3-AR in fitting an S-distribution to weight data of
males ages 20 to 29 (data from NHANES III (National Center for Health Statistics,
1996)). The observed distribution contains 574 males, classified into bins of 3 kg. The
pdf and cdf histograms were constructed in the same fashion as in Section 4.2. The SSE
of the fit is similar to the result of using a constrained maximum likelihood estimator
(Voit, 2000), although the parameter values are somewhat different, exhibiting again the
flexibility and quasi-redundancy inherent in S-distributions. Visually, and judged by the
SSE, the fit obtained here is satisfactory and obtained in less than a second.

5 Discussion

The S-distribution is a four-variable distribution that combines mathematical simplicity
with superior flexibility in modelling data. A crucial prerequisite for using the
distribution in practical applications is the availability of effective methods for
estimating optimal parameter values from observed frequency data. Addressing this
issue, we introduced here a method called 3-way alternating regression (3-AR) that
is extremely fast and robust. The 3-AR method constitutes a modification of a 2-way
alternating regression method that was recently proposed for parameter estimation in
S-systems (Chou, Martens and Voit, 2006), of which S-distributions are special cases.
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Figure 7: Fitting observed data. Observed distribution (bars and dots) of weights of 574 males, ages 20-29
(National Center for Health Statistics, 1996) and S-distribution fit (lines) obtained with 3-AR and initial
guesses g = 10, h = 10.5. Estimated parameter values: a« = 0.270, g = 0.958, h = 1.328, Xy5 = 74.37.
(a) pdf (SSE = 0.000143, S.D. = 0.0023); (b) cdf (SSE =0.009629, S.D. = 0.0189); (c) f-F plot (SSE =
0.000187, S.D. = 0.0026).

The 3-AR method performs well in all typical scenarios, namely for estimating
parameters from error-free distributions, from random samples generated from S-
distributions, from traditional statistical distributions, and from actual data. The basin of
convergence is rather large, and convergence speed is essentially independent of initial
guesses that are selected to start the 3-AR algorithm. Therefore, even if one selects
initial guesses quite far away from the true optimum, the algorithm only takes a few
iterations to converge to points very close to the true solution and refines this solution
with a relatively small number of further cycles. An exception is the situation where 3-
AR converges to the trivial solution where « increases without bound and g approaches
h. This scenario is easy to spot and the choice of another initial guess typically remedies
the situation. A second exception to rapid convergence may occur if the true g and & are
very different. In this rather unusual case, the algorithm sometimes converges to values
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between the true g and 4 and oscillates between them. In this case, one may select values
from within the oscillation range or redo the estimation by omitting some of the very
small values of the pdf and cdf.

The 3-AR fitting of data from traditional distributions works well in most cases,
except for distributions that are not well approximated by S-distributions and where the
relatively best fit requires g =~ &, as described in Section 4.3.

For finite random samples, the estimated solution is also obtained very quickly,
but its parameters depend on the particular sample. As a consequence, the computed
estimates may be rather different, even though the SSEs are very similar and the
shapes of the resulting distributions are essentially indistinguishable. This finding is
a manifestation of the shape flexibility and quasi-redundancy of S-distributions and
confirms similar observations in the literature (e.g., Sorribas, March and Voit, 2000).

The 3-AR algorithm provides a strategy for parameter estimation with S-
distributions that is genuinely different from all other published methods. While some
issues associated with the basin of convergence should be investigated further, our
results shown here provide strong indication that this algorithm is much faster than the
currently available alternatives.

An issue that seems generic to S-distributions and has been observed in other
contexts is the covariance among the parameters @, g, and h (e.g., Sorribas, March
and Voit, 2000). While each set of these parameters determines a unique distribution,
the covariance permits distinct sets leading to solutions that are so similar that their
differences are often smaller than the noise in the data. This quasi-equivalence will
require future work. For instance, it might be possible to specify the theoretical
uncertainty variances of the estimated parameters or analytically study the uncertainty
variance by principal component analysis or linear series expansion of the model around
the convergence point (@, g and h).

Quasi-equivalence also poses problems when it is necessary to determine the
uncertainty in the estimated parameters, for instance in the context of significance
testing. The quasi-equivalent different parameter sets, which yield essentially
indistinguishable distributions, are not arbitrary, but form slightly curved, essentially
one-dimensional manifolds in the parameter space, as we and others have discussed
in the literature several times. These manifolds may be similar to quasi-solution sets
recently derived from Newton flow methods (see Dedieu and Shub, 2005). Whatever
the structure of the quasi-solution sets may be, it is quite evident that equivalence
tests focusing on one parameter at a time will not be useful. Instead, one will have
to compare solutions globally, for instance based on Hellinger or Kullbach-Leibler
distances (see Balthis, 1998) or on some measure of maximal distance, such as Q, =
supx|F1(X) — F»(X)|. To calculate a confidence interval for these distances, one would
probably use the bootstrap. One could similarly use bootstrap methods to calculate
p-values for the null hypothesis that two S-distributions are the same, although the
bootstrap sampling for hypothesis testing would be slightly different than that used
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for confidence intervals. Furthermore, one could use Monte Carlo simulation methods
to construct power curves for the alternative significance tests, under different true
scenarios.

A related issue needing future attention will be the characterization of the intrinsic
features of the 3-AR estimator, including its biasedness, consistency, and efficiency.
These characterizations appear to be complex and may have to be postponed until the
convergence behaviour of 3-AR is more fully understood.

Finally, a future extension of 3-AR might be its generalization to the more
comprehensive GS-distribution (Muifio, Voit and Sorribas, 2006), which is characterized
by increased flexibility in shape, in particular, for symmetric distributions, at the cost
of one additional parameter. The inclusion of this additional parameter will require
modifications to the 3-AR algorithm that need to be investigated in detail.
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