文章编号: 1001-4322(2001)05-0591-04

分步加压法测量薄壁空心玻璃微球的耐压能力

邱龙会. 郑永铭. 傅依备. 唐永建. 师 滔. 袁玉萍

(中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900)

摘 要: 根据空心玻璃微球(HGM)耐内、外压能力与玻璃强度及形状因子的关系,用分步加压法 测量了直径为350~550µm,壁厚小于1.1µm 的3种配方HCM 的耐内、外压能力及HCM 玻璃的杨氏模 量和拉伸强度,并由强度测定值给出了不同直径与壁厚HGM的耐内,外压能力的计算式,分析了测量 误差,提出了改进方案。

关键词: 激光聚变靶丸; 空心玻璃微球; 分步加压法; 耐压能力 **中图分类号**: TL 639; TQ 171. 114 文献标识码: A

大形状因子(外半径与壁厚之比)空心玻璃微球(HGM)作为激光热核聚变直接驱动靶丸,要求能充 填足够高压力的DT 气体和诊断气体,HCM 的耐内,外压能力随形状因子增加而显著降低,HCM 是否 能忍耐预定充气压力,在充气过程中是否会因内,外压差过高而破损,均由HGM的实际耐压能力决定。 "神光-II"装置上首次使用的直接驱动出中子的充DT 玻璃靶丸,其形状因子高达250~350,要求充填 DT 气体压力大于0 5M Pa(室温), HGM 的耐压能力是否能够满足要求?而且在热扩散充DT 气体的方 案设计中也必须考虑其耐压能力^[1],为此,需要对HGM的耐压能力予以测量。国外仅测定了厚壁空心 玻璃微球的耐压能力^[2],而国内仅姚书久等人对特定规格的大形状因子 HGM 在室温下和250 下的耐 外压能力做了初步测试,并未测试耐内压能力,且未考虑形状因子与耐压能力的关系[3]。

由于 H GM 的实际耐压能力仅能通过加压方法进行破坏性测量,故不能对提供用于打靶的每一发 HGM 进行实验测量 HGM 的耐压能力取决于玻璃强度及微球的形状因子, 成球过程和组成相同的 HGM,其耐压能力由形状因子决定^[4]。若能测定组成相同的同一批HGM的强度性质,则可给出任意形 状因子HGM 的耐内、外压能力。

本文将用分步加压法测量三种常用组成大形状因子 HGM 的杨氏模量和拉伸强度,并给出任意直 径和壁厚的这三种 HGM 的耐内 外压能力的计算式。

测试原理 1

大形状因子 H GM 在充气过程中将因外压与内压之差超过极限值 pb. 或者在充填气体后离开充气 环境时,将因内外压差大于极限值 p_f 而发生破裂, p_b 与 p_f 的计算式为^[4]

$$p_{\rm b} = 2E/(\sqrt{3(1-v^2)R_{\rm a}^2})$$
(1)

$$p_{\rm f} = 2\delta/R_{\rm a} \tag{2}$$

式中: p_b 为大形状因子 HGM 的耐外压能力(Pa); E 为杨氏模量(Pa); v为玻璃的泊松比. 硅酸盐玻璃的 泊松比约为0 21^[5]; R_a 为HGM 的形状因子, 即外半径与壁厚之比; p_f 为耐内压能力(Pa); δ 为玻璃的拉 伸强度(Pa)。

实验方法 2

2 1 HGM

用液滴法制备三种大形状因子薄壁HGM^[6],其组成见表1^[7],挑选三种配方HGM各34枚,直径为

* 收稿日期: 2000-10-30; 修订日期: 2001-05-08 基金项目: 国防预研基金资助课题(54.9.4); 中国工程物理研究院科学基金(990553)资助课题 作者简介: 邱龙会(1970-), 男, 四川安岳人, 博士, 副研究员, 从事 ICF 靶制备; 四川绵阳919-987信箱。 2

^{© 1995-2005} Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

	表1	拔埚浴次甲拔埚	形成物及 HGM 中国	氧化物的相对摩尔	分数	
	Table 1 Compositions of oxides in HGM and their glass forming solutions					
oxides	relative mole ratios of oxides in solutions/%			relative mole ratios of oxides in HGM /%		
	1#	3#	5#	1#	3#	5#
SD_2	76 25	74.30	71 20	80 50	79.00	76 00
N a ₂ O	20 30	20 30	22 00	17.1	17. 30	18 80
K ₂ O	1.84	2 70	2 70	1. 20	1. 80	1.80
L i ₂ O	0 10	0 10	0 10	0 10	0 10	0 10
B 2 O 3	1.51	2 60	2 60	1.00	1. 80	1.80
A bO ₃			1.41			1. 50

350~ 550μm, 壁厚为0 7~ 1. 1μm, 用 TM -50读数显微镜和Leitz 干涉仪准确测定 HGM 直径和壁厚。 表1 玻璃溶液中玻璃形成物及 HGM 中氧化物的相对摩尔分数

2 2 充气系统

充气系统如图1所示, 各阀门均可微调, 充气腔 内温度控制精度为±1, 气压测量精度为± 0.0 M Pa, 测量时, HGM 按文献[3]的方式放置。

2 3 杨氏模量及耐外压能力的测量

将HGM 装入高压充气系统,用N₂气作加压气 源,在室温下分步加压,第一步压力为0 9M Pa,以后 每步压力增量为0 IM Pa,每步加压停留15m in 后取 出,在W LD M 3Z-S 型体式显微镜下观测HGM 是 否破损,若未破损,将HGM 装回充气系统继续加压 直到破损为止,记录破损前后两步的压力,取平均值 作为HGM 耐外压能力的测量值,即为破损前的压

Fig 1 Sketch of the gas filling system 1. gas source; 2 gas out-let valve; 3 digitalmanometer; 4 copper bar and discs for nesting spheres^[3]; 5 annular oven; 6 thermocouples; 7. temperature controlling system; 8 power 图1 充气系统示意图

力与每步压力增量的一半(0 05M Pa)之和。由(1)式计算给出HGM杨氏模量的测定值。

2 4 拉伸强度及耐内压能力的测量

将HGM 在300 下分步充D₂气, 第一步压力为0 2 M Pa, 以后每步压力增量为0 3 M Pa, 停留时间为 2h, 在第三步结束时(即外压为1 3 M Pa), 先冷却至室温, 再取出HGM 观测是否破损, 并立即测量未破 损HGM 的干涉条纹, 继续充D₂气体直至HGM 破损为止, 取破损前的内气压与每步压力增量0. 3 M Pa 的1/4(即0 07 3 M Pa)之和作为HGM 的耐内压能力, 由(2)式计算拉伸强度。

3 结果与讨论

3.1 HGM 耐压能力与组成的关系

HGM 的杨氏模量和拉伸强度的测量结果见表2。从杨氏模量看, 5[#] HGM 最高, 1[#] HGM 最低, 且1[#] 与3[#] 相近, 原因是, 5[#] HGM 中 SD 2% 降低且增加了 A 103% 和 B 203%, SD 2的摩尔杨氏模量比 A 103和 B 203的低^[8]; 3[#] HGM 比 1[#] HGM 略高, 可能是因降低 SD 2% 和增加 B 203% 而增大的杨氏模量被增加 K 20% 引起的降低所部分抵消。从拉伸强度看, 3[#] 与 5[#] HGM 的 δ 接近且均明显大于 1[#] HGM 的, 可能 是因增加了碱金属离子和 B 203% 使 HGM 在成球过程中熔融更充分, 粘度降低, 玻璃化均匀, HGM 表 面缺陷减少, HGM 的强度得到改善。

Table 2 Elastic moduli and tensile strengthes of the unree kinds of HGM				
НGМ	<i>E/</i> GPa	confidence of E (97. 8%)/GPa	δ./M Pa	confidence of δ (95%) /M Pa
1#	52 4	5 7	103	11
3#	53 7	5 9	119	11
5#	60 0	7.8	120	8

表2 三种组成 HGM 的杨氏模量和拉伸强度的测量值

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

7

3.2 HGM 耐压能力与形状因子的关系

2000年4月在"神光-II"激光聚变装置上用了直径分别为 $(100 \pm 10) \mu m$, $(200 \pm 15) \mu m$ 和 (520 ± 30) μm 的三种规格薄壁玻璃靶丸进行直接驱动出中子实验,物理实验要求填充DT 及Ne 气体压力(280K)分别大于1.53M Pa, 1.53M Pa 和0.53M Pa,取 HGM 的直径分别为 $100\mu m$, $200\mu m$ 和 $520\mu m$,壁厚均为 0.80 μm ,则形状因子分别为62.5,125和325,由 HGM 杨氏模量和拉伸强度的测量值(表 2),分别按(1)式和(2)式计算 HGM 的耐外压能力及耐内压能力,结果见表3。

Table 3 Failure pressures of HGM with different aspect ratios						
R _a	1 [#] H GM		3 [#] H <i>G</i> M		$5^{\#}$ H GM	
	<i>р</i> ь∕М Ра	p f∕M Pa	рь∕М Ра	p₁∕M Pa	<i>р</i> ь∕М Ра	p f∕M Pa
62 5	15.9	3 29	16 2	3 81	18 2	3 84
125	3.96	1. 65	4.06	1.90	4.53	1. 92
325	0 586	0 634	0 601	0 732	0 971	0 738

表3 不同形状因子 HGM 的耐压能力 Table 3. Foilume programs of HCM with dffearer to creat rotio

从计算结果看, 三种配方各种规格 HGM 的耐内压能力均能满足实验要求; 直径为100μm 和200μm 的HGM 的耐外压能力高, 可以采用一步法热扩散充气, 而直径为520μm 的薄壁 HGM 的耐外压能力较低, 只能采用分步法热扩散充DT 气体, 且必须避免压差积累超过耐外压能力。

实际应用中,直径为520μm的5[#]配方薄壁 HGM充DT气体压力达到05~06MPa,内气压低于耐内压能力的测量值074MPa(表3),HGM均未发生破损,这说明耐压能力的测量是可靠的。

3 3 HGM 耐压能力计算式

按(1)式和(2)式,由杨氏模量与拉伸强度的测量值(表2),可给出任意直径、壁厚的同一批HGM的 耐内、外压能力的计算式,见表4。

НGМ	p f∕M Pa	рь∕GPa
1#	$206 t_{\rm w}/r_{\rm s}$	61. $9 t_w^2 / r_s^2$
3#	$238 t_{\rm w}/r_{\rm s}$	63. $4 t_w^2 / r_s^2$
5#	$240 t_{\rm w}/r_{\rm s}$	70. $9 t_w^2 / r_s^2$

表4 不同直径、壁厚 HGM 的耐压能力的计算式 Table 4 Formulae to calculate the failure pressures of HGM with different diameters and wall-thicknesses

3.4 误差分析

从测量结果(表2)看,杨氏模量与拉伸强度的测量误差较大,分别为11%~13%和7%~10%,测量 误差主要来源有三方面:其一,在HGM 破损压力的测量中,压力负荷的增加是间断的,每步内、外压负 荷增量分别是0 075M Pa 和0 05M Pa,由此引入的误差随形状因子增大而明显增加,以形状因子为325 的1[#] HGM 为例,引入误差分别是,耐外压能力为7%~8%,耐内压能力为10%~12%;其次,由于HGM 直径的测量误差低于0 5%,可忽略,而HGM 的壁厚很薄(0 6~1 0μm),现有的干涉法测量的绝对误 差为0 03μm,由此引入的形状因子测量误差为3%~5%,由(1)式和(2)式按误差传递原理计算,耐外压 能力误差为6%~10%,耐内压能力误差为3%~5%;另外,HGM 内气压力测量偏差也引起耐内压能力 测量误差。

3 5 测量方法的改进设想

根据误差来源,测量方法的改进有三种途径:其一,提高充气系统的压力范围,可选用壁厚较大、直径较小的HGM 进行压力实验,以减小形状因子测量值的相对误差;其次,在充气系统中安装在线检测装置,使压力负荷可连续变化,以减小HGM 破损压力的测量误差;其三,缩短HGM 内气压测量前的漏 气时间,同时,提高内气压量测量的准确性。

4 结 论

2

用分步加压法能可靠测量大形状因子 HGM 耐内、外压能力,并间接测量 HGM 的玻璃的强度指

标,根据测量结果和HGM的直径与壁厚,可以对同类HGM的耐压能力进行计算,误差小于10%,计算 式用于"神光-II"首轮激光聚变玻璃靶丸耐压能力的测量中取得了较好效果。

参考文献:

- [1] 邱龙会,魏芸,傅依备. 薄壁玻璃微球壳的热扩散充气[J]. 强激光与粒子束, 1999, **11**(3): 317. (Q iu L H, W ei Y, Fu Y B. Gas diffusion fill through holbw glass m icrospheres with high aspect ratios *H igh pow er laser and particle beam s*, 1999, **11**(3): 317)
- [2] Izawa Y, Norimatsu T. Target fabrication [A]. Velarde G, Romen Y, Martinez-ValJM. Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise [C]. USA: CRC Press, 1993. 532-535.
- [3] 姚书久, 彭述明, 李立匣, 等 低强度空心玻璃微球充氘氚气体工艺研究[J] 强激光与粒子束, 2000, **12**(1): 72—74 (Yao S J, Peng SM, LiL X The technology of D-T gas pressurized into thin walled holbw microspheres with bw strength[J] *H igh pow er laser and particle beam s*, 2000, **12**(1): 72—74)
- [4] Campbell J H, Grens J Z, Poco J F. Preparation and properties of hollow glass microspheres for use in laser fusion experiments [R]. U-CRL-53516, Law rence Livermore National Lab, Calif, 1983.
- [5] 作花济夫,境野照雄,等. 玻璃手册 北京: 中国建筑工业出版社, 1985. 515. (Handbook of glass[M]. Beijing: China Construction Industry Press, 1985. 15)
- [6] 邱龙会,傅依备,汪小琳 液滴法制备高尺度比玻璃微球壳的研究[J].强激光与粒子束,1999,11(1):465—469. (Qiu L H, Fu Y B, W ang X L. Fabrication of holbow glass microspheres with high aspect ratios by liquid droplet method[J]. *H igh pow er laser and particle beam s*, 1999, 11(4):465—469)
- [7] 邱龙会,魏芸,傅依备 A bO3引入对空心玻璃微球化学稳定性的提高[J]. 材料科学与工艺, 2000, 8(3): 58—61. (Q iu L H, W ei Ynu, Fu Y B. Improvement of the chemical stability of hollow glass microspheres through introducing A bO3 *M aterial Science and Technology*, 2000, 8(3): 58—61)
- [8] 苏尔兹 玻璃的本质结构和性质 北京: 中国建筑工业出版社, 1984 297—299. (H Essential structure and properties of glass Beijing: China Construction Industry Press, 1984 297—299)

M ethod to measure the failure pressures of hollow glass m icrospheres with high a spect ratios

Q U Long-hui, FU Yi-bei, TANG Yong-jian, ZHENG Yong-ming, SHITao, YUAN Yu-ping (Research Center of Laser Fusion, CAEP, P. O. Box 919-987, M iany ang 621900, China)

Abstract An experimental method, pressure bading by steps, was designed to measure the fracture and buckling failure pressures of hollow glassmicrospheres (HGM) for use in laser fusion experiments. The failure pressures of 3 kinds of HGM with out-diameters of $350-550\mu$ m and wall-thickness less than 1. 1μ m and the HGM glass's elastic moduli and tensile strengthes were measured experimentally. From these results, experimental formulae were obtained to evaluate the failure pressures of HGM in different out-diameter and wall-thickness without any test. Moreover, the experimental error sources and ways to improve them are discussed

Key words laser fusion target; hollow glass microsphere; pressure loading by steps; failure pressure