桐柏造山带几何学、运动学和演化*

黄少英 徐 备** 王长秋 湛 胜 邓荣敬

(北京大学地球与空间科学学院教育部造山带与地壳演化重点实验室,北京 100871)

摘要 桐柏造山带由 6 个次级构造单元组成,由南到北依次为桐柏片麻岩隆起带(TGR)、鸿仪 河-罗庄榴辉岩带(HLE)、毛坡-胡家寨火山岩单元(MHI)、周家湾复理石单元(ZFB)、杨庄绿片岩 单元(YGB)和董家庄大理岩单元(DMB).桐柏造山带的几何学和运动学图像包括:由后期隆升过 程形成的穹隆构造、超高压岩石折返形成的顶部向北(top-to-north)的韧性剪切构造、与南北向挤 压有关的顶部向南(top-to-south)的韧性剪切构造、左行平移剪切构造以及地壳较浅层次的东西向 褶皱构造等几部分.根据桐柏-大别地区已有的和本次获得的构造年代学数据,可将研究区变形 构造划归4个变形阶段.从多期俯冲-碰撞造山带的观点出发,根据各构造单元的岩石学特征及其 展布,结合几何学、运动学和构造年代学特征,桐柏造山带构造演化可分为 4 个阶段即:约 400~300 Ma 的洋壳俯冲阶段、270~250 Ma 的大陆碰撞阶段、250~205 Ma 的大陆深俯冲和折返 阶段以及 200~185 Ma 的隆升阶段.

关键词 桐柏地区 几何学 运动学 构造单元 造山带演化

1 引言

秦岭-大别造山带以极其复杂、丰富的地质特征 而举世瞩目,成为国际地质科学研究的热点¹¹¹,20年 来已获得大量研究成果.在构造格局和构造演化方 面,秦岭造山带已建立了华北板块、秦岭微板块、扬 子板块和商丹缝合带及勉略缝合带构成的基本框架, 提出秦岭造山带经历了古生代俯冲造山和中生代碰 撞造山过程,分别由商丹带和勉略带代表^[2,3].东大 别地区已划分出北淮阳带、北大别带、南大别带和宿 松带等构造单元^[4]. 西大别地区从北向南可分为 9 个 构造单元, 尤以北部的划分较为详细^[5.6]. 秦岭与大 别造山带的构造单元对比是广泛关注的重要问题^[7], 在两者结合部位开展专门研究是解决该问题的关键 所在. 为此本研究选择秦岭和大别造山带邻接的桐 柏地区, 开展几何学和运动学分析, 划分造山带构造 单元, 追索其横向延伸及构造边界, 建立造山带结构 剖面, 并通过构造年代学的讨论, 推断该区造山带演

收稿日期: 2005-04-16; 接受日期: 2005-11-23

^{*}国家自然科学基金项目(批准号: 40272098)、国家重点基础研究发展规划项目(批准号: G1999075511)及教育部高等学校博士学科点专项科研基金(批准号: 20020001055)资助

^{**} 联系人, E-mail: bxu@pku.edu.cn

化过程. 在此基础上, 讨论桐柏造山带与东秦岭和大 别造山带的对比和连接问题.

2 构造单元划分及其几何学特征

前人对桐柏地区构造单元划分已有部分工作. 例如Kröner等^[8]曾划分出桐柏纳布构造带、固庙韧性剪 切带和彭家寨岛弧带:李曙光等[9]将桐柏-大别地区 统一划为 6 个构造-岩性单元, Hacker等^[10]及Webb等 Ш在桐柏-西大别地区划分了若干岩石-构造单元. 索 书田[12]、钟增球等[13]在桐柏地区确定了与折返过程 有关的构造格局并发现多处榴辉岩. 上述工作主要 从岩石学方面提供了大尺度的构造单元划分,但具 体到对桐柏地区的构造单元划分则较为粗略,为了 详细研究桐柏地区构造演化过程及其对比, 必须提 供更为精细的构造单元划分和对比材料.因此需要 在查明构造地质学特征的基础上,结合岩石学和构 造年代学特征,进一步详细划分研究区的构造单元. 为此笔者在河南桐柏具以西、南阳盆地以东、新城具 以北及好汉坡以南的桐柏地区开展了详细的野外构 造地质学研究, 根据变形和岩性特征划分出 6 个 构造单元(图 1). 从南向北依次为:(1) 桐柏片麻岩隆 起带(TGR);(2) 鸿仪河-罗庄榴辉岩带(HLE);(3) 毛 坡-胡家寨火山岩带(MHI);(4) 周家湾复理石带(ZFB); (5) 杨庄绿片岩带(YGB);(6) 董家庄大理岩带(DMB). 现将各单元特征分述如下:

2.1 桐柏片麻岩隆起带(TGR)

以桐柏山为主体呈北西西-南东东向,延伸达 20 km以上,南北宽约 7 km.南以尚家湾-王店断层为界, 北以固庙断层为界,向西止于南阳盆地,向东延伸到 湖北应山县境内,相当于索书田等^[12]的桐柏核部杂 岩.构成隆起带的岩石主要是花岗片麻岩、夹黑色铁 镁质包裹体和大理岩透镜体.片麻理产状总体为隆 起带北部向北缓倾斜,南部向南缓倾,构成枢纽为北 西西-南东东向的背形构造.在横跨隆起带的东部固 庙-太白顶剖面和西部程湾-新城剖面,糜棱片理的产 状在南段向南西倾,倾角一般在 40°以下;在北段向 北东倾,倾角 20°~30°之间,形成平缓的背形形态,而 在中段则分别向南东及北西倾斜,反映沿枢纽方向 的起伏形态(图 2A, C).

图 1 桐柏地区地质图

2.2 鸿仪河-罗庄榴辉岩带(HLE)

该带为含榴辉岩的高压单元,其南界与桐柏片 麻岩隆起带(TGR)相接,北界以正断层与毛坡-胡家 寨火山岩带(MHI)相邻.南北宽约 3~5 km,东西延伸 达 45 km.该带以长英质片岩、片麻岩为主,含少量 大理岩透镜体和斜长角闪岩夹层.在古井庄-毛坡剖 面,糜棱片理产状总体向南倾,倾角大都在 60°以上. 在鸿仪河-太子庙剖面,片理总体向北东倾,倾角约 50°~70°左右(图 2E).在固庙-罗庄-娘娘庙剖面,片理 产状北倾或南倾,但其倾角都在 70°以上(图 2G).在 本构造单元内的罗庄、鸿仪河和娘娘庙等地,有大量 榴辉岩或榴闪岩出露,呈数十厘米到约 1 m 的脉状、 透镜状或层状.

2.3 毛坡-胡家寨火山岩带(MHI)

该带南部在毛坡-娘娘庙一线以正断层与鸿仪河-罗庄榴辉岩带(HLE)相接触,北部以正断层与周家湾 复理石带(ZFB)相邻.南北宽约 2.5 km,东西长约 15 km,西部被中生代花岗岩所侵入.带内岩石为定远 组火山岩,受到低绿片岩相变质.火山岩发育强烈的 片理化,片理总体倾向北,倾角大于 70°(图 2I).在西 大别地区,Li 等^[14]确认定远组为岛弧环境并获 444± 31Ma (Rb-Sr)和 446±23 Ma (Sm-Nd)的等时线年龄. 因此本区毛坡-胡家寨火山岩带可能属于古生代岛弧 火山岩.

图 2 桐柏造山带片理和线理数据的赤平投影 等面积下半球投影,大圆环带示面理,箭头示线理

该单元南与毛坡-胡家寨火山岩带(MHI)相邻, 北接杨庄绿片岩带(YGB),西部被大面积花岗岩侵入, 东部为第三纪沉积砾岩覆盖.南北宽约2km,东西长 约5km.地层主要为古生代南湾组变质砂岩、变质粉 砂岩或千枚岩,野外观察可见残余复理石韵律结构. 尽管岩石受构造变形作用产生弱片理化,但原始层 理(So)仍可辨认,产状总体为高角度倾向北东(图2K). 根据地层的正常和倒转产状可推断该带存在轴面直 立的紧闭褶皱.

2.5 杨庄绿片岩带(YGB)

该带沿杨庄-蒋庄一线呈NWW-SEE向展布,东 西延伸约 40 km,南北宽约 1.5~3 km.其南界除少部 分与周家湾复理石带呈断层接触外,其余大部分被 中生代花岗岩所掩盖.该带北界为松扒韧性剪切带, 并与董家庄大理岩单元(DMB)相连.带内岩石称为 龟山组,由长英质片岩夹斜长角闪片岩组成,其形成 年代为中元古代^[15].在胡家寨-董家岔一线,片理总 体北倾,倾角均在 50°~70°之间(图 2L).作为该带北 界的松扒剪切带呈NWW-SEE向展布,延伸达 40 km, 宽约 0.5~1 km,以高角度南倾或北倾的糜棱片理为 特征.

2.6 董家庄大理岩带(DMB)

位于松扒韧性剪切带(SSB)以北,沿董家庄-蔡家 凹-老龙泉寨一线呈NWW-SEE向展布,南北宽 5~8 km,东西可延伸达 30 km.带内地层以厚层大理岩为 主,夹斜长角闪岩,属秦岭群.岩层发生强烈褶皱, 其轴面片理产状总体北或北北东倾,倾角约 60°~80°, 局部地区产状近直立(图 2M).这些地层原被认为全 部属华北板块基底,但近年来在蔡家凹等地发现高 肌虫^[16]和放射虫^[17],表明该单元包含了部分古生代 以来的盖层.

3 运动学分析

通过对6条剖面的野外观察,结合室内定向薄片 的观测,初步查明了各主要构造单元的几何学和运 动学特征.通过区分不同的几何学和运动学图像,建 立了该区造山带结构剖面.

3.1 桐柏片麻岩隆起带(TGR)

隆起带南、北两侧由石英、长石等形成的线理(图 3(c))都反映出向北西方向的运动学特征.例如在固 庙-太白顶一带,拉伸线理向 305°方向倾伏,倾角小 于 15°(图 2D);而在程湾一带,大部分线理也集中在 相似方向(图 2 B),并与 S-C 组构(图 3 (b))和小型褶皱 (图 3(a))所指示的运动方向完全一致.这种运动学方 向的统一性暗示存在着早于隆起带形成的区域性顶 部向北的(top-to-north)剪切作用,而隆起带两侧片麻 理的对称状分布是在后期隆升过程中形成的.

3.2 鸿仪河-罗庄榴辉岩带(HLE)

野外可观察到各类韧性变形现象,例如在北东 倾片理带中发育石英脉的多米诺构造(图3(d)),S-C构 造和云母鱼(图3(e)),均指示从南向北的剪切作用. 野外线理指示的运动方向主要为北西向,即向 280°~340°方向倾伏,倾角15°~30°(图2F,H).本带 内线理指示的运动学方向与桐柏片麻岩隆起带的早 期构造方向相似,表明两者可能为同一次构造运动 的产物,即共同经历了区域性顶部向北的(topto-north)剪切作用.

3.3 毛坡-胡家寨火山岩带(MHI)

带内片理化火山岩中有各种韧性剪切变形标志, 如石英脉剪切拉长、多米诺构造及黄铁矿不对称压力 影(图 3(f)),其不对称性指示向 210°方向的逆冲.带 内拉伸线理向约 190°~250°方向倾伏(图 2J),这些运 动学标志均反映了总体向南的推覆作用.值得注意 的是,本带与上述两个构造单元相比,尽管片理也向 北倾,但运动学方向完全不同,即指示出顶部向南的 (top-to-south)的逆冲作用,这表明它们可能不是同一 次构造变形的结果.

3.4 周家湾复理石带(ZFB)

以保存弱片理化的变质砂岩、变质粉砂岩或千枚 岩的原始层理为特征,根据岩层的正常和倒转产状 所推断的紧闭褶皱显然与地壳较浅层次的挤压作用 有关,而不同于前述各个构造单元的韧性变形构造.

图 3 桐柏造山带各单元的运动学标志 (a)花岗片麻岩中的小型褶皱; (b)花岗片麻岩中的 S-C 构造; (c)花岗片麻岩中的线理; (d)石荚脉的多米诺构造; (e)云母鱼构造; (f)黄铁矿变形 及压力影; (g)石英和石榴石的拖尾构造(仰视); (h)石英及其集合体的拖尾构造(俯视)

SCIENCE IN CHINA Ser. D Earth Sciences

3.5 杨庄绿片岩带(YGB)

本带北部松扒剪切带内发育高角度南倾或北倾的糜棱片理,其内可观察到由石英、白云母等组成的线理.这些线理大致平行走向,倾伏向 260°~290°,倾角 5°~15°.平行线理的石英、石榴石不对称变形(图 3(g))和石英及其集合体的拖尾构造(图 3(h))表明北盘向西的剪切,证明松扒剪切带具有左行平移剪切的性质.

上述几何学和运动学观察表明,桐柏造山带的 几何学和运动学图像由几部分组成:(1)后期隆升过 程形成的背形构造,见于 TGR;(2)超高压岩石折返 形成的顶部向北的韧性剪切构造,见于 TGR 和 HLE; (3)与南北向挤压有关的几类构造,包括:MHI内顶 部向南的韧性推覆剪切构造、YGB内的后期左行平 移剪切构造以及 ZFB内的东西向褶皱构造.据此建 立了从董家庄到新城的造山带结构剖面(图 4).

4 构造变形阶段

根据桐柏-大别地区内已有的和本次获得的新数 据,可将研究区变形构造划归4个变形阶段.

第一阶段(约 400~300 Ma):据前人研究,本区 YGB单元具有古生代以来多期变形的历史,其中古 生代变形的证据是从糜棱片理中获得角闪石 ⁴⁰Ar/³⁹Ar年龄为 402±4 Ma^[15];在DMB和ZFB所属的 秦岭群和信阳群中也获得了 404±4,316±1 和 304± 14 Ma的角闪石 ⁴⁰Ar/³⁹Ar年龄^[18].这些样品都有很好 的测试精度和并采自片理带内,有明确的构造意 义,可以证明约 400~300 Ma 发生过普遍的构造事件. 因此有理由推测 YGB, ZFB 和 DMB 等由古生界或更 老地层组成的构造单元中,反映南北向水平挤压的 糜棱片理或轴面片理与 400~300 Ma 的构造事件有关.

第二阶段(270~250 Ma):在本区以东的信阳地区

和更向东的北淮阳带内,已获 261±1, 267±1 和 262 ±5 Ma的白云母⁴⁰Ar/³⁹Ar年龄,这些样品都采自韧性 变形带内并有很好的测试精度.反映了韧性推覆剪 切变形[15.19]. 为验证桐柏地区是否存在同期变形. 我 们对MHI中的上部向南的韧性变形片理带和YGB的 平移剪切片理带上的白云母进行了 ⁴⁰Ar/³⁹Ar年龄测 定. 其分析流程简述如下(详细流程见Xu等^[20]): 岩石 标本被破碎并分选出 250 um~400 mm的白云母样品, 这些样品在美国Michigan大学Ford反应堆的 67 号位 置照射 45 h, 然后在加州大学洛杉矶分校(UCLA)地 球与空间科学系 ⁴⁰Ar/³⁹Ar年龄实验室对样品进行多 阶段加热,用VG1200S质谱仪测定Ar同位素比值,并 计算年龄值. 计算采用的黑云母标样年龄为 27.8 Ma, 据此得到的参数J=0.003500(1026-3)和J = 0.003511(108-4). 分析结果见表1和图5. 样品1026-3 是取自毛坡一胡家寨火山岩带(MHI)中顶部向南韧性 剪切片理面上的白云母(采样位置为 32°25'21"和 113°21'26"),所获坪年龄为 256±1 Ma(图 5(a)).由于 这些白云母是韧性变形的产物,故该年龄代表了 MHI单元中顶部向南的韧性剪切运动发生的时间. 样品 108-4 为白云母, 取自杨庄绿片岩带内的松扒剪 切带(采样位置为32°29'9"和113°14'17"),所获坪年龄 为 268±1 Ma(图 5(b)). 由于采样处的云母片岩显示 左旋剪切(图 3(h)),因此该年龄可以解释为左旋剪切 作用发生的年龄. 综上所述, 在 270~250 Ma时期, 本 区MHI和YGB中被迭加了韧性推覆和平移剪切变形. 如果考虑前述信阳地区和北淮阳带所获的同时期年 龄,则该阶段发生构造变形的范围是相当广泛的.由 于这类变形属于韧性变形且分布广泛,其时代又早 于榴辉岩的峰期变质时代,因此很可能反映华北与 华南两个刚性陆块开始碰撞时, 广泛发生于中下地 壳的应力积累和传播过程,是大陆深俯冲的前奏,故

247

图 4 桐柏造山带结构剖面(相当于图 1 的 A-B 线)

中国科学 D 辑 地球科学

表1 毛坡-胡家寨火山岩和杨庄绿片岩中白云母的 40 Ar/39 Ar 数据表

阶段	$T/^{\circ}\mathbb{C}$	t/min	40Ar/39Ar	³⁸ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar/mol	$\Sigma^{39} Ar$	⁴⁰ Ar*%	$^{40}Ar*/^{39}Ar_{K}$	$\pm \sigma_{40/39}$	年龄/Ma	$\pm \sigma$ 年龄
108-4 白云母													
1	500	13	32.06	0.1052078	0.1918159	0.094531	1.27E-14	2.43	12.79	4.11	0.70	25.8	4.38
2	600	13	40.56	2.92E-02	3.86E-02	2.33E-02	8.83E-15	4.12	82.83	33.65	0.39	201.4	2.20
3	700	13	46.08	0.0157704	1.51E-02	7.24E-03	2.62E-14	9.14	95.22	43.91	0.19	258.6	1.03
4	770	12	46.57	0.0135366	0.0041244	3.86E-03	4.38E-14	17.51	97.41	45.40	0.06	266.8	0.31
5	840	13	47.67	1.34E-02	2.97E-03	3.30E-03	8.11E-14	33.02	97.83	46.67	0.16	273.7	0.86
6	880	13	48.58	1.33E-02	1.71E-03	3.24E-03	9.42E-14	51.03	97.92	47.59	0.16	278.7	0.85
7	920	13	48.71	1.33E-02	1.61E-03	3.15E-03	3.95E-14	58.58	97.95	47.74	0.17	279.6	0.91
8	960	14	48.52	1.31E-02	1.22E-03	3.41E-03	7.15E-14	72.26	97.80	47.48	0.17	278.1	0.90
9	1000	13	49.12	1.36E-02	9.25E-04	4.97E-03	4.40E-14	80.67	96.88	47.62	0.15	278.9	0.82
10	1070	13	50.24	0.0136639	0.0007492	0.005765	6.68E-14	93.45	96.48	48.50	0.16	283.7	0.85
11	1150	12	50.16	0.0133083	0.0007969	0.003858	1.72E-14	96.75	97.60	48.99	0.09	286.3	0.51
12	1350	13	38.85	0.0141784	0.0109733	0.003044	1.7E-14	99.99	97.52	37.91	0.11	225.4	0.60
102	26-3 白	云母											
1	500	13	27.12	0.0284773	0.0746528	0.034456	4.05E-15	0.86	61.78	16.92	0.66	103.8	3.93
2	600	15	40.31	1.91E-02	5.32E-02	1.71E-02	8.63E-15	2.70	87.10	35.21	0.31	209.7	1.77
3	700	13	43.47	0.0160459	3.86E-02	7.26E-03	2.22E-14	7.43	94.90	41.30	0.16	243.6	0.89
4	770	13	43.33	0.0148	0.0188422	3.88E-03	3.51E-14	14.90	97.18	42.15	0.18	248.3	0.97
5	840	13	42.95	1.48E-02	1.47E-02	2.79E-03	4.21E-14	23.86	97.87	42.09	0.16	248.0	0.87
6	880	13	43.20	1.52E-02	1.36E-02	2.53E-03	4.25E-14	32.91	98.06	42.42	0.18	249.8	0.98
7	920	13	44.04	1.53E-02	2.84E-02	2.43E-03	5.03E-14	43.61	98.19	43.30	0.15	254.6	0.84
8	960	13	44.94	1.61E-02	5.05E-02	2.59E-03	7.48E-14	59.54	98.12	44.15	0.17	259.2	0.93
9	1000	13	46.05	1.65E-02	1.61E-01	2.16E-03	8.40E-14	77.43	98.47	45.39	0.15	266.0	0.83
10	1070	13	46.52	0.0162077	0.109333	0.001928	7.16E-14	92.68	98.61	45.93	0.16	268.9	0.85
11	1150	13	45.40	0.01687	0.6611517	0.00534	2.96E-14	98.98	96.39	43.87	0.23	257.7	1.24
12	1350	13	45.95	0.023945	2.915437	0.016097	4.8E-15	99.99	89.68	41.49	0.43	244.6	2.36

图 5 毛坡-胡家寨火山岩和杨庄绿片岩中白云母的 40Ar/39Ar 坪年龄图

SCIENCE IN CHINA Ser. D Earth Sciences

可把 270~250 Ma 厘定为大陆碰撞阶段.

第三阶段(250~205 Ma): 大别地区高压-超高压 榴辉岩的峰期变质时代为 235~225 Ma^[10,21,22], 如果 俯冲时间是 20 百万年, 则大陆深俯冲发生于 250~225 Ma.事实上目前能够观测到仅是与超高压岩石折返 有关的的韧性变形, 它们主要发育在浒湾剪切带、北 大别带和红安地块, 表现为顶部向北的剪切构造, 其 时代为 225~205 Ma^[10,11,20].该年代限定超高压岩石 折返的时间为 225~205 Ma, 因此可推定大陆深俯冲 和折返过程发生于 250~205 Ma.由于HLE和TGR的 岩性、几何学和运动学特征基本与浒湾剪切带和红安 地块相同, 并且与之相连, 故可推断它们记录了桐柏 地区大陆深俯冲和折返的过程.

第四阶段(200~185 Ma): 在西大别红安地区的新 县、大悟和卡房穹隆已获得 195.2±0.2, 195±2, 196±2, 198±2 和 187±1 Ma的白云母 ⁴⁰Ar/³⁹Ar年 龄^[11,20,23],它们被解释为穹隆作用的形成时间. 由于 研究区内TGR与这些穹隆的岩性和构造样式基本一致且构造位置相连^[12],因此尽管TGR本身未获年代数据,但仍可以用 200~185 Ma限定其形成时代,并据此识别出桐柏造山带的降升变形阶段.

5 构造演化

从多期俯冲一碰撞造山带的观点出发,根据各构造单元的岩石学特征及其展布,以及几何学、运动学和构造年代学特征,桐柏地区造山带构造演化可分为4个阶段即:约400~300 Ma的洋壳俯冲阶段、270~250 Ma的大陆碰撞阶段、250~205 Ma的大陆深俯冲和折返阶段和 200~185 Ma 的隆升阶段.

约400~300 Ma时期(图6(a)),由于扬子板块洋壳的俯冲,导致定远组火山岛弧(MHI)与华北板块发生弧-陆碰撞,造成在弧后盆地复理石(ZFB)和华北板块陆缘(YGB和 DMB)的挤压褶皱变形和韧性变形,形成糜棱片理或轴面片理.270~250 Ma 时期(图 6(b)),

扬子板块与华北板块开始发生陆-陆碰撞, 广泛的挤压力传播到 MHI、YGB 及 DMB, 产生了 MHI 中的顶部向南的韧性剪切构造和迭加在 YGB 和 DMB 糜棱片理或轴面片理上的平移剪切变形. 250~205 Ma(图 6(c))是大陆深俯冲和折返阶段, 深部发生高压-超高压变质作用, 形成鸿仪河-罗庄榴辉岩带(HLE). 在折返阶段, 伴随着顶部向北的韧性变形, HLE 到达地壳中部, 而其他单元已开始隆升剥蚀. 200~185 Ma 阶段(图 6(d)), 区域性的隆升作用形成桐柏片麻岩穹隆(TGR). 其他各单元则继续遭受不同程度的隆升剥蚀. 至此, 桐柏造山带的构造格局已基本形成.

6 讨论

本文研究结果表明桐柏地区造山带的结构与大 别造山带是可以对比的.例如桐柏地区的松扒剪切 带分割了其北董家庄大理岩带(DMB)和其南杨庄绿 片岩(YGB),而在西大别,凉亭剪切带分割了其北的 马畈褶皱带与其南的牢山褶皱带.董家庄大理岩带 和马畈褶皱带、杨庄绿片岩和牢山褶皱带在岩性和变 形特征方面完全可以对比^[20],而凉亭剪切带可能是 松扒韧性剪切带的东延部分.更向南,桐柏和大别地 区都有古生代复理石单元、古生代火山岩单元、超高 压单元和片麻岩穹隆的依次出现.在运动学特征方 面,西大别的熊店-浒湾剪切带和桐柏地区鸿仪河-罗 庄榴辉岩带内出现的顶部向北的韧性剪切完全可以 对比.因此桐柏与大别具有相似的古生代和中生代 造山带结构.

由于秦岭地区有南秦岭板块的存在,因此其造 山带结构不能完全与桐柏和西大别对比.一个重要 的差别是中生代秦岭造山带的最终形成是通过商丹 和勉略两大缝合带的同时闭合而完成的^[3],而桐柏和 西大别与中生代造山有关的构造变形仅集中于高压 变质带以北地区.但秦岭和桐柏、大别地区共同存在 一些古生代造山带的构造单元,如桐柏、西大别的定 远组火山岩单元可与秦岭的古生代岛弧火山岩对 比^[14,24];以信阳睡仙桥地区为代表的混杂岩带^[25]很 可能与商丹带相连,构成古生代缝合带.因此秦岭和 桐柏、大别地区的古生代造山带结构是相似的,但中 生代造山带的格局有较大差别.

7 结论

(1) 桐柏造山带由 6 个次级构造单元组成,由南 到北依次为桐柏片麻岩隆起带(TGR)、鸿仪河-罗庄榴 辉岩带(HLE)、毛坡-胡家寨火山岩单元(MHI)、周家 湾复理石单元(ZFB)、杨庄绿片岩单元(YGB)和董家 庄大理岩单元(DMB).

(2) 桐柏造山带的几何学和运动学图像包括:由 后期隆升过程形成的穹隆构造、超高压岩石折返形成 的顶部向北(top-to-north)的韧性剪切构造、与南北向 挤压有关的顶部向南(top-to-south)的韧性推覆剪切构 造、左行平移剪切构造以及地壳较浅层次的东西向褶 皱构造等几部分.

(3) 桐柏造山带构造演化可分为 4 个阶段即:约 400~300 Ma 的洋壳俯冲、270~250 Ma 的大陆碰撞 阶段、250~205 Ma 的大陆深俯冲和折返阶段以及 200~185 Ma 的隆升阶段.

致谢 美国加州大学洛杉矶分校(UCLA)地球与空间 科学系 An Yin, Haibo Zou, Alex Robinson 和 Grove Marty 协助进行⁴⁰Ar/³⁹Ar 年龄分析,北京大学郑亚东 协助确定典型标本的运动学方向,笔者深表谢意.

参考 文献

- Mattauer M, Matte P, Malavieille J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia. Nature, 1985, 317: 496~500[DOI]
- 2 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征, 中国科学, D辑, 1996, 26(3): 193~200
- 3 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学, 北京, 科学出版社, 2001. 421~722
- 4 王清晨,丛柏林.大别山超高压变质带的大地构造框架. 岩石 学报,1998,14(4):481~492
- 5 徐备, 王长秋. 大别造山带西段构造单元. 高校地质学报, 2000, 3: 389~395
- 6 黄少英, 王志民, 徐备. 大别造山带西段南部构造几何学和运动学初步分析. 大地构造与成矿学, 2002, 26(3): 240~246
- 7 Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 2003, 366: 1~53[DOI]
- 8 Kröner A, Zhang G W, Sun Y. Granulites in the Tongbai area, Qinling belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics, 1993, 12: 245~255

- 9 Li S G, Huang F, Nie Y H, et al. Geochemical and geochronological constraints on the suture location between the north and south China Blocks in the Dabie orogen, central China. Phys Chem Earth (A), 2001, 26: 655~672
- 10 Hacker B R, Ratschbacher L, Webb L, et al. Exhumation of the ultrahigh-pressure continental crust in east-central China: Late Triassic-Early Jurassic extension. JGR, 2000, 105: 13339~13364[DOI]
- 11 Webb L E, Hacker B R, Ratschbacher L, et al. Thermochronologic constraints on deformation and cooling history of high- and ultrahigh-pressure rocks in the Qinling-Dabie orogen, eastern China. Tectonics, 1999, 18(4): 621~638[DOI]
- 12 索书田, 钟增球, 张宏飞, 等. 桐柏山高压变质带及其区域构 造型式. 地球科学, 2001, 26(6): 551~559
- 13 钟增球,索书田,张宏飞,等. 桐柏-大别碰撞造山带的基本组成 与结构. 地球科学, 2001, 26(6): 560~567
- 14 Li S G, Han W, Huang F. Sm-Nd and Rb-Sr ages and geochemistry of volcanics from the Dingyuan Formation in Dabie mountains, central China: evidence to the Paleozoic magmatic arc, Scientia Geologica Sinica, 1998, 7 (4): 461~470
- 15 刘志刚,富云莲,牛宝贵,等.大别山北坡苏家河群及原信阳 群龟山组变基性杂岩 Ar/Ar 测年及其地质意义.科学通报,1993, 38(13):1214~1218
- 16 张仁杰,舒德干,蒋志文,等.桐柏蔡家四岩片内寒武纪高肌 虫的发现及其地质意义.地质论评,2000,46(3):225~231

- 17 冯庆来, 杜远生, 张宗恒, 等. 河南桐柏地区三叠纪早期放射 虫动物群及其地质意义. 地球科学, 1994, 19(6): 787~794
- 18 Zhai X, Day H W, Hacher B R, et al. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China. Geology, 1998, 26: 371~374[DOI]
- 19 Faure M, Lin W, Schärer U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos, 2003, 70: 213~241[DOI]
- 20 Xu B, Marty G, Wang C Q, et al. ⁴⁰Ar/³⁹Ar thermochronology from the northwestern Dabie Shan: constraints on the evolution of Qinling-Dabie orogenic belt, east-central China, Tectonophysics, 2000, 322: 279~301[DOI]
- 21 李曙光, Hart S R, 郑双根, 等. 中国华北、华南陆块碰撞时代的 钐-钕同位素年龄证据. 中国科学, B 辑, 1989, (3): 312~319
- 22 Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200 km. Nature, 2000, 407(12): 734~736[DOI]
- 23 Eide E A, McWilliams M O, Liou J G. ⁴⁰Ar/³⁹Ar method geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east-central China. Geology, 1994, 22: 601~604[DOI]
- 24 Lerch M F, Xue F, Kröner A, et al. A middle Silurian-early Devonian magmatic arc in the Qinling mountains of central China. J Geology, 1995, 103: 437~449
- 25 石铨曾, 牟用吉, 张恩惠, 等. 河南信阳古消减杂岩. 地震地质, 1982, 4(1): 11~21