文章编号: 1001-4322(2002)01-0085-05

高剥离类钠离子 3s²S—3d²D 电四极矩 E2 光谱跃迁的理论计算^{*}

郑志坚¹. 唐永建¹. 易有根¹. 朱正和2

(1. 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900; 2 四川大学 原子分子工程研究所,四川 成都 610065)

摘 要: 利用全相对论性多组态 D irac-Fock 平均能级方法系统地计算了高剥离类钠离子 3 s²S— 3d²D (Z= 14~103) 电四极矩 E2 光谱跃迁的能级间隔, 跃迁几率和振子强度, 计算中考虑了核的有限体 积效应.Breit 修正和OED 修正,所得结果和最近的实验数据及理论计算值进行了比较,计算结果表明: 高原子序数的高荷电离子的电四极矩 E2 光谱跃迁的跃迁几率和中性原子的电偶极 E1 的相当, 在 ICF 和MCF 高温高密度激光等离子体中,电四极矩 E2 光谱跃迁过程不容被忽视。

关键词: 高剥离态离子; 能级间隔; 跃迁几率: 振子强度 **中图分类号:** 0 562.3 文献标识码: A

高剥离重元素在惯性约束聚变 ICF 和磁约束聚变 M CF 实验中起着重要作用^[1], 同时它与短波长 x 射线激光的研制也密切相关,因此,高z.元素高剥离态的研究越来越引起人们的重视,对高剥离元素 的跃迁波长、跃迁几率和振子强度等原子跃迁参数提供准确的理论计算显得尤为重要。

高剥离类钠离子 $3s^2S$ — $3d^2D$ 电四极矩 E2 光谱跃迁的理论和实验工作报道极其稀少, Godefroid 等 $^{[2]}$ 用火花放电观察到了低 Z 类钠离子 $3s^2$ S— $3d^2$ D SiN、PV 和 SV I等电四极矩 E2 光谱,并采用多组 态Hartree-Fock 程序对跃迁波长进行了计算,其计算结果和实验符合得比较好。Shirai等^[3]在高温激光 等离子体中观察到了中等 Z 类钠锰离子 $3s^2S$ — $3d^2D$ 光谱, Sugar 等 $^{[4]}$ 在托克马克装置的等离子体中测 量到了类钠锌离子 $3s^2S$ — $3d^2D$ 跃迁。以前的工作主要其中在低Z 和中等Z 元素的能级的理论计算和测 量方面,而对于高z高剥离态光谱的重要原子参数跃迁能级间隔,跃迁几率和振子强度则并未涉及到。

为了对激光等离子体进行诊断,对所涉及的元素谱的了解是非常重要的15~81,本文采用相对论多组 态M ulti-configuration D irac-Fock 理论的程序 GRA SP2 (General-purpose Relativistic A tom ic Structure Program 2, 1992)^[9], Grant 的多组态Dirac-Fock 程序包^[10,11], 较为系统地计算了类钠离子 3s²S— 3d²D (Z= 14~ 103) 光谱跃迁的能级间隔, 跃迁几率和振子强度, 结果表明: 计算得到的跃迁能级间隔较 以前的M CHF 方法^[2]更加接近实验观测值,同时指出在 ICF 和M CF 高温激光等离子体中,高剥离态 原子离子电四极矩 E2 跃迁过程不容被忽视。

1 理论方法

计算基于全相对论多组态 Dirac-Fock 方法,理论方法在文献[12]中已有详细的描述,这里仅作一 扼要介绍。在Dirac-Fock 多组态理论中.N 电子原子或离子体系的 H am iltonian 量为

$$\hat{H} = \prod_{i=1}^{N} \hat{H}_{i} + \prod_{i < j}^{N} |\hat{r}_{i} - \hat{r}_{j}|^{-1}$$
(1)

H; 是第 i 个电子的D irac-Coulom b H am ilton ian 量, 它由下式给出

$$H_{i} = c \mathbf{\Omega} P_{i} + (\beta - 1)c^{2} + V_{nuc}(r)$$
(2)

式中: $V_{\text{muc}}(r)$ 是核势场, α 和 β 分别是D irac-Fock 矢量和标量矩阵, P_i 是相对论宇称算符, c是真空中的 光速。

单电子中心场D irac 轨道可表示为

$$\hat{r} | nkm = \frac{1}{r} \begin{bmatrix} P_{nk}(r) & \chi_{km}(\hat{r}/r) \\ iQ_{nk}(r) & \chi_{km}(\hat{r}/r) \end{bmatrix}$$
(3)

这里 $P_{nk}(r)$ 和 $Q_{nk}(r)$ 分别是大、小分量径向波函数, $X_{m}(r/r)$ 是旋子球谐函数。

为了使用 GRA SP2 程序,我们必须选择和组成所谓的组态状态函数 CSF, N 电子的组态状态函数 $(\mathcal{Y}M)$ 由上述单电子 D irac 轨道所组成的 N 阶 S later 行列式的线性组合得到,由于组态相互作用,原子态函数 $\Psi(\mathcal{Y}M)$ 由具有 P, \mathcal{Y} 和M 值的组态状态函数 $\Phi(\mathcal{Y}M)$ 线性迭加而成,即

$$\Psi_{\alpha}(JM) = \sum_{i=1}^{n_{c}} c_{i}(\alpha) \Phi(\mathcal{Y}_{i}JM)$$
(4)

式中 ci 是组态混合系数, n。是组态状态函数的数目。P,J 和M 分别表示原子的电子态的宇称, 总角动量 量子数和总磁量子数。 Y和 代表除 P,J 和M 之外的信息。如轨道占有数, 耦合方法和高位数等信息。 考虑到能量函数和径向波函数有关, 得到了相对论自洽场方程如下

$$\frac{\mathrm{d}P_{a}}{\mathrm{d}r} + \kappa_{a}\frac{P_{a}}{r} - \left[2c - \frac{\epsilon_{a}}{c} + \frac{Y_{a}}{cr}\right]Q_{a} = -\frac{X_{a}^{(P)}}{r}$$

$$\frac{\mathrm{d}Q_{a}}{\mathrm{d}r} - \kappa_{a}\frac{Q_{a}}{r} + \left[-\frac{\epsilon_{a}}{c} + \frac{Y_{a}}{cr}\right]P_{a} = -\frac{X_{a}^{(Q)}}{r}$$
(5)

径向波函数 *P_{nk}(r*)和*Q_{nk}(r*)可以用自洽场迭带方法通过求解径向 D irac 方程得到, 以 B reit 修正和量子 电动力学 Q ED 修正(包含自能和真空极化能)作为微扰, 可得到能量和波函数的高阶近似。

根据含时微扰理论,单位时间内($\pi = h^3 / m e^4$)从上能态 $b \mid \mathcal{Y} \mathcal{Y} M$ '到所有低能态 $a \mid \mathcal{Y}$ 的爱因斯 坦自发辐射的跃迁几率是

$$A_{b a} = 2000 \frac{[j_{a}]}{[L]} \begin{bmatrix} j_{a} & L & j_{b} \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix} |\overline{M}_{ab}|^{2}$$
(6)

从原子态 ; 到原子态 ; 的光谱线跃迁的振子强度是

$$f_{i} = \frac{\pi \epsilon}{(2L+1)} \left[\Gamma_{i} P_{J} J_{i} \quad Q^{(L)} \quad \Gamma_{j} P_{j} J_{j} \right]^{2}$$

$$\tag{7}$$

这里 $\alpha = 4\pi^2 e^2 / m c, \omega$ 是能级差; [L] = 2L + 1, [] 是 3-*j* 符号, L 是不可约张量的阶。*M* ab是由 Grant 定义 的径向积分^[13]。 $Q^{(u)}$ 是多级辐射场L 阶算符。

2 计算结果与讨论

本文根据上述相对论多组态理论,采用新版多功能相对论原子结构程序 GRA SP2 (General-purpose Relativistic A tom ic Structure Program 2),并选取 Fem i 有限核电荷分布模型和平均能级 AL 近似进行了计算。计算中除根据宇称、角动量、能量等判据外,还以 B reit 修正,自能修正和真空极化修正为微扰,得到了波函数和能级的高阶近似。限于篇幅,表 1 中仅列出了本文对类钠离子的电四极矩 E2 $3s^2S_{1/2}$ — $3d^2D_{3/2}$ 光谱跃迁的 Coulom b 相互作用能,B reit 修正和Q ED 修正对跃迁能级间隔 ω 贡献,谱线的跃迁几率 A 值和振子强度 gf 值。由表 1 可以看出,B reit 修正和量子电动力学Q ED 修正均随核电荷数的增加而负增加,对高 Z 元素重原子离子,量子电动力学Q ED 修正比 B reit 修正的增加趋势要快,两者对原子离子的总能级间隔的贡献不能被忽略。

为便于比较, 表 2 中列出了类钠离子 $3s^2S_{1/2}$ — $3d^2D_{3/2}$ (Z = 14 < 103) 光谱跃迁的能级间隔的理论计 算值和一些有关的实验值和参考数据, 表中文献计算值为 Godefroid 等^[2]用多组态 Hartree-Fock 程序 方法的计算结果, 实验能级间隔取自文献[2, 14 ~ 19], 能级间隔计算值右侧圆括号内的数值表示该实验 值与计算值之差, 单位为 cm⁻¹, 本文采用 GRA SP2 对跃迁能级间隔进行了计算, 由于 GRA SP2 更全面 地考虑了量子电动力学 Q ED 修正, 使得其计算结果更接近实验值, 比 Godefroid 等的计算结果有了很 大改善。 从表 2 中可以看出对低 Z 和中等 Z 值(Z < 25) 元素的原子离子, 目前的计算结果比M CHF 的 © 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

表 1 类钠离子电四极矩 E2 $3s^2S_{1/2}$ — $3d^2D_{3/2}$ (Z= 14~ 103) 光谱跃迁的能级间隔,

跃迁几率A和振子强度 gf值 (表中圆括号(n)表示 10^n)

Table 1 Quadrupole energy separations, transition probabilities and oscillator strengths for

 $3s^2S_{1/2}$ — $3d^2D_{3/2}$ (Z= 14~ 103) (numbers in brackets denote exponent)

Ζ	cou lom b	breit	Q ED	ω/cm ⁻¹	Α	/s ⁻¹	gj	f
					L	V	L	V
14	158909	- 59	- 28	158823	4.9542(4)	4. 9954(4)	1. 7666(- 5)	1. 7813(- 5)
15	203199	- 77	- 43	203080	8 6999(4)	8 7974(- 4)	1. 2650(- 5)	1. 2793(- 5)
16	246867	- 101	- 62	246704	1. 2964(5)	1. 3147 (- 5)	1. 2773(- 5)	1. 2953(- 5)
17	290021	- 127	- 86	289808	1. 7526(5)	1. 7816(5)	1. 2513(- 5)	1. 2720(- 5)
18	332817	- 155	- 115	332546	2 2273(5)	2 2689(5)	1. 2078(- 5)	1. 2303(- 5)
19	375408	- 185	- 152	375071	2 7161(5)	2 7719(5)	1. 1578(- 5)	1. 1815(- 5)
20	417932	- 218	- 195	417520	3 2181(5)	3. 2894(5)	1. 1070(- 5)	1. 1315(- 5)
21	460513	- 252	- 245	460017	3 7347(5)	3. 8227(5)	1. 0583(- 5)	1. 0833(- 5)
22	503259	- 289	- 304	502666	4 2681(5)	4.3740(5)	1. 0129(- 5)	1. 0381 (- 5)
23	546270	- 328	- 371	545570	4 8215(5)	4.9466(5)	9.7139(- 6)	9.9658(- 5)
24	589637	- 370	- 451	588816	5. 3987(5)	5. 5442(5)	9. 3376(- 6)	9. 5893(- 5)
25	633451	- 414	- 539	632498	6 0040(5)	6 1711(5)	9. 0000(- 6)	9. 2503(- 6)
26	677797	- 461	- 640	676696	6 6420(5)	6 8323(5)	8 6980(- 6)	8 9472(- 6)
27	722759	- 510	- 751	721498	7. 3180(5)	7. 5329(5)	8 4301(- 6)	8 6777(- 6)
28	768422	- 562	- 878	766981	8 0376(5)	8 2790(5)	8 1934(- 6)	8 4395(- 6)
29	814871	- 618	- 1011	813243	8 8076(5)	9. 0773(5)	7.9860(- 6)	8 2305(- 6)
30	862193	- 676	- 1164	860353	9. 6347(5)	9. 9348(5)	7. 8054(- 6)	8 0486(- 6)
32	959810	- 801	- 1522	957487	1. 1493(6)	1. 1862(6)	7. 5176(- 6)	7. 7589(- 6)
36	1169574	- 1095	- 2433	1166046	1. 6321(6)	1. 6867(6)	7. 1981 (- 6)	7. 4389(- 6)
42	1533176	- 1665	- 4452	1527058	2 8249(6)	2 9224(6)	7. 2644(- 6)	7. 5153(- 6)
48	1979363	- 2440	- 7556	1969367	5. 1459(6)	5. 3255(6)	7.9566(- 6)	8 2342(- 6)
54	2541131	- 3505	- 11821	2525805	9. 9841(6)	1. 0328(7)	9. 3847 (- 6)	9. 7084(- 6)
64	3851401	- 6279	- 22692	3822430	3 4637(7)	3.5778(7)	1. 4216(- 5)	1. 4684(- 6)
74	5865521	- 11173	- 40108	5814240	1. 3933(8)	1. 4363(8)	2 4717(- 5)	2 5479(- 6)
79	7252266	- 14918	- 52181	7185167	2 9172(8)	3 0041(8)	3. 3885(- 5)	3 4895(- 5)
82	8241002	- 17755	- 60796	8162451	4 5943(8)	4.7286(8)	4. 1352(- 5)	4.2560(- 5)
92	12645231	- 31874	- 98801	12514557	2 1890(9)	2 2491(8)	8 3817(- 5)	8 6118(- 5)
103	20331435	- 61367	- 162875	20107192	1. 3014(10)	1. 3352(10)	1. 9303(- 4)	1. 9805(- 4)

计算结果^[2]要好,和实验值及参考数据更加接近,对类钠硫离子实验值和理论值之间的偏差由文献的 1% 缩小到本文的 0 3%,对类钠铬离子实验值和理论值之间的偏差由文献的 3% 缩小到本文的 0 1%, 而对于高荷电原子离子,对所有实验数据的离子而言,理论和实验之间的误差估计大约在 0 1% 左右。 另外,表 1 中计算的不同规范下振子强度的偏差小于 3%,表明我们的数据是精确可信的。

表 1 同时也给出了类钠离子电四极矩 E2 3s²S_{1/2}—3d²D_{3/2}(Z = 14~103)光谱的自发跃迁几率理论 计算值。从表 1 中可以看出,研究结果表明类钠离子电四极矩的跃迁几率随原子序数的增加而迅速增 加。一般而言,对大多数中性原子而言,电偶极矩的跃迁几率在范围 10⁷~10⁹s⁻¹,禁戒跃迁的几率要小 10⁵ 倍,即 10²~10⁴,只有在一些特殊的情况下才能观测到。然而,对高原子序数的高荷电离子情形则有 所不同,目前的计算表明:对类钠离子 3s²S_{1/2}—3d²D_{3/2}(Z = 14~103)跃迁,当原子序数从 14~103 变 化,跃迁几率从 4 9542×10⁴ 到 1.3014×10¹⁰s⁻¹,增加至少-10⁵,这里 1×10¹⁰值和电偶极 E1 跃迁几率 相当,以一般的公式(6)为基础,高原子系数的高荷电离子的跃迁几率和径向积分 $|M_{ab}|^2$ 有关,也和跃 迁能级间隔 ω 有关。目前的工作表明:能级 ω 与原子序数 Z 的关系为

 $lg(\omega/Z^2) = - 8 98336 + 24 54343(lgZ) - 16 54856(lgZ)^2 + 3 66739(lgZ)^3$ (8) 因此,*A* 值部分原因是由于 ω 因此, 在 ICF 和M CF 高温激光等离子体中, 高原子序数的高荷电离子 $3s^2S_{1/2}$ — $3d^2D_{3/2}(Z = 14 \sim 103)$ 的电四极矩 E2 跃迁光谱线将不能被忽略。

另外,计算的高剥离类钠3 s² S_{1/2}—3d²D_{3/2} 铬离子跃迁几率的A 值为5.40×10⁵ s⁻¹,最近的实验参考 ② 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

Table 2	$Calculated \ and \ observed \ energy \ separations \ (in \ cm^{-1}) \ for \ 3s^2S_{1/2} \\3d^2D_{3/2} of \ highly \ stripped \ Na-like \ ions \ Same and \ stripped \ Na-like \ ions \ Same and \ stripped \ Na-like \ stripped \ Same and \ stripped \ Same and \ stripped \ stripped \ stripped \ stripped \ stripped \ Same and \ stripped \$								
ion	Ζ	calcu	exp t						
		th is work	ref. [2]	160375[2]					
$S i^{3+}$	14	158823(1552)	158178 (2197)						
\mathbf{P}^{4+}	15	203080(1129)	201939(2270)	204209[2]					
S^{5+}	16	246704(737)	244858(2583)	247441 ^[2]					
$C1^{6+}$	17	289808	287109						
A r^{7+}	18	332546	328731						
K ⁸⁺	19	375071	369822						
Ca ⁹⁺	20	417520	410509						
Sc^{10+}	21	460017	450857						
T i ¹¹⁺	22	502666	490918						
V 12+	23	545570	530786						
$C r^{13+}$	24	588816(- 991)	570451(17374)	587825 ^[14]					
$M n^{14+}$	25	632498(- 1100)	609756(21642)	631398 ^[3]					
Fe^{15+}	26	676696(- 1215)	649351 (26130)	675481 ^[15]					
Co ¹⁶⁺	27	721498							
N i ¹⁷⁺	28	766981							
Cu^{18+}	29	813243 (- 1452)		811791 ^[16]					
Zn^{19+}	30	860353 (- 1523)		858830 ^[4]					
Ge^{21+}	32	957487 (- 1657)		955830 ^[17]					
Kr ²⁵⁺	36	1166046(- 1864)		1164182[18]					
Mo^{31+}	42	1527058(- 1778)		1525280 ^[19]					
Cd^{37+}	48	1969367							
Xe^{44+}	54	2525805							
Gd^{53+}	64	3822430							
W $^{63+}$	74	5814240							
Au^{68+}	79	7185167							
Pb^{71+}	82	8162451							
U ⁸¹⁺	92	12514557							
I r ⁹²⁺	103	20107192							

表 2 类钠离子电四极矩 E2 3s²S_{1/2}—3d²D_{3/2}光谱跃迁能级间隔和实验数据及其它理论值的比较 (单位: nm)

数据值为 $5.5 \times 10^5 s^{-1}$ [14], 两者符合得很好, 其偏差不到 2%。

3 结 论

我们用全相对论多组态D irac-Fock 平均能级 (M CDF-AL)方法计算了高剥离类钠离子 3s²S—3d²D (Z= 14~ 103)等电子序列电四极矩 E2 光谱跃迁的能级间隔, 跃迁几率和振子强度, 计算结果表明: 对中等 Z 和高 Z 值元素, 计算中由于考虑了高剥离体系中的 B reit 修正和量子电动力学 Q ED 效应, 使光谱跃迁的能级间隔理论计算值和实验值的偏差由文献的 3% 缩小到本文的 0 1%。因此, 在高剥离态体系中, 除了考虑强的相对论效应, 由于电子处在强的核磁场中, 应该更充分地考虑电子与量子化电磁场的相互作用所引起的量子电动力学辐射修正。另外, 高原子序数的高荷电离子的电四极矩 E2 光谱跃迁的跃迁几率随原子序数的增加而迅速增加, 甚至和中性原子的电偶极 E1 跃迁几率相当。因此, 在 ICF 和M CF 高温激光等离子体中, 电四极矩 E2 光谱跃迁过程不容被忽视。

最后,我们希望给出的类钠高剥离原子离子的电四极矩 E2 光谱线跃迁的能级间隔和跃迁几率这项工作,将有助于实验物理学家在 ICF 和M CF 中,对仍未观察到的类钠离子的高温激光等离子体诊断领域谱线的辨认和跃迁几率的测量研究,同时并为这方面提供深入的多体原子结构理论和实验工作的推动。

参考文献:

[1] Martinson I The spectro scopy of highly atoms [J]. Rep Prog Phys, 1989, 52: 157-162

[2] Godefroid M. Forbidden transitions in Na- and Mg-like spectra [J]. Physica S cripta, 1985, 32: 125-128

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

- [3] Shirai T, Nakagaki T. Spectral data and grotrian diagrams for highly ionized manganese M nV II through M nXX N [J]. J Phys Chem R ef Data, 1994, 23: 179–189.
- [4] Sugar J, Musgrove A. Energy levels of Zinc Zn I through ZnXXX [J]. J Phys Chem R ef Data, 1995, 24: 1803-1819.
- [5] 易有根,汪 蓉,朱正和,等 高离化类铍离子 2s²¹S₀-2s2p³P₁(Z= 10~ 103) 自旋禁戒光谱跃迁[J]. 物理学报, 2000, 49(10): 1953—1958 (Yi Y G, W ang R, Zhu Z H, et al Spin-forbidden transitions for Be-like ions (Z= 10~ 103). A cta physica sinica, 2000, 49(10): 1953—1958)
- [6] 易有根,朱正和,唐永建,等 Be,Mg和Ca原子电四极矩 E2 ¹D₂-¹S₀ 跃迁能级和跃迁概率[J],物理学报,2001, **50**(1):37—41.
 (Yi Y G, Zhu Z H, Tang R J, et al Theoretical electric quadrupole energy levels and transition probabilities for the low est lD metastable state in Be, Mg and Ca A cta physica sinica, 2001, **50**(1):37—41)
- [7] 易有根,朱正和 类铍离子 2s²¹S0-2s2p¹P1(Z= 10~103) 光谱跃迁的能级和跃迁几率的相对论多组态计算[J]. 原子与分子物理 学报, 2001, 18(1): 109—113 (Yi Y G, Zhu Z H. Transitions of electric dipole for Be-like ions (Z= 10~103). Chinese journal of A tom ic and M olecular Physics, 2001, 18(1): 109—113)
- [8] Zhu Z H, Murrell J N. Beam-foil spectra of doubly excited four-electron quintet states for N N M g X [J]. Chinese journal of A ton ic and M olecular Physics, 1996, 13: 119–129.
- [9] Grant IP, Fisher C F. GRA SP2 Version 1992 (Private Communication) [Z].
- [10] Grant IP, Mckerzie B J, Norringtor P H, et al An atom ic multiconfigurational Dirac-Fock package[J]. Comput Phys Commun, 1980, 21: 207–227.
- [11] M ckenzie B J, Grant IP, Norringtor PH. A program to calcute transverse Breit and QED corrections to energy levels in a multiconfiguration Dirac-Fock environment[J]. Comput Phys Commun, 1980, 21: 233-252
- [12] Dyall K G, Grant I P, Johnson C T, et al GRASP: A general purpose relativistic atom ic structure program [J]. Comput Phys Commum, 1989, 55: 425-456
- [13] Grant IP. Gauge invariance and relativistic radiative transitions[J] J Phys, 1974, B7: 1458-1475.
- [14] Kaufman V, Martin W C. Energy levels of Sulphur SI through SX II[J] J Phys Chan R ef Data, 1993, 22: 279-289.
- [15] Shirai T, Funatake Y. Spectral data and Grotrian diagrams for highly ionized Iron FeV III through FeXX N [J]. J Phys Chem Ref Data, 1990, 19: 127–132
- [16] Sugar J, Kaufman V, Indelicato P. A nalysis of magnesium like spectra from CuXV III to MoXXX I[J]. J Opt Soc Am, 1989, 6: 1437-1443.
- [17] Sugar J, Musgrove A. Spectral data and Grotrian diagrams for highly ionized Chrom iun CrV through Cr XX N [J]. J Phys Chem Ref Data, 1993, 22: 1279–1289.
- [18] Denne B, Hinnov E Spectrum lines of KrXXV III-KrXXX N observed in the JEF Tomamak [J]. Phys Rev, 1989, 40: 1488– 1496
- [19] Denne B, Magyar G, Jacquinot J. Beryllium like MoXXX IX and lithium like MoX I observed in the Joint European Torus Tokamak [J] Phys Rev A, 1989, 40: 3702-3705.

$3s^2S$ — $3d^2D$ electric quadrupole transitions for highly stripped Na-like ions

YIYou-gen¹, ZHENG Zhi-jian¹, TANG Yong-jian¹, ZHU Zheng-he²

- (1. Research Center of Laser Fusion, CAEP, P. O. Box 919-986, M ianyang 621900, China;
- 2 Institute of A tom ic and M olecular Physics, S ichuan University, Chengdu 610065, China)

Abstract A fully relativistic multiconfiguration D irac-Fock method with B reit and Q ED corrections is used to calculate the $3s^2S-3d^2D$ ($z=14\sim103$) transition energy level separations, transition probabilities and oscillator strengths for the N a-like ions In calculation, this paper considered significant B reit and Q ED corrections, the results are in good agreement with recent experimental data and other theoretical values The results show that the electric quadrup le transition probabilities are in correspondence with those of E1 transitions and can not be ignored in high temperature laser plasma in ICF and MCF Fusion

Key words: highly stripped ion; energy level separation; transition probability; oscillator strength