Article ID: 1001-4322 (2002) 06-0911-04

High power circular waveguide TE_{0n} - TE_{11} mode conversion

NIU Xin-jian, LI Hong-fu, YU Sheng, XIE Zhong-lian

(Institute of High Energy Electronics, University of Electronics Science and Technology of China, Chengdu 610054, China)

Abstract: Based on the theory of mode coupling, this paper discusses the circular waveguide mode conversion with waveguide axis curved and radius tapered in detail. It also carries out the optimized analysis about the geometry structure of TE_{0n} - TE_{11} mode converter. Adopting different phase rematch techniques, the optimal geometry parameter is obtained. The mode converter designed in this way owns high conversion efficiency exceeding 98 %.

Key words: circular waveguide; mode converter; coupling equation; phase rematch CLC number: TN811; TN814 Document code: A

Mode conversion has important application value in the transmission of high power millimeter wave , transmit , measure. Gyrotron have the output mode TE₀₁ and mix up TE_{0n}, which is very inconvenient for direct use , so a mode conversion must be taken. Based on the virtual need of gyroklystron , high efficient wideband TE₀₁-TE₁₁ circular waveguide mode converter is designed in this paper. In overmoded circular waveguide a selective transformation of one specific mode into another can be achieved by means of periodic structure of the inner waveguide wall under the condition that the geometric period word the wall perturbations and the unperturbed wave number $_1$ and $_2$ of the interacting modes satisfy the resonance relationship⁽¹¹⁾ : $=|_{1} - _{2}| = 1 \times 2 / _{B} = l \times 2 / _{W}$, ($l = \pm 1$, ± 2 ,), where , $_{B}$ is the beat wavelength of the two modes. This condition guarantees that the conversion to the desired mode is continuously increased, while conversion to other ur wanted modes that are also coupled by the waveguide perturbations suffers destructive interference. If the completely power conversion from one mode to another mode can be realized, the length of waveguide should satisfy the relation : $L = N_{W}$, where *N* is the number of inner waveguide wall geometry wave period, and the best value of *N* is decided by the three needs : limiting the conversion to unwanted modes , enhancing conversion efficiency of the desired mode and satisfying the bandwidth requirements.

1 Fundamental equation and theory of mode converters

The unevenness in a waveguide (the axis bent in a circular waveguide, gradual radius changes of the waveguide) will cause the energy coupling among different propagation modes and thus create mode conversion. The coupling wave equations for studying axis curved circular waveguide mode converter are^[2]

$$\frac{dA_{mn}}{dz} = j_{mn}A_{mn}^{+} - j_{mn} \left[C_{(mn)(mn)}^{+}A_{mn}^{+} + C_{(mn)(mn)}A_{mn}^{-} \right]$$
(1)

$$\frac{dA_{mn}}{dz} = j_{mn} A_{mn} + j_{mn} \left[C^{+}_{(mn)(mn)} A_{mn} + C^{-}_{(mn)(mn)} A^{+}_{mn} \right]$$
(2)

The equations of radius taper circular waveguide mode conversion are^[3]

$$\frac{dA_{mn}^{+}}{dz} = -\frac{1}{2} \frac{d(\ln_{mn})}{dz} A_{mn}^{-} - {}_{mn}A_{mn}^{+} + {}_{+mn}A_{mn}^{+}C_{(mn)(mn)}^{+} + {}_{-mn}A_{mn}^{-}C_{(mn)(mn)}^{-}$$
(3)

$$\frac{dA_{mn}}{dz} = -\frac{1}{2} \frac{d(\ln_{mn})}{dz} A_{mn}^{+} + {}_{mn}A_{mn}^{-} + {}_{+mn}A_{mn}^{+}C_{(mn)(mn)}^{-} + {}_{mn}A_{mn}^{-}C_{(mn)(mn)}^{+}$$
(4)

* Received date :2001-11-12 ; Revised date :2002-04-21

Foundation item: Supported by the laser technology foundation of National Project 863 (863-410-7) and National Defence Key Laboratory on High Power Microwave Vacuum Device

Biography:NIU Xin-jian(1969-), male, doctorial student; E-mail:niuxinjian@sohu.com.

Vol. 14

where A_{mn}^+ and A_{mn}^- are the forward and backward wave complex amplitudes of the (mn) mode. $C_{(mn)(mn)}^+$ and $C_{(mn)(mn)}^-$ stand for the coupling coefficients between (mn) mode and (mn) mode whose direction of propagation are the same and opposite respectively. mn = mn + j mn is the propagation constant of the (mn) mode, with mn the wave number, mn the attenuation constant for circular waveguides, the study results about coupling coefficients at Ref. [4] in detail. It is supposed that the length of mode converter is L, and there exists an incident wave at its input terminal and a zero-valued backward wave at its output terminal. The boundary condition^[5] together with equations (1), (2) and (3), (4) reveal the problem of boundary value of a coupling wave differential equation groups. The solution solves the distribution of A_{mn}^+ and A_{mn}^- along the z axis, and z is the arc length of waveguide axis.

The couple principles of curved axis and periodic radius perturbations circular waveguides are $m = \pm 1$ and m = 0. In order to restrain other unwanted mode amplitude and to rise the desired mode, the coupling structure is often adopted as^[6~8]

(a) Waveguide mode converter of axisymmetric, periodic radius perturbations

$$a(z) = a_0 \frac{\begin{bmatrix} 1 & - & m \sin(mk_p t) \end{bmatrix}}{1 & - & m \\ m & 1 \end{bmatrix}} (1 m 4)$$
(5)

and (z) must be the function of $k_p = 2 / B$.

(b) Waveguide mode converter of axis curved in plane

$$y(x) = {}_{1}\cos\frac{2z}{w_{[mp,m'q]}} - {}_{2}\sin\frac{2z}{w_{[mp,m_{1}n_{1}]}} - {}_{3}\sin\frac{2z}{w_{[m'q,m_{2}n_{2}]}}$$
(6)

(c) Slightly changed perturbation period

$$_{W} = (1 +)_{B[mp,mq]}$$
(7)

(d) Set a proper placement of phase delay sections of straight waveguide to adjust the phase, so that coupling to unwanted mode is minimized.

And adopting corresponding structure, mode complete conversion can be realized.

2 Result of numerical calculation

Adopting the periodic perturbation of radius, the TE_{03} - TE_{02} , TE_{02} - TE_{01} circular waveguide mode converter is optimized with input mode TE_{03} and frequency of 28 GHz, radius of 20mm. And its structure is shown in Fig. 1 (a) , (b) , and Table 1 , Fig. 2 (a) and (b) show the result of the optimization. For the structure is symmetry, the transportable mode is only TE_{03} , TE_{02} and TE_{01} with input frequency and original radius , furthermore , the beat wavelength of TE_{03} and TE_{02} and TE_{02} and TE_{01} is very short , thus high efficient conversion in fewer periods can be realized , even with arriving at a complete conversion.

Fig. 1 Geometry structure of TE_{03} - TE_{02} , TE_{02} - TE_{01} mode converter with radius taper in (a) , (b) , and TE_{01} - TE_{11} with axis curved in (c)

Adopting the perturbation of axis curved, the TE_{01} - TE_{11} circular waveguide mode converter is optimized with frequency of 35 GHz, radius of 13.6mm. Because of the beat wavelength of TE_{01} and TE_{11} is longer, and its beat wavelength is very

No.6

close to the beat wavelength of TE_{01} and TE_{12} , thus the high efficiency conversion can hardly be realized in a fewer period number. But the conversion efficiency can be increased from added period number of wave and changed the waveguide inner radius, which the unwanted mode amplitude became minimized. At the same time, the length of mode converter became longer. For the length of mode converter is usually decided by four factors : wavelength of beat wave, coupling coefficient, transport constant and coupling to other mode, so the converter length is longer, Fig. 1 (c), compared to the former, Fig. 1 (a, b). The optimal results in Table 1 and Fig. 2 (c, d), show that because of adopting phase rematch technology, the undesired mode became smaller and smaller in output end. Six coupled modes were included in the theoretical analysis : TE_{01} , TE_{11} , TE_{12} , TE_{21} , TM_{11} and TM_{21} . Ohmic attenuation is included in the coupling matrices. The influence of TM_{11} and TM_{21} turned out to be negligible because there is a continuous and coherent conversion (with no change in phasing) between TE_{01} and TE_{12} , TE_{11} and TE_{21} , so if adopting fold perturbation items to rematch the phase of TE_{12} and TE_{21} , the conversion efficiency can exceed 98 %.

case	TE ₀₃ -TE ₀₂	TE_{02} - TE_{01}	TE_{01} - TE_{11}
beat wavelength _B /mm	35.33	74.60	143.90
geometric period w/mm	41.14	90.81	146.94
number of periods	3	4	6
converter length /mm	123.4	363.2	881.6
perturbation amplitudes 1	0.065 67	0.078 30	0.084 01
2	- 0.012 86	0.008 64	0.005 41
geometric period factor	0.164 47	0.217 25	0.021 09
outer power level :	$0.000\ 27(TE_{03})$	$0.009\ 25(TE_{03})$	$0.000 \ 17(TE_{01})$
	0.984 93(TE ₀₂)	$0.00042(TE_{02})$	$0.98038(TE_{11})$
	$0.013 42(TE_{01})$	$0.989\ 08(TE_{01})$	$0.002\ 22(TE_{12})$
			$0.011 69(TE_{21})$
			$0.000 \ 18(TM_{11})$
power transmission			$0.000\ 03(TM_{21})$
efficiency: P _{sum}	0.998 62	0.998 75	0.994 68
$\begin{array}{c} 0.8 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0 \\ 0.2 \\ 0 \\ 0 \\ 0.2 \\ 0 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 1.2 \\ z / dm \end{array}$		$\begin{array}{c} 0.8 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ z / dm \end{array}$	
1.0 0.8 0.6 0.4 0.2 0.2 0.2 0.4 z / dm	TE ₁₁	$\begin{array}{c} 0.12 \\ 0.10 \\ 0.08 \\ \hline \\ 0.02 \\ 0.02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 4 \\ z / d \end{array}$	$ \frac{1}{6} $ $ \frac{1}{8} $ $ \frac{1}{6} $ $ \frac{1}{8} $ $ \frac{1}{8} $

Fig. 2 Fractional power distributions along mode converter

Vol. 14

3 Conclusion

This paper optimizes the TE_{03} - TE_{02} , TE_{02} - TE_{01} and TE_{01} - TE_{11} with frequency 28 GHz and 35 GHz. Adopting corresponding structure, the reliable optimal geometry parameter can be obtained. This results contribute to designing 8mm gy roklystron TE_{01} - TE_{11} circular waveguide mode converter with tighten , high efficiency and broad bandwidth.

References :

- Kovalev N F, Orlova I M, Petelin M I. Wave transformation in multimode waveguide with corrugated walls[J]. Radio Physics and Quantum Electronics, 1969, 11:449-450.
- [2] Li H F, Thumm M. Mode conversion due to curvature in corrugated w waveguides[J]. Int J Electronics, 1991, 71(2):333-347.
- [3] Li H F, Thumm M. Mode coupling in corrugated waveguides with varying wall impedance diameter change [J]. Int J Electronics, 1991, 71 (5):827-844.
- [4] Li H F. Study on mode coupling coefficients in curved corrugated circular waveguides[J]. Chinese Journal of Infrared and Millimeter Waves, 1991, 11(6): 543-549.
- [5] 牛新建,李宏福,喻 胜,等. 高功率弯波导 TE₀₁-TM₁₁模式变换临界角分析[J]. 强激光与粒子束, 2002, 14(5):753 —756. (Niu XJ, Li H F, Yu S, et al. Analysis of high-power bent circular waveguide TE₀₁-TM₁₁ mode converter of critical angle. *High Power Laser and Particle Beams*, 2002, 14(5): 753 —756)
- [6] Kumric H, Thumm M. Optimization of mode converters for generating the fundamental TE_{01} mode from TE_{06} Gyrotron output at 140 GHz[J]. Int J Electronics, 1988, **64**(1):77-94.
- [7] Thumm M. High-power mode conversion for linearly polarized HE₁₁ hybrid mode output [J]. Int J Electronics, 1986, 61(6):1135-1153.
- [8] Thumm M. High-power millimeter wave mode converter in over-moded circular waveguides using periodic wall perturbations [J]. Int J Electronics, 1984, 57 (6):1225-1246.

高功率圆波导 TE_u-TE_l模式变换研究

牛新建, 李宏福, 喻 胜, 谢仲怜 (电子科技大学 高能电子学研究所, 四川 成都 610054)

摘 要: 在模式耦合理论的基础上,详细讨论了波导轴线弯曲与波导半径渐变的圆波导模式变换,并对 TE₀₁-TE₁₁模式变换 器的几何结构进行了优化分析,采用不同的相位重匹配技术,得到了可靠的最优几何参量。以此数据设计的 8mm 回旋速调管 TE₀₁-TE₁₁模式变换器的转换效率可达 98 %。

关键词: 圆波导; 模式变换器; 耦合波方程; 相位重匹配