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ABSTRACT: Motion characteristics of epididymal sperm from do-
mestic cats exhibiting a high (>60%; normozoospermic; n = 21) or
low (<40%; teratozoospermic; n = 6) occurrence of structurally
normal spermatozoa were correlated with morphology (MOR) using
computer-assisted semen analysis (CASA). Mean values and stan-

dard errors for percent motility (MOT), curvilinear velocity (VCL),
linearity (LIN), straight line velocity (VSL), and amplitude of lateral
head displacement (ALH) were recorded for 3 hours. Average values

for percent normal spermatozoa, MOT, VCL, VSL, and ALH were
higher (P < 0.01) in samples from normozoospermic cats than from

teratozoospermic cats at 0 hours, and there was no difference in
motion parameters over the 3-hour incubation period in either group.

Strong correlations (P < 0.01) existed between MOR and VCL, VSL,
ALH, or MOT, but not LIN, upon regression analysis. We conclude

that (1) motion parameters of domestic cat sperm are significantly
correlated with morphology and (2) abnormal motion parameters
associated with low fertility potential in other species are prevalent
in samples from teratozoospermic cats. The correlation between
morphology and altered sperm movement found in this study sug-

gests that motion analysis of spermatozoa by CASA may be useful
in evaluating fertilization potential in felids.
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R ecent investigations have revealed that several rare

and endangered felids ejaculate high proportions of

morphologically abnormal spermatozoa (Wildt Ct al, 1983,

1 987a,b; Howard et al, 1984). Because morphologically

abnormal spermatozoa are compromised in their ability

to migrate through the reproductive tract and to penetrate

the oocyte (Krzanowska, 1974; Nestor and Handel, 1984;

Mahadevan et al, 1987), it is not surprising that some

nondomestic felids reproduce poorly (Wildt, 1990). Al-

though ejaculates from domestic cats contain less than

30% abnormal spermatozoa (Wildt et al, 1983), individ-

ual males sometimes exhibit teratospermia (Howard et

al, 1990). The domestic cat has served as a valuable model

for studying the impact of teratospermia on reproductive

function in the Felidae (Howard et al, 1991 b). Howard et

al (1990) used this model to demonstrate that testosterone

levels in teratospermic cats are 33% lower than in nor-

mospermic males, reflecting the decreased circulating tes-

tosterone levels found by Wildt et al (1983, 1 987a,b, 1988)

among teratospermic domestic cats, African lions, and
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cheetahs. Decreases in genetic variability and heightened

levels of aberrant sperm forms were documented in both

the cheetah and lion populations. The findings of Howard

et al (1990) and Wildt et al (1983, 1987a,b, 1988) suggest

a relationship among androgen levels, genetic variability,

and the occurrence of abnormal spermatozoa.

Decreased fertilization rates associated with structur-

ally abnormal spermatozoa may be related to their altered

motion characteristics; however, this has not been ex-

amined in felids. Computer-assisted semen analysis

(CASA), a novel quantitative method for determining the

motion characteristics of spermatozoa, has provided data

relating sperm motion to fertilization potential in humans

(Aitken et al, 1982b; Jeulin et al, 1986; Fetteroif and

Rogers, 1990; Ginsburg et al, 1990). CASA has proven

to be a useful diagnostic tool for infertility clinics, pro-

viding objective analysis of sperm motility and setting

quality control standards for consistent semen analysis.

Other investigators have used CASA to evaluate changes

in motion parameters as spermatozoa undergo hyperac-

tivation (Neill and Olds-Clarke, 1987; Ginsburg et a!,

1990; Mbizvo et al, 1990; Suarez et a!, 1991) and capac-

itation (Hoshi, 1988; Morales, 1988; Mortimer et al, 1988).

Here, we have used CASA to analyze the motion char-

acteristics of epididymal cat spermatozoa, especially with

respect to possible differences between spermatozoa from

normozoospermic and teratozoospermic domestic cats.
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Table 1. Parameter settings for tracking fe/id spermatozoa using

the Cell Track/s CASA system

Parameter Setting

Frame rate (frames/second) 60
Duration of data capture (frames) 40*
Minimum path length (frames) 40*
Minimum motile speed (nm/second) 10
Maximum burst speed (zm/second) 1,200
Distance scale factor (im/pixel) 0.9348
ALH path smoothing factor (frames) 7
Cent. X search neighborhood (pixels) 4

Cent. Y search neighborhood (pixels) 2
Cent. cell size minimum (pixels) 2
Cent. cell size maximum (pixels) 9

Path. max. interpolation (frames) 2

Path prediction percentage (percent) 10

* Values changed to 5 when calculating percent motility (MOT).

Materials and Methods

Sperm Collection and Processing

Testes from castrated toms (8-36 months old; n = 30), provided
by local veterinary hospitals, were collected in Eagle’s medium

(Sigma Chemical Co, St. Louis, Missouri) supplemented with 25
mM HEPES and 4 mg/ml bovine serum albumin (BSA) and kept

at 23#{176}Cuntil processing. Epididymides were removed for sperm

collection within 2 hours of castration. Blood vessels were dis-
sected away to prevent blood cell contamination of spermatozoa,
and epididymides were washed in Ham’s FlO medium (Sigma)

containing 4 mg/ml BSA. Spermatozoa were released into 2 ml

of Ham’s FlO through punctures made with a 30-gauge needle,
concentrated by centrifugation (700 x g, 8 minutes) in a sterile
l.5-ml conical tube, resuspended in Ham’s FlO to a working

concentration of4O-70 million sperm/mi, and kept at 23#{176}Cuntil
analysis. Normozoospermic (n = 21) and teratozoospermic (n

= 6) samples were analyzed at 23#{176}Cimmediately after prepa-
ration. Additionally, some samples were analyzed again (n = 12

and 4, respectively) following a 3-hour incubation at 23#{176}C.The

initial analysis was completed within 3 hours of castration.

Morphological Assessment

A b-MI smear preparation of each sample was heat-fixed, in-
cubated with Papanicolaou stain for 2 minutes, and rinsed with
water. At least 200 sperm/sample were examined using phase-
contrast optics at x 1,000 magnification to assess the percent
normal sperm morphology (MOR). Sperm were classified as
normal or exhibiting one of the following structural deformities:
macrocephaly, bicephaly, biflagellate, coiled flagellum, bent mid-
piece with or without a cytoplasmic droplet, bent flagellum with
or without a cytoplasmic droplet, and cytoplasmic droplet. Sperm

samples were classified as either normozoospermic, >60% nor-
mal sperm morphology, or teratozoospermic, <40% normal

sperm morphology. Samples having intermediate MOR values
were used only for regressional analysis.

Motion Analysis

CASA requires the ability to identify and track spermatozoa over
time and space. Accurate assessment of motion parameters for

Table 2. Occurrence of morphologically normal and abnormal
spermatozoa from normozoospermic and teratozoospermic
domestic catst

Normozoo-
spermic
(n=21)

Teratozoo-
spermic
(n=6)

Normal spermatozoa (%) 84.4 ± 1.5 27.8 ± 2.7#{176}

Abnormal spermatozoa (%)

Microcephalic 0± 0 0 ± 0
Macrocephalic 0.3 ± 0.1 0 ± 0

Bicephalic 0.3 ± 0.1 0 ± 0
Biflagellate 0.1 ± 0.1 0.7 ± 0.7
Tightly coiled flagellum 0.1 ± 0.1 1.2 ± 0.8*
Bent midpiece with droplet 1.6 ± 0.6 10.6 ± 4.5
Bent midpiece without droplet 4.9 ± 0.7 8.8 ± 1.4#{176}
Bent flagellum with droplet 1.4 ± 0.5 10.5 ± 6.8#{176}
Bent flagellum without droplet 2.3 ± 0.6 42.3 ± 11.2#{176}
Cytoplasmic droplet 4.7 ± 1.2 1.7 ± 0.8

#{149}Values are different (P < 0.05) from the normozoospermic group.
f Values shown are the mean ± SEM for each parameter determined.

each species is dependent upon the computer settings and the
concentration of spermatozoa analyzed (Kunth et al, 1987; Mor-

timer et al, 1988; Boyers et al, 1989). Each calibration parameter
of the Cell Track/s System (Version 3.2, Motion Analysis Corp.

Santa Rosa, California) was optimized to track felid spermatozoa

by evaluating prerecorded samples at various settings. Operating
parameters were optimized to track all sperm and exclude debris
(Table 1). Due to the similarities in cat and human sperm mor-
phology, the chosen operating parameters were similar to those
used in our laboratory for tracking human sperm. The principal

difference between settings for tracking cat and human sperm
was the maximum burst speed, reflecting the higher velocity of

cat sperm. A video digitizing rate of 60 frames per second (fps)

was used to gather 40 frames of data for calculating kinematics

and 5 frames of data for determining MOT. All examinations
were performed using an Olympus BH2 microscope (Olympus,

New York, New York) with a x 10 positive phase-contrast ob-
jective.

Sperm concentration and analysis chamber depth were se-
lected to assure accurate image analysis. We found that when
using a 1 2-sm-deep MicroCell chamber (Fertility Technologies,
mc, Natick, Massachusetts), sperm concentrations in excess of

80 million sperm/ml failed to track accurately due to increased
collision rates. Therefore, sperm concentrations of 40-70 million
sperm/ml were used. The 12-Mm depth was selected because it

restricted sperm movement within the focal depth of our objec-
tive lens.

A S-MI aliquot of each sample was loaded into a 12-Mm-deep

MicroCell chamber and the average curvilinear velocity (VCL;

micrometers/second), linearity (LIN; 1-100%), straight line ve-

locity (VSL; micrometers/second), amplitude of lateral head dis-

placement (ALH; micrometers), and percent motility (MOT)
were determined for at least 200 motile sperm.

Statistical Analysis

Morphologies and motion parameters of normozoospermic and

teratozoospermic samples were recorded as means ± SEM. Dif-
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#{176}Values shown are the mean ± SEM for each parameter determined.
t N.D. = not determined.

Table 3. Morphological and kinematic characteristics of freshly
collected epididymal spermatozoa from normozoospermic and
teratozoospermic domestic catst

Normozoospermic Teratozoospermic
(n=21) (n=6)

MOR 84.40 ± 1.46 27.83 ± 2.66
MOT (%) 78.99 ± 1.58 56.93 ± 5.30#{176}
VCL (im/second) 144.51 ± 3.26 95.92 ± 4.14#{176}
LIN (0-100%) 34.76 ± 1.01 30.83 ± 1.40
VSL (Mm/second) 48.25 ± 2.19 26.68 ± 1.86#{176}
ALH (Mm) 6.47 ± 0.14 4.35 ± 0.22#{176}

* Values are lower (P < 0.01) than the normozoospermic values.
t Values shown are the mean ± SEM for each parameter determined.

ferences between the means were analyzed using the Student
i-test. The effects of incubation time on MOT, VCL, LIN, VSL,

and ALH were also determined using the Student i-test. Uni-
variate linear regression was used to assess correlations between

MOR and the various motion parameters.

Results

Morphological and kinematic analysis of domestic cat

sperm revealed motility deficits among teratozoospermic

males. The structural abnormalities most commonly found

in both normozoospermic and teratozoospermic groups

were in the midpiece and flagellum (Table 2). Among the

teratozoospermic samples, coiled flagellum, bent flagel-

lum, and bent midpiece defects were observed more fre-

quently (P> 0.05) than in the normozoospermic group.

In all samples examined there was a notable absence of

head defects. When the two groups were compared using

CASA, it was found that the average values for MOT,

VCL, VSL, and ALH were higher (P < 0.01) in normo-

zoospermic than in teratozoospermic cats (Table 3). Sev-

eral sperm samples were incubated in medium at 23#{176}C

for an additional 3 hours (Table 4). The prolonged in-

cubation period had no effect (P > 0.05) on any of the

motion parameters within either group. Examples of ac-

Table 5. Examples of morphological and kinematic characteristics

of epididymal spermatozoa from individual cats*

Normozoospermic Teratozoospermic

it 2 3 4 5 6

MOR 78 82 95 17 23 33
MOT (%) 83.0 88.9 75.0 47.6 69.5 36.4
VCL (Mm/second) 169.0 176.0 132.4 99.4 85.5 85.9
LIN (0-100%) 48.0 34.0 44.0 36.0 31.0 26.0
VSL (Mm/second) 80.0 58.6 55.9 30.0 24.5 19.8
ALH (jim) 6.4 7.3 5.9 3.7 4.2 4.4

* Values shown are the mean of 200 or more sperm.
t Sample number.

tual CASA values for individual cats are presented in

Table 5.

To further demonstrate a correlation between sperm

morphology and CASA measurements, samples with

MOR values at the extremes, as well as intermediate sam-
ples that had been excluded from the above analyses (Ta-

bles 3, 4), were subjected to linear regression. Regressional

analysis demonstrated strong correlations (P < 0.01) be-

tween the occurrence of structural abnormalities and VCL,

VSL, ALH, and MOT, but not LIN (Fig. 1).

Discussion

We have identified significant differences between the mo-

tion characteristics of sperm from normozoospermic and

teratozoospermic cats. This represents the first study to

report values for sperm motion parameters in domestic

cats. Our data reveal a significant correlation between the

morphology of epididymal sperm and their movement

characteristics as quantified by CASA and show decreased

values for MOT, VSL, VCL, and ALH in teratozoo-

spermic cats as compared to normozoospermic cats (Ta-

bles 3, 5). These differences may contribute mechanisti-

cally to the overall poor reproductive capacity of

teratospermic felids.

Table 4. Morphological a nd kinematic characteristics of freshly collected and incuba ted epididymal spermatozoa from domestic cats#{176}

Normozoospermic Teratozoospermic

0 hours 3 hours
(n = 12) (n = 12)

0 hours 3 hours

(n = 4) (n = 4)

MOR
MOT(%)
VCL (Mm/second)
LIN (0-100%)
VSL (jim/second)
ALH (jim)

84.04 ± 2.20 N.D.t
76.42 ± 2.16 71.93 ± 2.98

142.80 ± 4.17 144.44 ± 5.33
34.33 ± 1.09 31.54 ± 1.19
46.37 ± 2.23 44.19 ± 3.36

6.45 ± 0.24 6.24 ± 0.31

26.25 ± 3.82 N.D.
52.37 ± 6.98 56.13 ± 1.36
91.90 ± 3.62 97.05 ± 8.52
31.50 ± 2.10 33.50 ± 2.72
25.22 ± 2.13 29.00 ± 1.35

4.08 ± 0.15 4.02 ± 0.27
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Of the 30 sperm samples collected for this study, 23

were from cats between 8 and 12 months old. The male

domestic cat enters puberty between the ages of 7 and 12

months, as determined by the presence of sperm in the

ejaculate (Wildt, 1991). In some species, abnormal sperm

production is high in young males and decreases with

maturity. Because the occurrence ofteratozoospermia and

tormozoospermia was distributed among cats of all age-

FIG. 1. Linear regressions correlating morphology with motility (A),
curvilinear velocity (B), lineanty (C), straight line velocity (D), and am-
plitude of lateral head displacement (E) of freshly collected domestic cat
sperm. R2 = correlation coefficient; m = slope. Sperm was recovered
from epididymides and analyzed using CASA. Points represent individual

cats (n = 30). The middle line is the least-squares regression and the
outer lines are the 95% confidence Interval for each regression.

groups used in our study (data not shown), we could not

conclude that teratozoospermia was age related. The mor-

phological abnormalities that were most prevalent in ep-

ididymal spermatozoa were flagellar and midpiece de-

fects, whereas head anomalies were rare. This distribution

of pleiomorphisms is consistent with results obtained us-

ing ejaculates (Howard et al, 1990).

Morphology has been shown to be a good indicator of
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fertilization ability. Percent normal morphology has been

related to the success of the zona-free hamster ova pen-

etration assay and to fertilization ability in humans and

felids. Aitken et al (l982b, 1983) revealed that a signifi-

cant decrease in the occurrence of morphologically normal

sperm is associated with decreased penetration ability in

the zona-free hamster ova test. Since that time, Rogers

et al (1983), Shalgi et al (1985), and Kruger et al (1988)

have all reported the predictive value of morphology in

hamster oocyte penetration assays. In addition, high pro-

portions ofpleiomorphic sperm have been associated with

decreased in vivo and in vitro fertilization of human 00-

cytes (Aitken et a!, l982b; Mahadevan et al, 1983;

Mahadevan and Trounson, 1984; Cohen et al, 1985).

In domestic and leopard cats (Howard et al, 1990, 1991 b),

teratospermic individuals are compromised in the ham-

ster penetration assay as compared to normospermic

males. Although the percent motile sperm and concen-

tration of normal sperm forms in the media were adjusted

to be similar, penetration rates remained lower for tera-

tospermic samples. In addition, only structurally normal

cat sperm can penetrate completely through the zona of

a homologous egg (Howard et al, 1991 a). It is possible

that physiological or genetic factors inherent to terato-

spermic samples may underlie the reduced oocyte pene-

tration rates associated with teratospermic cats.

With the aid of high-speed video micrography, sperm

movement can be divided into several categories, each

measuring a different motion parameter. Using CASA, we

observed significant decreases in all motion parameters

ofteratozoospermic cat sperm, with the exception of LIN.

Because the forward progression of sperm is governed by

flagellar beating, a high occurrence of tail and midpiece

defects would affect both VCL and VSL. Normal sperm

tend to move with symmetrical flagellar beats, with the

beat frequency determining ALH. In a sample containing

a high frequency of tail abnormalities, the ALH may be

decreased. In the present study, the teratozoospermic

samples, which exhibited a particularly high occurrence

of tail defects, demonstrated significant decreases in VCL,

VSL, and ALH. Sperm motility is essential for achieving

fertilization and is correlated with hamster egg penetra-

tion rates and in vitro fertilization, possibly due to its

influence on the number of collisions between sperma-

tozoa and ova (Binor et al, 1980; Aitken et al, 1982a;

Mahadevan and Trounson, 1984). Because of this cor-

relation, CASA has been used to determine the motion

characteristics that are most closely related to fertilization.

In general, MOT, VCL, and ALH are of greatest impor-
tance. In this study we observed that MOR may impact

less on MOT than it does on other motion parameters

that can be determined using CASA, as indicated by the

data in Table 3. This observation is further demonstrated

in Table 5 where teratozoospermic sample #5 retains a

MOT of 69.5%, while VCL, VSL, and ALH are well below

normozoospermic values. Aitken et al (1982a,b, 1983)

have shown that ALH and the progressive velocity of

spermatozoa are different between fertile and infertile men,

and are related to overall fertilization ability. Jeulin et al

(1986) have reported that ALH is an important factor in

IVF success, and that ALH values are reduced in men

with low fertilization rates. They suggest that the shearing

forces required by sperm to penetrate cervical mucus and

the oocyte may be reflected in the ALH value. Others

have correlated ALH with bovine and human cervical

mucus penetration in vitro and the ability to penetrate

zona-free hamster ova (Aitken et al, 1985; Feneux et al,

1985).

A surprising finding in our study was that epididymal

sperm maintained their motility longer than ejaculated

sperm cultured under similar conditions. While ejaculated

sperm exhibit a 60% loss of initial motility within 2 hours

(Goodrowe et a!, 1989), we observed no significant loss

in the motility of epididymal sperm over a 3-hour incu-

bation period. Longevity of ejaculated sperm can be ex-

tended up to 30 hours following swim-up processing

(Wildt, 1991), indicating that factors acquired during ejac-

ulation destabilize sperm motility.

The present study provides kinematic values for do-

mestic cat sperm, revealing important differences between

teratozoospermic and normozoospermic males. Our data

demonstrate a significant correlation between morphol-

ogy and motion characteristics. Because similar correla-

tions have been found with human sperm, and were shown

to be associated with fertilization potential, it is important

to determine the relationship between motion character-

istics and fertilization rates in domestic cats.
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