[Article]

www.whxb.pku.edu.cn

氮气热处理对 CNTs-LaNi₅ 电极电化学性能的影响

易双萍^{1,2*} 张海燕¹ 裴 磊² 胡寿乐³ 曾国勋¹ 陈 进¹ (¹广东工业大学材料与能源学院; ²广东工业大学物理与光电工程学院; ³广州桑马科技有限公司,广州 510643)

摘要 研究了碳纳米管(CNTs)氮气热处理后结构的变化,以及热处理温度对 CNTs-LaNi₅电极电化学性能的影 响. CNTs 热处理后,管壁变薄,层数变少,管的外径减小,更有利于氢气的吸附和脱附.将碳纳米管与 LaNi₅储氢 合金按质量比 1:10 混合,制作成 CNTs-LaNi₅电极.800 ℃时 CNTs-LaNi₅电极的储氢性能最好,最大容量为 519.1 mAh·g⁻¹,相应的平台电压高达 1.19 V. 在 500~600 ℃范围内,随着温度升高,放电容量有较大幅度的增加; 在 600~800 ℃范围内,随着温度升高,放电容量有较小幅度的增加;但到 900 ℃时,放电容量反而下降.由此可见, CNTs 的热处理温度对 CNTs-LaNi₅电极的电化学储氢性能有着较大的影响.纯 LaNi₅电极的放电容量仅为 265.6 mAh·g⁻¹,平台电压仅为 0.83 V.添加了碳纳米管的 CNTs-LaNi₅电极的电化学活性高于纯 LaNi₅电极.

关键词: 碳纳米管, 电化学性能, 储氢合金, 热处理 中图分类号: O646

Effect of CNTs Treated at Different Temperatures in Nitrogen Ambient on the Electrochemical Properties of CNTs-LaNi₅ Electrodes

YI, Shuang-Ping^{1,2*} ZHANG, Hai-Yan¹ PEI, Lei² HU, Shou-Le³ ZENG, Guo-Xun¹ CHEN, Jin¹ (¹School of Material and Energy; ²School of Physics & Optoelectronic Engineering, Guangdong University of Technology; ³Guangzhou Sangma Technical Co., LTD, Guangzhou 510643, P. R. China)

Abstract The structure change of carbon nanotubes (CNTs) after heat treatment and the effect of CNTs treated at different temperatures in nitrogen ambient on the electrochemical properties of CNTs-LaNi₅ electrodes were investigated. The thickness of CNTs after heat treatment is thinner , the number of layers is less and the outside diameter is smaller than those unheated of CNTs. So the deposition and release of hydrogen are easier. CNTs-LaNi₅ electrodes with CNTs treated at 800 °C in nitrogen has the best electrochemical hydrogen storage capacity with a highest capacity of 519.1 mAh \cdot g⁻¹ and a corresponding discharging plateau voltage of 1.19 V. From 500 °C to 800 °C, the higher the temperature of the heat treatment is, the better the electrochemical hydrogen storage property of the electrode will be. However, CNTs-LaNi₅ electrodes with CNTs treated at 900 °C has a lower capacity. This shows that the temperature of treatment is an important factor that influences electrochemical hydrogen storage performance of CNTs. Pure LaNi₅ electrode has a discharge capacity of only 265.6 mAh \cdot g⁻¹ and a discharging plateau voltage of only 0.83 V, which are lower than those of all CNTs-LaNi₅ electrodes treated at different temperatures in nitrogen ambient.

Keywords: Carbon nanotubes, Electrochemical properties, Hydrogen storage alloy, Heat treatment

碳纳米管(carbon nanotubes, CNTs)自 1991 年 被日本的 Iijima^{III}在高分辨透射电镜下发现以来,与

Received: August 15, 2005; Revised: November 25, 2005. *Correspondent, E-mail: yishping@gdut.edu.cn; Tel: 020-33371816. 国家自然科学基金(20271014, 50372013), 广东省十五重大专项(2003A1070301), 广东省自然科学基金(036918, 004009487), 广东省科技计划项目基金(2004B10301008)资助

碳纳米管相关的科学和技术都有了明显的进步.近 年来,除有关能源、环保等热点问题外,碳纳米管的 储氢性能是另一研究热点.

碳纳米管储氢是近年来发展起来的一种新型储 氢材料,其独特的结构与大的储氢能力及丰富的资 源被认为是很有发展前景的新型储氢材料.理论和 实验研究表明,碳纳米管具有目前已知材料中最大 的储氢密度^[2], Chamber 等^[3]发现由人字形结构组成 的碳纳米纤维作为新型储氢材料在室温和 12 MPa 压力下储氢量高达 67%(w). Liu 等^[4]研究了有较大 平均直径单壁碳纳米管(SWCNTs)的储氢性能,他 们发现在室温和中等高压(10 MPa)下, SWCNTs 的 储氢容量可以达到 4.2%(w).

CNTs的电化学储氢量用放电容量表示. Nutzenade等¹²测定了混有催化剂(Fe和Ni)仅含少量 多壁碳纳米管(MWCNTs)样品的电化学储氢容量, 得到电化学储氢容量为 110 mAh·g⁻¹, 若采用高 纯 MWCNTs, 将会得到更高的电化学储氢容量. Rajalakshmi 等⁶⁵运用相同的方法测定了用酸和热处 理方法处理过的纯净的SWCNTs的电化学储氢性 能,得到了800 mAh·g⁻¹的放电容量.Fazle等⁶⁹测定了 用化学气相沉积法、碳弧法、激光法制备的 MWCNTs 的储氢容量,其中激光法制备的碳纳米管的储 氢容量最高, 而掺入碱金属(Li 或 K)后, 储氢容量 更高,电化学储氢容量为440 mAh·g⁻¹. Lee等^[7]测定 了 MWCNTs 与镍粉及粘结剂聚四氟乙烯(PTFE)按 质量比 40:50:10 的比例压制成电极, 在充放电流为 0.4 mA 时所得电化学储氢容量为160 mAh·g⁻¹. Qin 等¹⁸用甲烷催化分解法制备的 MWCNTs, 与镍粉按 质量比1:10制成电极,测得其放电容量为200 mAh·g⁻¹. 实验结果说明, 碳纳米管具有适合氢存储 的理想孔隙结构,表现出良好的储氢性能.然而采用 不同的制备方法,不同的纯化处理方法得到的不同 管径的碳纳米管,其电化学储氢容量有很大的差别. 而碳纳米管电极的制备方法和充放电制度也会影响 其电化学储氢性能^[9-13].本文研究了管径20~40 nm的 CNTs, 在氮气保护下加热到不同温度保温 1.5 h 后, 对LaNi₅储氢合金电极电化学性能的影响.

1 实 验

1.1 碳纳米管的制备

用化学气相沉积法(CVD)热解乙炔制备 CNTs.

1.2 电极的制备

把纯化后(纯度约为 95%)的 CNTs 在 N₂下分 别加热到 500、600、700、800、900 ℃并保温 1.5 h, 热 处理后的 CNTs 与 LaNi₅储氢合金按 1:10 的质量比 混合, 加入黏合剂搅拌均匀后涂覆在泡沫镍表面一 适度厚层, 室温干燥 12 h 后, 在 11 MPa 和常温下压 片至约 0.65 mm 厚的六个 CNTs- LaNi₅ 电极(其中有 一个未做热处理). 为了对比, 在相同条件下, 将 LaNi₅合金填充到泡沫镍中, 制作成纯 LaNi₅合金电 极.

1.3 电化学性能测试

电解池采用三电极体系. 30% KOH 为电解液, Ni(OH)₂为正极, Hg/HgO为参比电极. 为了防止极片 上样品脱落,将正极、负极极片用隔膜隔开包裹,用 夹片夹紧,放入电解液中. 采用电化学性能测试仪, 使用深圳新威电子有限公司的 BTS 系列高精密电 池分析仪,测定 CNTs 电极的充放电曲线、放电容量 (储氢容量)、循环寿命等. 充电电流密度为 100 mA· g⁻¹,放电电流密度为 60 mA·g⁻¹,放电截止电压为 0.2 V(相对于饱和甘汞电极).数据记录条件为每 15 秒 1 次,安全保护参数是: -0.5~2.5 V, ±500 mA.

该电池的电化学反应过程可以用如下的方程式 表示:

$CNT+xH_2O+xe^{\rightarrow}(CNT+xH)+xOH^{-}$	(1)
$Ni(OH)_2+OH \rightarrow NiOOH+H_2O+e$	(2)
$xNi(OH)_2+CNT \rightleftharpoons xNiOOH+(CNT+xH)$	(3)

反应式(1)表示工作电极,即负极的反应过程,从 左到右表示充电过程,CNTs吸附了溶液中的氢原 子;反向表示放电过程,氢原子从管中脱缚出来.反 应式(2)表示正极的反应过程,从左到右表示充电过 程,极片活性物质被氧化,放出电子,反向表示放电 过程,水分子发生电离.反应式(3)表示电解池的整 个反应过程.反应机理是:氢在阴极方向被吸附,在 阳极方向被氧化,氢的吸附及氢的氧化作用支配着 全部的电化学过程,电极材料的活性越大,氢的吸附 与氧化作用就越强,从而放电性能就越好.整个过程 碳纳米管的电化学储氢机理如图 1 所示.

2 结果与讨论

2.1 电子显微镜分析结果

为了使电化学储氢能反映纯CNTs的性质(去掉 制备过程中遗留的催化剂以及无定形碳的影响),对 CNTs做纯化处理.CNTs的形貌用日本JEM-2100F透 射电子显微镜测定.图2为纯化后CNTs的透射电镜

图 1 碳纳米管电化学储氢机理示意图

Fig.1 Schematic of the mechanism for electrochemical hydrogen storage of CNTs

图 2 纯化后未经热处理的 CNTs 透射电镜图

Fig.2 The TEM photograph of untreated CNTs after purification

(TEM)图.图中发现CNTs是一种多壁管,管均呈缠绕状,具有中空结构,管壁较厚,平均外径约为25 nm,长度达30 μm.

为了进一步分析氮气热处理后 CNTs 的结构发 生的变化,对热处理前后的 CNTs 进行了透射电镜 分析对比.图 3 为 800 ℃保温 1.5 h,氮气热处理后 CNTs 的透射电镜图.与图 2 对比,可以看出管外径 有所减小,管壁上杂质更少.图 4 为热处理前 CNTs 的高分辨透射电子显微镜(HRTEM)照片.

从图 4 可见,碳纳米管具有中空层状结构,管壁 较厚,层数较多.图 5 为 800 ℃保温 1.5 h 氮气热处 理后 CNTs 的高分辨电子显微镜照片.从图 5 可见,

Fig.3 The TEM photograph of CNTs treated at 800 ℃ in nitrogen

图 4 未经热处理 CNTs 的高分辨电子显微镜照片 Fig.4 The HRTEM photograph of untreated CNTs

碳纳米管经过热处理后,管的外壁最外几层已被烧 断,管壁变薄,层数变少,管的外径减小.

2.2 电化学性能测试结果

图 6 为纯 LaNi₅ 电极的电化学储氢性能随放电 循环次数的变化曲线,从第 3、6、9、12 次到第 15 次 循环的放电容量分别为 162.0、199.2、225.7、252.3、 265.6 mAh·g⁻¹,前阶段上升得比较快,15 次以后放 电容量不再上升.相应的放电平台电压约为 0.83 V.

图 7 表示 CNTs 未经热处理的 CNTs- LaNi₅ 电极电化学储氢性能随放电循环次数的变化曲线.从图中可以看出,该种 CNTs-LaNi₅ 电极的放电性能(无论是在容量稳定性还是放电平台方面)均优于没有添加 CNTs 的 LaNi₅ 电极.第5次循环放电容量

Fig.6 The discharging curves of pure LaNi₅ electrode

为 202.0 mAh·g⁻¹, 15 次循环时放电容量为 240.2 mAh·g⁻¹, 第 25、35、45 次循环的最大放电容量分别 是 289.8、339.3 和 381.3 mAh·g⁻¹, 45 次以后放电容 量不再增加.此外,该种 CNTs-LaNi₅ 电极放电的电 压平台约为1.02 V. 对比图6、图7可知,没有添加 CNTs 的 LaNi₅ 电极更容易激活,到第 15 次循环时 已达到最大放电容量 265.6 mAh·g⁻¹; 而 CNTs-LaNi₅ 电极激活较慢,到第15次循环时放电容量为 240.2 mAh·g⁻¹, 仅为最大放电容量的 63%, 第 45 次 循环达到最大放电容量,具有更长的循环寿命.

为了研究 CNTs 的热处理温度对 CNTs-LaNi₅ 电极的电化学储氢性能的影响, 对温度分别为 500、 600、700、800、900 ℃氮气热处理的 CNTs-LaNi₅ 电 极的放电曲线进行了测试. 电极电化学储氢性能随 放电循环的变化曲线与图 7 有比较相似的规律.

选取 CNTs 在 800 ℃氮气处理的 CNTs-LaNi₅ 电极的放电曲线进行讨论,如图 8 所示.可以看出, 该种热处理温度下的 CNTs-LaNi₅ 电极的放电性能 优于未经热处理的 CNTs-LaNi₅ 电极. 第 15 次循环

Fig.8 The discharging curves of CNTs-LaNi₅ electrode with CNTs treated at 800 °C in nitrogen

放电 159.9 mAh·g⁻¹, 25 次循环时放出 310.7 mAh·g⁻¹, 第 35、45、65 次循环的最大放电容量分别是 418.3、481.9 和 519.1 mAh·g⁻¹, 放电的电压平台约为 1.19 V. 开始放电容量增加较快, 以后增加较慢, 65 次以后放电容量不再增加. 对比图 7、图 8 可知, CNTs 在 800 ℃氮气处理后的 CNTs-LaNi₅ 电极激活 更慢, 到第15次循环时放电容量仅为159.9 mAh·g⁻¹, 为最大放电容量的 31%, 第 65 次循环达到最大放 电容量, 循环寿命增加.

为了比较各电极电化学储氢性能,对各电极的 最大放电容量和最高放电的电压平台进行了对比. 图 9 表示不同温度氮气热处理后 CNTs-LaNis 电极 相同条件下的放电曲线.在 500 ℃氮气处理后 CNTs-LaNi₅电极的放电性能(无论是在容量稳定性 还是放电平台方面)比未经热处理时稍有改善,最大 放电容量 408.8 mAh·g⁻¹, 放电的电压平台约为 1.04 V. 在 600 ℃处理下电极放电容量及放电平台与 500 ℃处理下电极相比都有较大幅度的增加,最大放电 容量为 479.9 mAh·g⁻¹, 放电的电压平台约为 1.14 V. 在 700 ℃氮气处理下的 CNTs-LaNi₅ 电极的放电性 能优于 500、600 ℃氮气处理下的 CNTs-LaNi₅ 电极, 最大放电容量为 498.9 mAh·g⁻¹, 相应放电的电压平 台约为 1.16 V.在 800 ℃氮气处理的 CNTs-LaNi5 电 极电化学储氢性能优于 500、600、700 ℃处理的 CNTs-LaNi₅ 电极, 最大放电容量 519.1 mAh·g⁻¹, 放 电的电压平台约为 1.19 V. 在 900 ℃处理下电极的 放电性能反而次于800、700℃处理下的电极,最大 放电容量 476.2 mAh·g⁻¹, 放电的电压平台约为 1.12 V.

由此可见,相同制作条件和充放电条件时在 800 ℃氮气处理后 CNTs-LaNi₅ 电极放电容量最大

图 9 不同温度氮气热处理的 CNTs-LaNi₅ 电极的放电曲线

Fig.9 The discharging curves of CNTs-LaNi₅ electrode with CNTs treated at different temperatures in nitrogen

(达 519.1 mAh·g⁻¹), 放电平台最高(达 1.19 V), 表现 出特别优越的充放电特性. 在 500 ℃氮气处理下与 未经热处理时相比, 无论是在容量稳定性还是放电 平台方面稍有改善; 在 500~600 ℃范围, 随着温度升 高, 放电容量有较大幅度的增加, 放电平台也相应有 较大幅度升高; 在 600~800 ℃范围, 随着温度升高, 放电容量增加的幅度较小, 放电平台也相应有些升 高; 但到 900 ℃时放电容量及放电平台反而下降. 由 此可见, 碳纳米管的热处理温度对 CNTs-LaNi_s 电极 的电化学储氢性能有着较大的影响.

无论经热处理或未经热处理的几种 CNTs-LaNi₅ 电极都比纯 LaNi₅ 电极表现出更优越的充放 电特性. 在相同条件下, 纯 LaNi₅ 合金电极的放电容 量仅为 265.6 mAh·g⁻¹, 相应放电平台电压仅为 0.83 V. CNTs-LaNi₅ 合金电极放电容量明显增加, 放电平 台也明显升高. CNTs-LaNi₅ 合金电极的电化学活性 高于纯 LaNi₅ 合金电极. 氮气热处理后的 CNTs-LaNi₅ 电极放电性能比未经热处理的 CNTs-LaNi₅ 电 极更优良. 氮气热处理 CNTs 与 LaNi₅ 合金按质量 比 1:10 混合制作成负极材料, 两种较好的储氢材料 的储氢性能得到了进一步提高, CNTs 是一种较好 的储氢电极材料.

从以上电化学测试结果可知,相同制作条件和 充放电条件下,不同温度氮气热处理后 CNTs-LaNis 电极表现出不同的放电容量和放电特性.根据碳纳 米管的储氢机理,由于碳纳米管具有较大的比表面 积,其特殊的管道结构及多壁碳管之间的芯部和表 面都有大量分子级细孔,可以吸附大量的气体,具有 很好的毛细吸附性能,对氢气具有好的吸附作用.氢 分子可以储存在管的中空或管的层与层之间.对于 多壁碳纳米管,氢的储存性能与 CNTs 的结构有关.

由图 4、图 5 的 CNTs 高分辨电子显微镜照片 可得知, 热处理后 CNTs 结构的变化将引起 CNTs 的电化学储氢性能的变化: (1)CNTs 表面杂质减少, 有利于氢气的吸附和脱附; (2)CNTs 的最外面的几 层被烧断,最外几层原来稳定的层状结构被破坏,从 而表面活性增大,有利于氢气的吸附和脱附; (3) CNTs 的最外面的几层被烧断,管外径减小,比表面 积增大,表面活性增大; (4) CNTs的管壁变薄,层数减 少,有利于氢气的吸收和脱缚; (5)CNTs 原来有些封 闭的端口部分被打开,更有利于氢气的吸附和脱附. 由此可知,氮气热处理后的 CNTs 具有更好的电化 学储氢性能.氮气热处理后碳纳米管的 CNTs-LaNi₅ 电极放电性能比未经热处理的 CNTs-LaNi₅ 电极更 优良. 但并非温度越高, 放电量也越高. 在 800 ℃氮 气处理下 CNTs-LaNi₅电极放电容量最大, 放电平台 最高, 可以近似认为在 800 ℃氮气热处理下碳纳米 管的电化学活性达到了最佳状态.

3 结 论

CNTs 在氮气热处理后,管壁变薄,层数变少, 管的外径减小,比表面积增大,更有利于氢气的吸附 和脱附. 氮气热处理后的 CNTs-LaNis 电极放电性能 比未经热处理的 CNTs-LaNi₅ 电极更优良. 不同温度 氮气热处理碳纳米管的 CNTs-LaNi₅ 电极表现出不 同的放电容量和放电特性.在800℃氮气处理后 CNTs-LaNi₅电极放电容量最大(达519.1 mAh·g⁻¹),放 电平台最高(达 1.19 V); 在 500 ℃氮气处理后, 容量 稳定性和放电平台稍有改善;在 500~600 ℃,温度升 高,放电容量增加,放电平台也升高;在 600~800 ℃, 温度升高,放电量增加较小,放电平台还稍升高;但 到 900 ℃时放电容量及放电平台反而下降. 由此可 见,碳纳米管的热处理温度对 CNTs-LaNi5 电极的电 化学储氢性能有着较大的影响.碳纳米管是一种极 好的储氢材料,可成为镍氢电池负极材料,以改进镍 氢电池的性能指标.

References

- 1 Iijima, S.; Elical, H. Nature, 1991, 354: 56
- 2 Nutzenade, I. C.; Zuttel, A.; Chartouni, D.; Louis, S. *Electrochem.* Solid-State Lett., **1999**, **2**(1): 30
- 3 Chamber, S. A.; Park, C.; Terry, R. Phys. Chem. B, 1998, 122: 4253
- 4 Liu, C.; Fan, Y. Y.; Liu, M. Science, 1999, 286(1): 127
- 5 Rajalakshmi, N.; Dhathathreyan, K. S.; Govindaraj, A.; Satishkumar, B. C. *Electrochimica Acta*, **2000**, **45**: 4511
- 6 Fazle Kibria, A. K. M.; Mo, Y. H.; Park, K. S.; Yun, M. H. Int. J. Hydrogen Energy, 2001, 26: 823
- Lee, S. M.; Park, K. S.; Choi, Y. C.; Park, Y. S.; Bok, J. M.; Bae,
 D. J.; Nahm, K. S.; Choi, Y. G.; Yu, S. C.; Kim, N. G.; Frauenheim,
 T.; Lee, Y. H. Synth. Metal, 2000, 113: 209
- 8 Qin, X.; Gao, X. P.; Liu, H.; Yuan, H. T.; Yan, D. Y.; Gong, W.
 L.; Song, D. Y. Electrochem. Solid-State Lett., 2000, 3(12): 532
- 9 Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A. *Nature*, **1997**, **386**: 377
- Ma, Y. C.; Xia, Y. Y.; Zhao, M. W. *Physical Review B*, 2001, 63 (11): 1542
- 11 Zhang, H. Y.; Chen, Y. M.; Li, S. H. J. Appl. Phys., 2003, 11: 94
- 12 Dai, G. P.; Liu, C.; Liu, M.; Wang, M. Z.; Cheng, H. M. Nano Lett., 2002, 2: 503
- 13 Yi, S. P.; Fu, X. J.; Zhu, Y. J.; Chen, Y. M. Rare Metal Materials and Engineering, 2005, 34(4): 609 [易双萍, 付小娟, 朱燕娟, 陈易明. 稀有金属材料与工程(Xiyou Jinshu Cailiao Yu Gongcheng), 2005, 34(4): 609]