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Abstract. Despite uncertainties in future climates, there is
considerable evidence that there will be substantial impacts
on the environment and human interests. Climate change
will affect the hydrology of a region through changes in the
timing, amount, and form of precipitation, evaporation and
transpiration rates, and soil moisture, which in turn affect
also the drought characteristics in a region. Droughts are
long-term phenomena affecting large regions causing signif-
icant damages both in human lives and economic losses. The
most widely used approach in regional climate impact stud-
ies is to combine the output of the General Circulation Mod-
els (GCMs) with an impact model. The outputs of Global
Circulation Model CGCMa2 were applied for two socioeco-
nomic scenarios, namely, SRES A2 and SRES B2 for the
assessment of climate change impact on droughts. In this
study, a statistical downscaling method has been applied for
monthly precipitation. The methodology is based on multiple
regression of GCM predictant variables with observed pre-
cipitation developed in an earlier paper (Loukas et al., 2008)
and the application of a stochastic timeseries model for pre-
cipitation residuals simulation (white noise). The method-
ology was developed for historical period (1960–1990) and
validated against observed monthly precipitation for period
1990–2002 in Lake Karla watershed, Thessaly, Greece. The
validation indicated the accuracy of the methodology and the
uncertainties propagated by the downscaling procedure in the
estimation of a meteorological drought index the Standard-
ized Precipitation Index (SPI) at multiple timescales. Sub-
sequently, monthly precipitation and SPI were estimated for
two future periods 2020–2050 and 2070–2100. The results
of the present study indicate the accuracy, reliability and un-
certainty of the statistical downscaling method for the as-
sessment of climate change on hydrological, agricultural and
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water resources droughts. Results show that climate change
will have a major impact on droughts but the uncertainty in-
troduced is quite large and is increasing as SPI timescale in-
creases. Larger timescales of SPI, which, are used to monitor
hydrological and water resources droughts, are more sensi-
tive to climate change than smaller timescales, which, are
used to monitor meteorological and agricultural droughts.
Future drought predictions should be handled with caution
and their uncertainty should always be evaluated as results
demonstrate.

1 Introduction

Rainfall varies considerably over space and time. Agricul-
tural and water resources systems have evolved in response
to this variability, but in most regions of the world, rainfall
variability continues to be a major source of risks that wa-
ter resources managers face. Depending on spatial extent
and persistence of drought, for example, entire communities
and regions risk economic and food security problems. Re-
search is being conducted to better understand climate vari-
ability, its impacts on agricultural and water resources sys-
tems, and how to reduce those risks through decisions and
policies that consider climate variability. Nowadays anthro-
pogenic climate change and its socioeconomic impacts are
major concerns of mankind. Global surface temperature has
been increased significantly during the last century and will
continue to rise unless greenhouse gas emissions are drasti-
cally reduced (IPCC, 2007). Climate change effects are man-
ifold and vary regionally, even locally, in their intensity, du-
ration and areal extent. However, immediate damages to hu-
mans and their properties are not obviously caused by grad-
ual changes in temperature or precipitation but mainly by so-
called extreme events such as floods and droughts. The fre-
quency and intensity of extreme events can be analysed with
the use of long historical data series which are unavailable in
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many parts of the world. Hence, coupled atmosphere-ocean
general circulation models are suitable tools to simulate ex-
treme events since there are able to generate long timeseries
that can be used for model evaluation and also for analyses
of possible future changes in extreme events.

However, there is a mismatch between the grid resolu-
tion of current climate models (generally hundreds of kilo-
meters), and the resolution needed by environmental impacts
models (typically ten kilometers or less). Techniques have
been developed to downscale information from GCMs to re-
gional scales. Downscaling is the process of transforming in-
formation from climate models at coarse resolutions to a fine
spatial resolution. Downscaling is necessary, as the under-
lying processes described by the environmental impact mod-
els are very sensitive to local climate, and the drivers of lo-
cal climate variations, such as topography, are not captured
at coarse scales. There are two broad categories of down-
scaling: dynamic (which simulates physical processes at fine
scales) and statistical (which transforms coarse-scale climate
projections to a finer scale based on observed relationships
between the climate at the two spatial resolutions) (IPCC,
2007). Dynamic downscaling, nesting a fine scale climate
model in a coarse scale model, produces spatially complete
fields of climate variables, thus preserving some spatial cor-
relation as well as physically plausible relationships between
variables. However, dynamic downscaling is very compu-
tationally intensive, making its use in impact studies lim-
ited, and essentially impossible for multi-decade simulations
with different global climate models and/or multiple green-
house gas emission scenarios. Thus, most impacts studies
rely on some form of statistical downscaling, where variables
of interest can be downscaled using historical observations.
These relationships are empirical (i.e. calibrated from obser-
vations) and they are applied using the predictor fields from
GCMs in order to construct scenarios. There are applica-
tions related criteria that contribute to an appropriate choice
of downscaling method in a particular context (Mearns et al.,
2004; Wilby et al., 2004). However, there are assumptions
involved in both techniques which are difficult to verify a
priori and contribute to the uncertainty of results (Giorgi et
al., 2001). There has been extensive work developing and in-
tercomparing statistical downscaling techniques for climate
impact studies (Wilby and Wigley, 1997; Xu 1999; Giorgi et
al., 2001; Varis et al., 2004; Xu et al., 2005; Fowler et al.,
2007).

Most general circulation models predict a prominent
change in precipitation (IPCC, 2007), supported by ob-
servations of precipitation trends (National Observatory of
Athens, 2001) showing decreased winter precipitation and
enhanced variability (IPCC, 2007). There is evidence that
such changes are now reflected in low flows and hydrologic
droughts (Hisdal et al., 2001). The frequency and sever-
ity of low flows has been extensively studied (Smakhtin,
2001). In contrast to various climate change drought stud-
ies of river discharge, limited studies of drought based on

meteorological drought indices, which require considerably
less input data when compared to weather, soil and land
use information needed by meteorological, hydrologic, agro-
hydrologic and water management models, have been per-
formed (i.e. Kothavala, 1999; Blenkinsop and Fowler, 2007;
Loukas et al., 2007b; Mavromatis, 2007; Loukas et al., 2008;
Dubrovski et al., 2009). This study, a continuation study
of Loukas et al. (2008), examines, explicitly for the Lake
Karla Watershed in Thessaly, Greece, whether the upward
trend of droughts (IPCC, 2007; Weiss et al., 2007), as de-
scribed above, could be depicted by a statistical downscaling
method for precipitation using a global circulation model.
It is used to reproduce present drought conditions; and, by
reconstructing climatic records including climate and socio-
economic changes on future drought severities using two of
the IPCC global emission scenarios, SRES A2 and SRES B2,
to assess the uncertainty introduced to climate change impact
studies on droughts. The methodology is based on multiple
linear regression of GCM predictant variables with observed
monthly precipitation, developed by Loukas et al. (2008)
and extended in this study by a stochastic timeseries model
component for regression residuals simulation (white noise).
The methodology was developed for the base historical pe-
riod (1960–1990) and validated against observed precipita-
tion for the period 1990–2002. Subsequently, comparison of
the Standardized Precipitation Index (SPI) timeseries calcu-
lated from observed and downscaled meteorological param-
eters will indicate the accuracy, reliability and uncertainty of
the downscaling method for present and future climate con-
ditions and the use of the downscaling method on climate
impact studies in hydrology, agriculture and water resources.

2 Study area and characteristics of droughts in the re-
gion

Lake Karla watershed is located in central Thessaly, Greece
and is a plain region surrounded only by eastern high moun-
tains (Fig. 1). It has an area of about 1171 km2. Elevation
ranges from 50 m to more than 1900 m, and the mean ele-
vation of the region is about 230 m. The plain is one of the
most productive agricultural regions of Greece. The main
crops cultivated in the plain area are cotton, wheat and maize
whereas apple, apricot, cherry, olive trees and grapes are cul-
tivated at the foothills of the eastern mountains. The cli-
mate is typical continental with cold and wet winters and hot
and dry summers. Mean annual precipitation in Lake Karla
watershed is about 560 mm and it is distributed unevenly in
space and time.

In the Mediterranean Basin, and especially in Greece, the
major methodological drawback for a long-term assessment
of regional climate and its variability comes from the lack
of suitable observations or simulated data. Global reanal-
yses databases have been created to overcome this obsta-
cle (Kalnay et al., 1996; Gibson et al., 1997; Sotillo et al.,
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Figure 1. Study area, database and digital elevation model of Lake Karla watershed. 

 

Fig. 1. Study area, database and digital elevation model of Lake
Karla watershed.

2005). However, the coarse spatial resolution of global re-
analysis make these data sets inadequate tool to characterize
regional, prevailing atmospheric conditions over areas where
orography and land-sea contrasts are valuable (Morata et al.,
2008). Processed monthly precipitation data from 12 pre-
cipitation stations for the period October 1960 to September
2002 were used (Fig. 1). The mean areal precipitation of
Lake Karla watershed was estimated by the Thiessen poly-
gon method modified by the precipitation gradient using the
stations, which are within or in the vicinity of the watershed.
Thessaly, and especially Lake Karla watershed, experienced
severe, extreme and persistent droughts during the periods
from mid to late 1970s, from late 1980s to early 1990s and
the first years of 2000s (Loukas et al., 2007b). These three
drought periods were quite remarkable and affected large ar-
eas. The first drought episode (1976–1977) affected south-
ern and western Europe, the second drought episode (1988–
1991) affected the whole Mediterranean Region with an es-
timated economic cost lager than 2.1 billion Euros, whereas
the third drought episode (2000–2001) affected Central Eu-
rope and the Balkans with total damage of 0.5 billion Euros
(EEA, 2004). During these three periods the monthly and
annual precipitation was significantly bellow normal in Thes-
saly. The prolonged and significant decrease of monthly and
annual precipitation has a dramatic impact on natural vege-
tation, agricultural production and the water resources of the
region (Loukas et al., 2007a).

Large scale atmospheric circulation patterns affect the
droughts over Greece and the Mediterranean basin, in gen-
eral. In a recent study (Bordi et al., 2007) analysis of geopo-
tential height anomaly of 500 mb indicated that a high pos-
itive anomaly over North-Eastern Europe is responsible for

extended and severe droughts in Italy and Greece. These
circulation patterns characterise mid- to high-latitude flow
anomalies. These dipole-like geopotential anomalies char-
acterize the large-scale circulation and produce long persis-
tent droughts. Especially, the 1988–1991 drought episode
has been observed during a high positive North Atlantic Os-
cillation (NAO) index (Xoplaki et al., 2000; Houssos and
Bartzokas, 2006). During this period, the extension of the
subtropical anticyclone of the Atlantic (Azores) up to central
Mediterranean modified the tracks of the traveling depres-
sions affecting precipitation in NW Greece. Furthermore,
during this period, low pressure systems approached Greece
mainly from the North, causing dry katabatic winds in NW
Greece due to the NW-SE orientation of the Pindus mountain
range, west of Thessaly. These atmospheric circulation pat-
terns are considered typical for extreme dry periods and have
been identified by many researchers (Xoplaki et al., 2000;
Bartzokas et al., 2003).

Climate change with have a remarkable impact on fu-
ture climate in Greece. Multimodel GCM experiments
show a mean annual temperature increase of 0.5–1◦C for
the Mediterranean region which is insensitive to the choice
among Special Report on Emission Scenarios (SRES) for the
period 2011–2030 (IPCC, 2007). In a recent study, where cli-
mate change impacts on temperature and precipitation were
investigated on Greece using nine Regional Climate Mod-
els (RCMs), mean annual temperature will be increased by
3.7◦C and precipitation will be decreased by 15.8% for the
period 2070–2100. The inter-annual variability of temper-
ature will be increased in summer and reduced at winter,
whereas summer precipitation variability for future climate
is decreasing for the majority of the RCMs (Zanis et al.,
2008). These pronounced changes in precipitation and tem-
perature will have subsequent effects on droughts in the
region. Loukas et al. (2007b), using the delta downscal-
ing method of Global Circulation Model CGCMa2 (method
of truncated means) on precipitation had assessed climate
change impacts on drought impulses in the region of Thes-
saly. They found that future climate change would result in
a significant increase in the number, severity and duration
of drought events in Thessaly, which is evident even in the
period 2020–2050. Drought events would be doubled and
in some cases tripled by end of this century when using the
socio-economic scenarios IS92a and SRES A2. Furthermore,
in another study (Loukas et al., 2008), Annual Weighted
Cumulative Drought Severity-Timescale-Frequency curves,
which integrate the relationships between drought severity
over the year, timescale and frequency and applied for the
identification of various types of droughts, indicated that
large increase in annual drought severity is expected towards
the end of the century for SRES A2 and SRES B2 scenarios.
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3 Methodology

The aim of this study is to evaluate a statistical downscal-
ing method for monthly precipitation and the subsequent
estimation of climate change impacts on droughts. The
downscaling method was developed using the outputs of the
Canadian Centre for Climate Modeling Analysis General
Circulation Model (CGCMa2) for the base historical period
(1960–1990), validated against observed precipitation for the
period 1990–2002, and used to estimate monthly precipita-
tion timeseries for two future periods 2020–2050 and 2070–
2100. The droughts have been assessed using the most com-
monly used drought index, the Standardized Precipitation In-
dex (SPI). The SPI timeseries have been estimated at multiple
timescales for the historical base period 1960–1990 for ob-
served and downscaled monthly precipitation, validated for
the period 1990–2002 for assessing drought severity classes,
and used for evaluating future climate change impacts on
droughts. The methodologies used in this study are presented
in the next paragraphs.

3.1 Global circulation model

Global Circulation Models (GCMs) have been used to study
the effects of the increasing concentration of carbon diox-
ide and the other greenhouse gases on the Earth’s climate.
These models link atmospheric processes with ocean and
land surface processes and can be used to provide projec-
tions of the changes in temperature, precipitation and other
climate variables in response to changes in greenhouse gas
emissions. The second generation of GCMs (Manabe and
Stouffer, 1996; Johns et al., 1997; Boer et al., 2000) is tran-
sient models assuming an increase of CO2 equivalent con-
centration at a rate of 1% per annum from 1990 to 2100. In
this study the gridpoint outputs from the second-generation
Canadian Centre for Climate Modeling and Analysis GCM
(CGCMa2) (Boer et al., 2000; Flato and Boer, 2001) and
for two socio-economic development scenarios were used
for the assessment of climate change impacts on monthly
precipitation in Lake Karla watershed. The CGCMa2 is a
spectral model with 10 atmospheric levels and has a reso-
lution equivalent to 3.75◦ of latitude by 3.75◦ of longitude.
The ocean component is based on the Geophysical Fluid Dy-
namics Laboratory MOM1.1 model and has a resolution of
roughly 1.8◦ of latitude by 1.8◦ of longitude and 29 verti-
cal levels. SRES A2 scenario assumes a strong, but region-
ally oriented economic growth and fragmented technological
change with an emphasis on human wealth. It represents an
high emissions scenario. The second scenario is the SRES
B2 scenario which emphasizes the protection of the environ-
ment and social equity, but also relies on local solutions to
economic, social, and environmental sustainability and rep-
resents a low emission scenario. These scenarios represent
a world in which the differences between developed and de-
veloping countries remain strong. The two socio-economic

scenarios used have been widely adopted as standard scenar-
ios for use in climate change impact studies (IPCC, 2007).
Scenario runs were taken over two time periods: a) 2020–
2050 and b) 2070–2100.

The commonly used approach in climate change studies is
to combine the output of the GCMs with an impact model.
This approach is quite realistic although there are inherent
uncertainties about the details of regional climate changes.
These uncertainties stem from a number of sources, namely
from uncertainties in GCM outputs, downscaling of GCM
outputs and specification of the climate change scenarios.
The major drawback of the current generation of GCMs is
the limitation of their spatial resolution and the resolution
of the output. Usually the output of GCMs is given for a
much larger scale than the scale of even a large watershed.
Interpolation techniques (McCabe and Wolock, 1999), sta-
tistical downscaling (Brandsma and Buishand, 1997; Wilby
et al., 2002) and downscaling through coupling of GCM out-
put and regional meteorological models (Giorgi et al., 2001)
are methods that have been used to overcome the spatial res-
olution limitation of the GCMs. Uncertainty increases within
and between every link of the approach. This uncertainty de-
pends on:

1. quality of GCM simulations, regarding the predictor
variables for downscaling (uncertainty of emission sce-
nario included herein);

2. quality of downscaled scenarios, due to inhomo-
geneities in observed data and shortcomings of the tech-
nique applied;

3. quality and resolutions of the impact model(s), which
are often strong simplifications of reality; and

4. errors in input data due to instrumentation and/or sam-
ple data error.

GCM uncertainty might be assessed by using different
GCMs and by using Monte Carlo experiments with one
GCM starting with different initial conditions. Uncertainty
due to downscaling techniques might be assessed, e.g. by us-
ing different downscaling techniques or by varying parame-
terizations of the downscaling models. Likewise, uncertain-
ties of impact models can be estimated by varying input pa-
rameters, taking into account, e.g. sampling errors. In this
study, two types of uncertainty are addressed the downscal-
ing technique and the impact model uncertainty.

3.2 Statistical downscaling method

Statistical downscaling is the process of building an empiri-
cal model:

y = F (x) (1)

for a small-scale featurey, not adequately described in
GCMs, and large-scale featuresx, well resolved. As predic-
tands,y has been used as weather variables, such as monthly
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temperatures, and/or as monthly precipitation amounts. The
predictorx has often been chosen as characteristics of the
weather circulation. If the functionF is linear, Eq. (1) be-
comes

F (x) = ax + ε (2)

with ε drawn from a normal distribution with zero mean and
standard deviationσ , and 0<a<1. The variations inε are as-
sumed to be independent fromx. In this setting, the random-
ness iny stems from the randomness inε. Hence, Eq. (1)
must be understood as a stochastic equation (Von Storch,
1999).

Several statistical methods are applicable to the descrip-
tion of relationships between large-scale upper-air fields and
local climate elements. Multiple linear regression (MLR), ei-
ther based directly on grid point data or on principal compo-
nents (PCs) of predictor fields, canonical correlation analysis
(CCA), and non-linear methods such as multivariate splines
and neural networks have been used most widely (Wilby and
Wigley, 1997; Xu, 1999; Xu et al., 2005; Fowler et al., 2007).
In this study, the GCM grid point outputs were downscaled
using multiple regression equations between GCM predic-
tor output variables and areal monthly precipitation. Step-
wise screening of gridpoint data was found to be the best
statistical model among canonical correlation analysis, sin-
gular value decomposition, and multiple regression models
on principal components (PCs) of predictor fields for down-
scaling daily temperature in Europe (Huth, 1999). The pre-
dictors used in such analyses should be: a) well simulated by
the GCM, b) strongly correlated with the predictand variable
(precipitation), and c) available. Using these criteria, six pre-
dictor grid variables were used, namely the mean sea level
pressure (mslp), the mean 2 m wind speed (swa), the precip-
itation (pcp), the mean surface temperature (st), the 500 hPa
geopotential height (gz500), and the geopotential thickness
between 500 and 1000 hPa (gz500–1000). These are the most
commonly used predictors in statistical downscaling of pre-
cipitation (IPCC, 2007).

A procedure based on forward selection stepwise regres-
sion technique and included testing with various linear and
non-linear regression models was employed (Loukas et al.,
2008). All of these models rely on homogeneous long time-
series of the target parameter on the local scale and one or
several atmospheric predictors on the large-scale. A major
limitation is the assumption that the relationships obtained
under present conditions will also hold true under a changing
climate. In this study, dummy variables (a set of twelve cat-
egorical variables assigned to the 12 months of the year) are
used to account for the effect of the “month” on precipitation.
The best regression downscaling model containing monthly
dummy variables is expressed as (Loukas et al., 2008):

PMLR = a1 · b1 + a2 · b2 + a3 · b3 + ... + a12 · b12

+ a13 · mslp+ a14 · swa+ a15 · gz500

+ a16 · gz(500−100) + c (3)

wherePMLR is the logarithmically transformed monthly pre-
cipitation, b1, b2, b3, . . . , b12 are the monthly weighing
dummy variables,a1, a2, a3, . . . , a12 are regression coeffi-
cients, andc is the regression constant. Dummy variables,
b1−b12, are assigned binary values, 0 or 1, depending on
the month in which precipitation is referred. For example, if
month is October, then,b1 takes the value of 1 and all the
other dummy variables,b2−b12, take the value of 0. Sim-
ilarly, if month is November, then,b1 takes the value of 0,
b2 takes the value of 1 and all the other dummy variables,
b3−b12, take the value of 0 and so on. However, the monthly
downscaled precipitation (PMLR) values will always have
smaller variance than the local values (i.e. areal observed
precipitation) (Von Storch, 1999). In many climate impact
studies the variance of the downscaled timeseries should be
the same with the variance of the observed values. To meet
this requirement various methods have been proposed such as
variance inflation (Karl et al., 1990; Huth, 1999), expanded
downscaling (Burger, 1996), and randomization (Dehn and
Duma, 1999). In this study, to preserve the variability of
the observed series, the estimated precipitation was com-
bined with the residual values of the regression. These can
be viewed as a noise component, statistically independent of
the large-scale climate. In the formula:

P = PMLR + Presidual (4)

with P = observed monthly precipitation,PMLR = monthly
precipitation explained by multiple linear regression and
Presidual= residuals of MLR. If this operation is carried out
on the estimated series of the regression fitting period (Octo-
ber 1960–September 1990), the result is the observed series.
For the climate scenarios,PMLR is obtained by downscal-
ing the GCM outputs whilePresidualremains unchanged. In
this way, the problem of limited correlation between predic-
tor and predictand variables may be tackled. However, in
order to estimate the uncertainty of the downscaling method
stochastic timeseries modelling was applied for the treatment
of the residuals.

Stochastic simulation of hydrologic timeseries such as pre-
cipitation is typically based on mathematical models. For
this purpose a number of stochastic models have been sug-
gested in literature (Salas, 1993; Hipel and McLeod, 1994).
Using one type of model or another for a particular case at
hand depends on several factors such as, physical and statis-
tical characteristics of the process under consideration, data
availability, the complexity of the system, and the overall
purpose of the simulation study. Given the historical record,
one would like the model to reproduce the historical statis-
tics. This is why a standard step in hydrologic simulation
studies is to determine the historical statistics. Once a model
has been selected, the next step is to estimate the model pa-
rameters, then to test whether the model represents reason-
ably well the process under consideration, and finally to carry
out the needed simulation study. The development of the
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stochastic model forPresidualwas done again for the develop-
ment period (1960–1990). Univariate stationary ARMA have
been applied in the standardized monthly residuals. How-
ever, this procedure failed to reproduce the monthly resid-
ual correlations and periodic ARMA models have been fit-
ted. The best fitted model, according to Akaike Information
Criterion (AIC), was the Periodic Autoregressive Model of
order four (4), PAR(4) defined as:

Presv,t = ϕ1,tPresv,t−1 + ϕ2,tPresv,t−2 + ϕ3,tPresv,t−3 + ϕ4,tPresv,t−4 + ev,t

(5)

wherePresv,t respresents the monthly precipitation residual
for year v and month(season)t ; it is normally distributed
with mean zero and varianceσ 2

t (Pres); ev,t is the normally
distributed and uncorrelated noise which has mean zero and
varianceσ 2

t (e); andϕ1,t . . . . ϕ4,tare the monthly autoregres-
sive parameters. Several statistics were estimated to evalu-
ate Eq. (5) in simulating residual monthly precipitation for
development and validation periods and then Eq. (5) was ap-
plied stochastically to generate 100 timeseries of thePresidual.
The calculated residual precipitation timeseries were added
to the downscaledPMLR to reproduce the observed monthly
precipitation pattern that used in drought estimation using a
meteorological drought index the SPI. Finally, the developed
MLR equation (Eq. 3) was used to downscale monthly GCM
precipitation timeseriesPMLR for the future periods 2020–
2050, and 2070–2100, and then the precipitation residuals
(Presidual) were added toPMLR using Eq. (4), assuming that
the precipitation residual timeseries in the future have the
same statistical characteristics of the historical period. Es-
sentially, the residual precipitation timeseries for the future
periods were the timeseries generated by Eq. (5) for the his-
torical base period.

3.3 Standardized precipitation index

Many indices have been used for the identification of more
than one type of drought (Tate and Gustard, 2000; Keyantash
and Dracup, 2002) and their categorization may not be appro-
priate, although it is widely used (Wilhite and Glantz, 1985;
AMS, 2004). The Standardized Precipitation Index (SPI)
has been developed by McKee and his associates (1993) for
defining and monitoring droughts. It is used, among oth-
ers, by the US Colorado Climate Center, the US Western Re-
gional Climate Center, and the US National Drought Miti-
gation Center to monitor drought in the United States. The
main advantage of the SPI is that can be calculated for multi-
ple time-scales. This is very important because the timescale
over which precipitation deficits accumulate functionally
separates different types of drought (McKee et al., 1995) and,
therefore, allows to quantify the natural lags between precip-
itation and other water usable sources such as river discharge,
soil moisture and reservoir storage. Recent studies have used
SPI as indicator of hydrological and water resources vari-
ables, like soil moisture, surface runoff and reservoir storage

(Loukas and Vasiliades, 2005; Vicente-Serrano and Lopez-
Moreno, 2005). The US National Drought Mitigation Center
computes the SPI with five running time intervals, i.e. 1-,
3-, 6-, 9-, and 12-months, but the index is flexible with re-
spect to the period chosen. This powerful feature can provide
an overwhelming amount of information unless researchers
have a clear idea of the desired intervals (Loukas and Vasili-
ades, 2005; Vicente-Serrano and Lopez-Moreno, 2005).

Computation of the SPI involves fitting a Gamma prob-
ability density function to a given frequency distribution of
precipitation totals for a station, area or a watershed. The
alpha and beta parameters of the Gamma probability density
function are estimated for each station, for each timescale of
interest (1, 3, 6, 9, 12 months, etc.), and for each month of
the year. The Gamma distribution is defined by its probabil-
ity density function:

g(P ) =
1

βα0(α)
P α−1e−P/β for P > 0 (6)

whereα, β are the shape and scale parameters respectively,P

is the precipitation amount and0(α) is the gamma function.
Maximum likelihood solutions are used to optimally estimate

α andβ: α =
1

4A

(
1 +

√
1 +

4A
3

)
, β =

P
α
, where A=

ln
(
P

)
−

∑
ln(P )

n
, andn is the number of observations.

The resulting parameters are then used to find the cumu-
lative probability of an observed precipitation event for the
given month and timescale for the station in question. Since
the gamma function is undefined forP=0 and a precipita-
tion distribution may contain zeros, the cumulative probabil-
ity becomes:

H (P ) = q + (1 − q) G (P ) , (7)

whereq is the probability of a zero andG(P ) the cumulative
probability of the incomplete gamma function. Ifm is the
number of zeros in a precipitation timeseries, thenq can be
estimated bym/n. The cumulative probability,H(P ), is then
transformed to the standard normal random variablez with
mean equal to zero and variance of one, which is the value
of the SPI. Once standardized the strength of the anomaly is
classified as set out in Table 1. This table also contains the
corresponding probabilities of occurrence of each severity
arising naturally from the Normal probability density func-
tion. Thus, at a given location for an individual month, mod-
erate dry periods (SPI≤−1) have an occurrence probability
of 15.9%, whereas extreme dry periods (SPI≤−2) have an
event probability of 2.3%. Extreme values in the SPI will,
by definition, occur with the same frequency at all locations.
Negative SPI values indicate droughts and positive SPI val-
ues denote wet weather conditions (Table 1).

In this study, areal monthly precipitation accumulations
were used for the estimation of the monthly SPI for 1-
month, 3-month, 6-month, 9-month, 12-month, and 24-
month timescales, in the development period at Lake Karla
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Table 1. Drought classification by SPI values and corresponding
event probabilities.

SPI value Category Probability (%)

2.00 or more Extremely wet 2.3
1.50 to 1.99 Severely wet 4.4
1.00 to 1.49 Moderately wet 9.2
−0.99 to 0.99 Near normal 68.2
−1.49 to−1.00 Moderately dry 9.2
−1.99 to−1.50 Severely dry 4.4
−2 or less Extremely dry 2.3

watershed. The estimation error of the parameters calcula-
tion was tested using the 100 generated precipitation time-
series. Five evaluation statistics were used to assess the com-
parison of observed SPI timeseries and the use of median/or
average parameter values of the generated 100 SPI timeseries
in simulation the observed precipitation pattern. These statis-
tics are the mean absolute error (MAE), the root mean square
error (RMSE), the coefficient of efficiency (CE), the index
of agreement (IA) and the persistence index (PI). MAE and
RMSE are statistical parameters of residual error between
observed and modelled timeseries datasets. MAE and RMSE
account in real units the level of overall agreement between
the observed and modelled datasets. They are non-negative
metrics that have no upper bound and for a perfect model
the result would be zero. MAE is unbiased where RMSE
consists of a weighted measure of the error in which the
largest deviations between the observed and modelled values
contribute the most and subsequently is more sensitive than
MAE. CE, IA, and PI are dimensionless coefficients that con-
trast model performance with accepted norms or standards
(Dawson et al., 2007). The mathematical formulations of
these statistics are:

CE=1−

n∑
i=1

(
SPIi−

∧

SPIi

)2

n∑
i=1

(
SPIi−SPI

)2
(8)

IA=1−

n∑
i=1

(
SPIi−

∧

SPIi

)2

n∑
i=1

(∣∣∣∣ ∧

SPIi −SPI

∣∣∣∣ +

∣∣∣∣ −

SPIi SPI

∣∣∣∣)2
(9)

PI=1−

n∑
i=1

(
SPIi−

∧

SPIi

)2

n∑
i=1

(SPIi−SPIi−1)
2

(10)

where, SPIi and SPIi−1 is the observed SPI value on monthi

andi−1, respectively,
∧

SPIi the simulated SPI value on month

i, andSPI the average value of observed SPI for the simu-
lation period (i=1 to n datapoints). CE and PI range from
− ∝ to one, whereas, IA ranges from 0.0 (poor model) to 1.0
(perfect model). These three statistics record as a ratio the
level of overall agreement between the observed and mod-
elled datasets and represent improvements over the coeffi-
cient of determination (R2) for model evaluation and fore-
casting purposes since they are sensitive to differences in the
observed and modelled means and variances (Dawson et al.,
2007).

The observed and generated precipitation timeseries were
also used in the estimation of the SPI for present and future
periods and assessed against the observed and simulated SPI
timeseries in calculating the respective SPI classes. Because
SPI is as a standardized drought index is designed to express
drought conditions with respect to normal conditions at a
given site. The result is that the range of the SPI is about the
same for every meteorological station or watershed and/or
for the study period represented by the input precipitation
timeseries. Hence, this index cannot be used for comparison
between-stations for the identification of drought magnitude,
nor between different time periods, which, are essential in
evaluating the potential effects of climate change. The pa-
rameters of the gamma distribution,α andβ, are assumed un-
changed in the future and their respective values for the his-
torical period have been used. Several studies that assessing
climate change impacts on drought indices have adopted the
same technique (Loukas et al., 2007b; Loukas et al., 2008;
Dubrovsky et al., 2009).

4 Results and discussion

The methods described above were used, firstly, to statically
downscale the monthly areal precipitation using informa-
tion from the second-generation Canadian Centre for Climate
Modeling and Analysis GCM (CGCMa2) in Lake Karla wa-
tershed. The statistical downscaling method was developed
for historical period (1960–1990), and validated against ob-
served precipitation for the period 1990–2002. Furthermore,
the SPI timeseries were estimated using the observed and the
stochastically generated precipitation and compared for the
development and validation periods. The historical period
from October 1960 to September 1990 was considered as the
base period for further analysis. Secondly, the future cli-
mate areal monthly precipitation timeseries were estimated
from the outputs of CGCMa2 for two socio-economic sce-
narios using the statistical downscaling method. This pro-
cedure was repeated for the two future periods a) October
2020–September 2050, and b) October 2070 to September
2100. Finally, future climate timeseries of SPI for various
timescales were calculated and the effect of climate change
on droughts was assessed from the changes in the number of
negative monthly SPI values by severity classes.
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4.1 Historical period

The use of statistical downscaling targeted in generating
monthly timeseries of precipitation for evaluating climate
change impacts on meteorological droughts. The down-
scaling method (Eq. 4) is a combination of multiple linear
regression (Eq. 3) and stochastic modeling of the residuals
derived from MLR (Eq. 5). The analysis results of the MLR
has shown that the correlation coefficient, r, between the
logarithmically transformed estimated downscaled monthly
areal precipitation and the logarithmically transformed ob-
served monthly basin-wide precipitation was equal to 0.66
for the development base period, 1960–1990, and 0.65 for the
validation period, 1990–2002. The developed relationship
has been found to be statistically significant atα=5% sig-
nificance level using the t-test. These results are comparable
with the results of previous studies on statistical monthly pre-
cipitation downscaling with more sophisticated methodolo-
gies (Dehn and Buma, 1999; Schoof and Pryor, 2001; Buis-
hand et al., 2004; Tatli et al., 2004) and are better than the
results obtained by Loukas et al. (2008) with the same MLR
statistical downscaling method (Eq. 3) for Lake Karla water-
shed (r=0.55 for development period, 1960–1990, and 0.57
for validation period, 1990–1993). The latter is explained by
the use, in this study, of a more dense precipitation network
to estimate areal monthly precipitation for Lake Karla water-
shed (Fig. 1). However, this regression model (Eq. 3) failed
to reproduce the variance of precipitation, although simu-
lated quite well the mean monthly precipitation for histori-
cal (Fig. 2) and validation (Fig. 3) periods. The same results
were also valid in application of Eq. (3) to twelve hydrolog-
ical homogeneous areas in Thessaly, Greece (Loukas et al.,
2008).

Stochastic timeseries theory (Eq. 5) was applied for the
treatment of the residuals to preserve the variance of ob-
served monthly precipitation. The Least Squares (LS)
method have been used to estimate the model parameters
of the PAR(4) model by minimizing the sum of squares of
the residuals with the moment estimates of model parame-
ters taken as the initial values in the search algorithm. The
skewness test on a month-by-month basis was applied for
testing the normality and independence, respectively, of the
ev,t (Salas et al., 1980). The skewness test of normality at
10% significance level was successful for all months expect
for September where the hypothesis of normality was re-
jected. Application of the Portmanteau lack of fit test, based
on the autocorrelation of the entire residual series, for testing
the independence of theev,t was successful at 5% signifi-
cance level. After the successful fitting the PAR(4) model,
100 generated timeseries were produced to evaluate the re-
sults of the process, and the uncertainty introduced for histor-
ical period. Furthermore, 100 residual timeseries were gener-
ated to validate the methodology for the period 1990–2002.
Application of the fitted PAR(4) model to monthly precip-
itation residuals was able to reproduce the historical statis-
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Figure 2. Statistical properties of the statistical downscaling procedure for development 

period 1960-1990 for a) average monthly precipitation and b) standard deviation of monthly 

precipitation (Note: Box-Whisker plots and average refers to stochastic simulation results, 

whereas MLR are the results obtained from multiple linear regression) 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

Fig. 2. Statistical properties of the statistical downscaling procedure
for development period 1960–1990 for(a) average monthly precip-
itation and(b) standard deviation of monthly precipitation (Note:
Box-Whisker plots and average refers to stochastic simulation re-
sults, whereas MLR are the results obtained from multiple linear
regression).

tical properties (mean, standard deviation, skewness coeffi-
cient, month-to-month correlations and autocorrelations) of
the residual precipitation (results are not shown due to paper
length limitations). The generated 100Presidualwere added
to downscaledPMLR to reproduce the monthly precipitation
pattern for Lake Karla watershed (Eq. 4). Figure 2 shows
the statistical properties (mean and standard deviation) of the
generated sample for the development period (1960–1990)
whereas Fig. 3 for the validation period (1990–2002). These
figures show that the method is able to reproduce the statis-
tical properties of historical monthly precipitation for histor-
ical period.

The SPI was then calculated for the development period
for observed and generated monthly precipitation timeseries
at multiple timescales (1, 3, 6, 9, 12, 24 months) and com-
pared at validation period. The authors are aware that in-
consistent conclusions could be obtained if smaller time
lengths of precipitation record are involved in the SPI cal-
culation (Wu et al., 2005). The longer the length of record
used in the SPI calculation, the more reliable the SPI values
will be, especially for long-time-scale SPI values (Guttman,
1994). Furthermore, the reduced effective sample size leads
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Figure 3. Statistical properties of the statistical downscaling procedure for validation period 

1990-2002 for a) average monthly precipitation and b) standard deviation of monthly 

precipitation (Note: Box-Whisker plots and average refers to stochastic simulation results, 

whereas MLR are the results obtained from multiple linear regression) 
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(b) 

Fig. 3. Statistical properties of the statistical downscaling procedure
for validation period 1990–2002 for(a) average monthly precipi-
tation and(b) standard deviation of monthly precipitation (Note:
Box-Whisker plots and average refers to stochastic simulation re-
sults, whereas MLR are the results obtained from multiple linear
regression).

to instability of the parameter estimates. If the parameter
estimates have little confidence, then the resulting SPI val-
ues will also have little confidence. Therefore, operational
use of SPI probably needs the longer length of record, be-
cause the shorter one is likely not to capture the ‘signals’ of
climate variability (Wu et al., 2005). However, operational
use is not the aim of this study but the testing of a statistical
downscaling method for assessing climate change impacts
on droughts. Model parameter convergence has been guar-
anteed comparing the historical SPI timeseries with the cal-
culated SPI using the whole sample (1960–2002). This anal-
ysis had shown slightly differences in the timeseries when
the whole sample is used in the estimation of SPI for all
timescales.

Model parameters of the gamma distribution were esti-
mated based on historical period. The results will be pre-
sented for SPI timescales of 3-, 9-, 24-months since there
are representative of agricultural, hydrological and water re-
sources drought, respectively (Loukas and Vasiliades, 2005).
The α andβ parameters of the gamma distribution (Eq. 6)
were assessed for each study timeseries individually. Model
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Figure 4. Comparison of observed SPI timeseries with simulated SPI timeseries using median 

and average values of the Gamma distribution parameters, α and β, of stochastically generated 

precipitation timeseries in reproducing the observed historical precipitation for timescales: a) 

3-month, b) 9-month and c) 24-month. 

(a) 
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(c) 

Fig. 4. Comparison of observed SPI timeseries with simulated SPI
timeseries using median and average values of the Gamma distribu-
tion parameters,α andβ, of stochastically generated precipitation
timeseries in reproducing the observed historical precipitation for
timescales:(a) 3-month,(b) 9-month and(c) 24-month.

parameter convergence was tested using median and/or av-
erage parameter values of the generated 100 SPI timeseries
in simulating the observed precipitation pattern. The use
of average values for Gamma parameters of the 100 gener-
ated precipitation timeseries failed to reproduce the observed
drought pattern for historical and validation periods (Fig. 4)
due to the skewness of the accumulated precipitation which
increases as timescale increases. However, the use of me-
dian values inα andβ parameters of the gamma distribution
is able to reproduce the historical temporal evolution of SPI
timeseries for all timescales (Fig. 4.). Table 2 presents the
evaluation statistics of the use of median parameters values
in simulating the historical observed precipitation timeseries
for development (1960–1990) and validation periods (1990–
2002). All evaluation statistics are considered satisfactorily
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Table 2. Evaluation statistics between observed SPI timeseries and
simulated SPI timeseries using median values of the Gamma distri-
bution parameters,α andβ, of stochastically generated precipita-
tion timeseries in reproducing the observed historical precipitation
for development (1960–1990) and validation periods (1990–2002).

SPI-timescale MAE RMSE CE IA PI

Development Period Oct 1960–Sep 1990

SPI-3 0.092 0.120 0.986 0.997 0.978
SPI-9 0.113 0.145 0.979 0.995 0.912
SPI-24 0.162 0.195 0.962 0.991 0.550

Validation Period Oct 1990–Sep 2002

SPI-3 0.093 0.123 0.981 0.996 0.971
SPI-9 0.101 0.129 0.964 0.992 0.896
SPI-24 0.161 0.189 0.913 0.980 0.537

for development and validation periods, respectively. How-
ever, the error between observed and median values simu-
lated SPI slightly increases as timescale increases (Table 2).

The temporal evolution of observed 3-month SPI time-
series (Fig. 4a) showed that Lake Karla watershed ex-
perienced frequent moderate and severe droughts (i.e.
SPI≤−1) for all months of the year. As timescale in-
creases, the monthly SPI timeseries were smoothed and
drought duration of the identified drought events could
easily be assessed (Fig. 4b and c). The temporal vari-
ation of observed and generated SPI timeseries was in-
vestigated, firstly, by comparing the number of months
for which the SPI values for all timescales indicated
moderate drought (−1.50<SPI≤−1.00), severe drought
(−2.00<SPI≤−1.50), and extreme drought (SPI≤−2.00).
Table 3 presents the number of dry months at various drought
severity classes for development and validation periods. In
general the statistical downscaling method is capable to sim-
ulate drought patterns since the generated timeseries produce
similar number of total dry months with the observed time-
series for development period (average and median of Ta-
ble 3). However, the allocation of the dry months in the
respective drought classes is quite different. The downscal-
ing method simulates satisfactorily the severe droughts but
produces smaller moderate dry months and larger number
of dry months for extreme drought. For validation period,
the downscaling method gives larger number of dry months
(Table 3). Moderate dry events are simulated with reason-
able accuracy whereas overestimation of severe and extreme
dry months is observed. This is attributed to monthly pre-
cipitation distribution of the validation period and especially
the September precipitation variance. However, the observed
drought pattern is in the range of the stochastic simulation.
Furthermore, the superiority of the median statistical charac-
teristic in depicting dry months is evident.

Table 3. Total numbers of dry months (SPI≤−1) for various
drought severity classes at development and validation periods

SPI Statistical properties of generated
Observed SPI timeseries

SPI class Average Median Min Max

Development Period Oct 1960–Sep 1990

a) Timescale 3-month
moderate 39 29.69 29 22 40
severe 14 15.48 16 7 23
extreme 2 11.46 11 5 17
total 55 56.63 57 47 67
b) Timescale 9-month
moderate 35 32.98 32 15 47
severe 14 15.83 16 5 25
extreme 4 7.58 7 0 17
total 53 56.39 57 39 71
c) Timescale 24-month
moderate 38 32.51 32 7 54
severe 17 15.36 15 1 37
extreme 2 7.35 7 0 23
total 57 55.22 56 33 77

Validation Period Oct 1990–Sep 2002

a) Timescale 3-month
moderate 13 13.45 13 6 25
severe 5 7.02 7 1 17
extreme 2 7.31 7 1 16
total 20 27.78 27.5 14 51
b) Timescale 9-month
moderate 13 15.41 15 4 37
severe 2 8.83 8 0 25
extreme 0 6.93 5.5 0 36
total 15 31.17 31.5 7 63
c) Timescale 24-month
moderate 14 16.42 15 0 52
severe 9 9.45 8 0 36
extreme 2 8.22 4 0 51
total 25 34.09 30.5 1 99

Table 3 also indicates that about 15.4% of the time Lake
Karla watershed experienced drought for the historical pe-
riod for SPI 3-month. Stochastic simulation results for the
same timescale show that Lake Karla experienced droughts,
on average, for 15.8% of time with a range of 13.1% to
18.7%. Similar results are observed and for the other
timescales. On the other hand, for validation period, stochas-
tic simulation results show a small increase in the drought
time and subsequently drought duration. For example, for
3-month timescale, the stochastic results show that 19.10%,
with a range from 9.7% to 35.4%, of time is on drought
conditions. Using the observed precipitation timeseries this
percentage is 13.9%. This difference of 5% in the time
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Table 4. Total numbers of dry months (SPI≤−1) for various
drought severity classes at period 2020–2050 for the two socio-
economic scenarios.

Deterministic Statistical properties of future
Approach SPI timeseries

SPI class Average Median Min Max

SRES A2

a) Timescale 3-month
moderate 43 36.59 37 19 53
severe 22 21.12 21 10 34
extreme 15 18.23 18 12 29
total 80 75.94 76 56 94
b) Timescale 9-month
moderate 48 45.80 46 23 68
severe 28 25.60 25 16 40
extreme 16 18.94 19 4 36
total 92 90.34 90 66 111
c) Timescale 24-month
moderate 38 48.27 47.5 21 82
severe 38 32.66 33 8 53
extreme 25 27.61 28 0 52
total 101 108.54 107 76 144

SRES B2

a) Timescale 3-month
moderate 48 36.38 36 19 58
severe 23 20.32 20 11 35
extreme 9 17.86 18 10 27
total 80 74.56 75 55 90
b) Timescale 9-month
moderate 47 44.60 44 28 64
severe 21 25.70 25 13 41
extreme 12 17.61 18 3 36
total 80 87.91 88 73 106
c) Timescale 24-month
moderate 64 49.16 49.5 21 83
severe 33 30.84 31 10 51
extreme 17 25.36 27 0 47
total 114 105.36 105 70 140

percentage of dry months is maintained in all timescales and
it is always within the range of stochastic simulation results.

4.2 Climate change impacts on droughts

The statistical downscaling method (Eq. 4) was applied to
generate future monthly precipitation timeseries for the fu-
ture periods 2020–2050, and 2070–2100. Using Eq. (3) of
multiple linear regression, future monthly precipitation time-
series were produced and added to the same residual pre-
cipitation timeseries (Eq. 5) of the development period, as-
suming that the timeseries of the residuals will remain un-

Table 5. Total numbers of dry months (SPI≤−1) for various
drought severity classes at period 2070–2100 for the two socio-
economic scenarios.

Deterministic Statistical properties of future
Approach SPI timeseries

SPI class Average Median Min Max

SRES A2

a) Timescale 3-month
moderate 56 45.91 46.5 28 60
severe 45 30.70 30 19 41
extreme 32 37.83 38 25 47
total 133 114.44 115 92 133
b) Timescale 9-month
moderate 63 57.93 56.5 32 87
severe 48 45.05 44 25 69
extreme 54 54.40 55 26 84
total 165 157.38 158 125 186
c) Timescale 24-month
moderate 77 56.74 56.5 27 98
severe 38 56.45 56 24 100
extreme 107 101.93 95.5 52 176
total 222 215.12 219 135 272

SRES B2

a) Timescale 3-month
moderate 58 41.46 41 25 58
severe 39 25.66 25 15 41
extreme 14 26.73 26.5 17 36
total 111 93.85 94 71 113
b) Timescale 9-month
moderate 58 52.07 53 31 78
severe 45 35.33 35 20 52
extreme 24 32.87 33 13 54
total 127 120.27 119 98 151
c) Timescale 24-month
moderate 58 59.56 59 26 109
severe 48 45.24 46 17 72
extreme 53 56.26 56.5 13 113
total 159 161.06 160.5 111 211

changed. For the climate scenarios SRES A2 and SRES B2,
PMLR is obtained by downscaling the GCM outputs while
Presidual, generated by PAR(4) timeseries model (Eq. 5), as-
sumed to remain unchanged in the future. In this way, the
problem of limited correlation between predictor and predic-
tand variables has been tackled. This procedure applied for
the stochastically generated 100 residual timeseries as well
as for the observed rainfall where the residuals remained un-
changed, mentioned as deterministic approach in Tables 4
and 5. In this way a direct comparison is feasible in or-
der to evaluate the uncertainty introduced in the downscaling
method.
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Figure 5. Comparison of SPI-24 month for present (1960-1990) and future climate scenarios: 

a) period 2020-2050, and b) period 2070-2100. 
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Fig. 5. Comparison of SPI-24 month for present (1960–1990) and
future climate scenarios:(a) period 2020–2050, and(b) period
2070–2100.

Application of the downscaling precipitation method for
the two socio-economic scenarios, namely SRES A2 and
SRES B2, indicated that the scenario SRES A2 was the
most severe. The larger reduction for average annual pre-
cipitation was observed for the period 2070–2100 as ex-
pected. Monthly precipitation was, in general, reduced for
all months and time periods except for September when av-
erage monthly precipitation was increased. The average an-
nual precipitation reduces about 3.9% and 3.4% for period
2020–2050, and about 13.5% and 8.5% for period 2070–
2100 for SRES A2 and SRES B2, respectively. Subsequent
decrease is observed for monthly precipitation in all months
except for September. The average September precipitation
increased by 12.7% and 13.2% for SRES A2 and SRES B2,
respectively, in the period 2020–2050. Smaller increase was
observed in the period 2070–2100, 7.5% for SRES A2 and
10.9% for SRES B2.

The future truncated precipitation timeseries and the 100
future generated monthly precipitation timeseries for the
two socio-economic scenarios and the two future periods
were used for the estimation of SPI timeseries at multiple
timescales. The parameters of the gamma distribution,α

andβ, were assumed unchanged in the future and their re-
spective values for the historical period have been used. Fig-
ure 5 shows the comparison of the 24-month SPI, where the
larger differences are identified, between present and future
climatic scenarios and the two climate study periods for the
observed historical precipitation. Similar pattern but with

smaller deviations are identified for shorter timescales. The
same principle is obvious and in the generated SPI time-
series. Figure 5 indicates that the drought severity and du-
ration would be increased in the future periods. Overall, the
number of dry months (SPI≤−1.00) will increase for the two
scenarios. Table 4 shows the number of dry months for the
two scenarios in the period 2020–2050. The dry months are
also categorized with the severity of drought classes. These
results indicated that the number of dry months will be in-
creased for the two study scenarios, with SRES A2 being the
most severe and SRES B2 the most conservative scenario.
According to this analysis, the total number of dry months
will be increased by 45% for the deterministic case (observed
future) for SPI 3-month for both socio-economic scenarios
(Table 4). For the stochastically generated timeseries the in-
crease is from 0% to 71% with a median increase of 38% and
36% for SRES A2 and SRES B2, respectively. The largest in-
crease (about 800%), compared to the base historical period,
is observed for the extreme dry months (SPI≤−2.00) for the
two scenarios. Similar results have been found and for the
other timescales of SPI (Table 4). The increase in the num-
ber of dry months is rising at larger timescales. For example,
in 24-month timescale, the total number of dry months in the
stochastic approach will be increased by about 88% with a
range from 33% to 153% for scenario SRES A2. In the sce-
nario SRES B2 this increase is from 23% to 146% with an
average of 84%. Overall, when comparing the deterministic
and the stochastic approach, the stochastic approach gives
more conservative results than the deterministic (Table 4).

Table 4 also indicates that about 22.4% of the time Lake
Karla watershed will be experienced droughts using the de-
terministic approach for the 3-month timescale and SRES
A2 and SRES B2 scenarios. Stochastic simulation results
for the same timescale show that Lake Karla experienced
droughts 21.2% of time, on average, with a range of 15.6%
to 26.3% for SRES A2 scenario, and 20.9% of time, on av-
erage, with range of 15.4% to 25.1% for SRES B2. Simi-
lar results are observed and for the other timescales. Again
the stochastic approach gives more conservative results than
the deterministic approach. It should be mentioned that
the increase in time percentage of dry months is higher for
larger timescales than the smaller timescales. For example
for 24-month timescale the increase in time percentage of
dry months is on average 14.8% (range: 5.6%–25.8%) and
14.2% (range 3.9%–24.6%) for SRES A2 and SRES B2, re-
spectively, when compared with the historical period 1960–
1990. This result is very important since larger timescales are
used to monitor hydrological and water resources droughts
and smaller timescales to monitor meteorological and agri-
cultural droughts. Hence, water resources seem to be more
vulnerable to climate change.

Table 5 shows the number of dry months for the two sce-
narios in the period 2070–2100, categorized with the sever-
ity of drought classes. According to this analysis, the total
number of dry months, in the deterministic approach, will be
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increased by 142% and 102% for SRES A2 and SRES B2
scenarios, respectively, for SPI 3-month. In the stochastic
approach, the increase is from 67% to 142% with a median
increase of 39% for SRES A2. The respective increase for
SRES B2 scenario ranges from 29% to 106%, with a me-
dian average of 71%. The largest increase of 1800% (min:
1150%, max: 2250%) and 1225% (range from 750% to
1700%), compared to the base historical period, is observed
for the extreme dry months (SPI≤−2.00) for SRES A2 and
SRES B2, respectively. Similar results have been found and
for the other timescales of SPI as in the period 2020–2050.
The increase in the number of dry months is rising for the
period 2070–2100 again at larger SPI timescales. For SPI-24
, the total number of dry months in the stochastic approach
will be increased by 284% with a range from 137% to 377%
for scenario SRES A2. For the scenario SRES B2 this in-
crease is from 95% to 270% with a median increase of 182%
(Table 5). Overall, when comparing the deterministic and
the stochastic approach, the stochastic approach gives more
conservative results than the deterministic (Table 5).

Table 5 also indicates that 37.2% and 31.1% of the time
Lake Karla watershed will be experienced droughts using the
deterministic approach for the SPI-3 and SRES A2 and SRES
B2 scenarios, respectively. Stochastic simulation results for
the same timescale show that Lake Karla watershed will ex-
perience droughts for SRES A2 and SRES B2 scenarios for
32.1% (25.7% to 37.2%) and 26.2% (19.8% to 31.6%) of
time, respectively. The distribution of the time percentage in
the dry months is uniform distributed in the drought classes.
That means that moderate, severe and extreme droughts will
be expected with the same frequency. Similar results are
observed for the other SPI timescales. The stochastic ap-
proach gives more conservative results than the determinis-
tic approach as in the period 2020–2050. It should be men-
tioned that the increase in time percentage of dry months is
higher for larger timescales than the smaller timescales of
SPI. For example, for SPI-24, the increase in time percent-
age of dry months, when compared with the historical period
1960–1990, is on median average 48% (range: 23%–64%)
and 31% (range 16%–46%) for SRES A2 and SRES B2 sce-
narios, respectively. That means that 65% and 48% of the
360 months in period 2070–2100 will be on drought condi-
tions for SRES A2 and SRES B2, respectively.

The above results are similar with the results of a recent
study (Loukas et al., 2007b) in which climate change impacts
on drought impulses in the region of Thessaly had been as-
sessed. That study (Loukas et al., 2007b) had used the delta
method of downscaling (method of truncated means) for
evaluating climate change impacts on droughts. In the sim-
plest “delta” or “perturbation” downscaling method, where
differences between the control and future GCM simulations
are applied to baseline observations by simply adding or scal-
ing the mean climatic change factors, assumes a constant bias
through time and no consideration is made for changes in
the variability of descriptors with climate change (Evans and

Schreider, 2002; Diaz-Nieto and Wilby, 2005). The present
study extends the statistical downscaling method of Loukas
et al. (2008) with a stochastic component to account the
variability of descriptors with climate change, and to eval-
uate the uncertainty introduced on climate change impact on
droughts. Results show that climate change will have a ma-
jor impact on various types of droughts but with high uncer-
tainty.

5 Conclusions

This study illustrated that Lake Karla watershed experi-
enced frequent moderate and severe droughts during the pe-
riod 1960–1990 and future climate change would result in
a significant increase in drought severity. The outputs of
CGCMa2 model have been employed to statistically down-
scale monthly precipitation, to account the uncertainty of
the downscaling method and to estimate future precipitation
timeseries for the periods of 2020–2050 and 2070–2100. The
choice of a GCM is not a key component since all available
CCM underestimate annual precipitation by about 20% for
the Mediterranean basin (IPCC, 2007). The developed sta-
tistical downscaling procedure could be applied in any other
available GCM or in multimodel GCMs, to simulate GCM
uncertainty. In this study the uncertainty of a GCM is in-
cluded in the stochastic simulation of the residuals. A lot of
studies have proved that with a statistical or dynamical down-
scaling method, it could be explained a large proportion of
the monthly observed precipitation for present climatic con-
ditions (i.e. Dehn and Buma, 1999; Schoof and Pryor, 2001;
Buishand et al., 2004; Tatli et al., 2004, Loukas et al., 2008).
Future work is to test the developed methodology with the
results of Regional Climate Models (PRUDENCE, ENSEM-
BLES EU), which, for Central Eastern Greece underestimate
annual precipitation by about 33±19% (Zanis et al., 2008).
The monthly and annual precipitation future projections of
the present study lie within the range of respective calcula-
tions from various GCMs (IPCC, 2007) and are comparable
with the results for the period 2070–2100 and SRES A2 sce-
nario of the nine RCMs used for simulating future annual
precipitation in Central Eastern Greece, (−13.5%, this study;
−15.8%, Zanis et al., 2008).

The historical, generated and downscaled future period
precipitation timeseries were used for the estimation of SPI
for various timescales and for two socio-economic scenarios
SRES A2 and SRES B2. SPI calculation parameters were
based according to the present climate and used to calculate
SPI timeseries for the future climate. The authors believe
that the scientific community must start a debate on whether
the parameters of meteorological drought indices should be
only limited to present climate. If the full length (historical
and future climate precipitation timeseries) are used in the
calculation procedure of SPI then the effects of climate
change on droughts would have smaller effects than the
results presented in the manuscript. However, because of
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the drier future climate, present drought episodes could not
be easily identified, and thus SPI is loosing its operational
character in predicting and quantifying drought episodes.
The results of the present study indicate the accuracy,
reliability and uncertainty of the statistical downscaling
method for present and future climate conditions and the
suitability of the downscaling method for the assessment
of climate change on hydrological, agricultural and water
resources droughts. Results show that climate change
will have a major impact on droughts but the uncertainty
introduced is quite large. Larger timescales of SPI which are
used to monitor hydrological and water resources droughts
are more sensitive to climate change than smaller timescales
which are used to monitor meteorological and agricultural
droughts. These results indicated that climate change would
largely affect drought severity and subsequently the design
of future water resources projects (e.g. reservoirs). However,
the uncertainty in the future drought episodes should always
be accounted for since the range of the drought episodes is
quite large especially for larger timescales. Future drought
episodes due to climate change should be handled with
caution and always with their respective ranges as this
analysis demonstrates.
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