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Abstract. Distributed watershed models constitute a key tion obtained by implementing a simple calibration strategy
component in flood forecasting systems. It is widely rec- using the global optimization algorithm SCE-UA. The most
ognized that models because of their structural differenceprominent advantage of using SOM in the context of model
have varying capabilities of capturing different aspects of theanalysis is that it allows to comparatively evaluating the data
system behaviour equally well. Of course, this also appliesfrom two or more models. Our results highlight the individu-
to the reproduction of peak discharges by a simulation modehlity of the model realizations in terms of the index measures
which is of particular interest regarding the flood forecastingand shed a critical light on the use and implementation of
problem. simple and yet too rigorous calibration strategies.

In our study we use a Self-Organizing Map (SOM) in com-
bination with index measures which are derived from the
flow duration curve in order to examine the conditions un- ]
der which three different distributed watershed models aret Introduction
capable of reproducing flood events present in the calibration ) ) )
data. These indices are specifically conceptualized to extradf’ the course of climate Change th_e_expected increase in the
data on the peak discharge characteristics of model outplRecurrence of mete_orolog|cal conditions that t_rlgger extreme
time series which are obtained from Monte-Carlo simula- flood events has raised the demand for operational flood man-
tions with the distributed watershed models NASIM, LAR- @gement and flood forecasting systems, also in small- to
SIM and WaSIM-ETH. The SOM helps to analyze this data medium—sized catchments (Kundzewicz et al., 2007; Merz
by producing a discretized mapping of their distribution in @d Didzun, 2005). A key component of these systems
the index space onto a two dimensional plane such that theil Very often represented by spatially distributed determin-
pattern and consequently the patterns of model behaviour caltic hydrological modelling systems whose properties and
be conveyed in a comprehensive manner. It is demonstrate@°NCepts have been subject to extensive research during the
how the SOM provides useful information about details of HORIX project. This project aims at developing an oper-
model behaviour and also helps identifying the model param&tional expert system for flood risk management in meso-
eters that are relevant for the reproduction of peak dischargecale watersheds considering prediction uncertainty (Disse et
and thus for flood prediction problems. It is further shown &!-» 2008) and forms part of the national research programme
how the SOM can be used to identify those parameter setfIMAX (RIsk MAnagement of eXtrme flood events) which
from among the Monte-Carlo data that most closely approx-$ ded|gated to develop!ng and implementing instruments to-
imate the peak discharges of a measured time series. The r¥/ards improved flood risk management (Merz et al., 2007).

sults represent the characteristics of the observed time seridd) important aspect of the HORIX project is also to examine
with partially superior accuracy than the reference simula-{0 What extent and under which circumstances different hy-
drological modelling systems support the prediction of (ex-

treme) flood events in river catchments (Disse et al., 2007).
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uncertainties which stem from the fact that every model issights into parameter sensitivities, while helping to constrain
necessarily a conceptual and hence simplified representatiaine model parameter space to the region that best represents
of the natural system (e.g. Kle®e1983; Bossel, 2004; Siva- the measured time series. The major shortcoming of this ap-
palan, 2005). As a consequence of this simplification, mod-proach, however, was that, in the hydrological context, the
els are often not capable of covering the entire behaviouralinderlying criteria of this mapping (“pattern”) did not pro-
domain of the natural system with only one set of modelvide meaningful information on the trade-offs of model be-
parameters (Wagener et al., 2003). It is therefore recoghaviour. In order to improve the extraction of information in
nized that models, because of their structural differencesterms of interpretable time series features (see also Boyle et
have varying capabilities of capturing different aspects of theal., 2000) Herbst et al. (2009) linked the SOM approach to
system behaviour equally well (Fenicia et al., 2007). In addi-the Signature Index concept by Gupta et al. (2008). Using
tion, the behavioural domain which can be reproduced by ahe Signature Indices presented by Yilmaz et al. (2008), the
model is further determined via calibration on historical dis- dissimilarities between measured and simulated time series
charge measurements which, in general, strives to accourttould now be expressed in hydrologically meaningful terms
for the mean behaviour of the natural system although autoreferring e.g. to water balance, mean runoff reaction velocity
matic calibration techniques (Duan et al., 2003) can emphaand the volume associated to long term base flow. Conse-
size, to some degree, different features of the data, dependinguently, the SOM of these Signature Indices provided a con-
on the performance measure which is chosen for the evaluaeise summary of model behaviour which can potentially be
tion (Gupta et al., 1998). This, as a matter of course, excludesised for model diagnostics. The present study follows a simi-
extreme events. Moore and Doherty (2005), however, havdar approach, however, with a more specific focus: The index
shown that the predictive capability of a model can be en-measures we use to compare the simulated and the observed
hanced if weights are associated to those observations withunoff were designed with the sole purpose of extracting dif-
the highest information content with respect to the requiredferent characteristics in the reproduction of peak flow and
prediction. In order to maximize the probability that high dis- do not strictly follow the Signature Index concept by Gupta
charge events can be simulated with a model it consequentlgt al. (2008). A SOM of these indices is used to represent
appears reasonable to adapt the calibration strategy such thtlte spectra of model realizations obtained from Monte-Carlo
model performance in the domain of high discharges is emsimulations with the distributed watershed models NASIM
phasized. (Hydrotec, 2005), LARSIM (Bremicker, 2000) and WaSIM-

In our study we use a Self-Organizing Map (SOM; Koho- ETH (Schulla and Jasper, 2001) and subsequently analyze
nen, 2001) in combination with index measures which arethe individual trade-offs of model behaviour in the peak flow
derived from the flow duration curve in order to examine the domain. It is demonstrated how the SOM of indices provide
conditions under which three different distributed watersheduseful information about specific details of model behaviour
models are capable of reproducing flood events present in thand also helps identifying the model parameters that are rel-
calibration data. evant for the reproduction of peak discharges. It is further

A Self-Organizing Map consists of an unsupervised learn-shown how the SOM can be used to identify those parame-
ing neural network algorithm that performs a non-linear map-ter sets from among the Monte-Carlo data that most closely
ping of the dominant structures present in a high-dimensionabpproximate the peak discharges of a measured time series.
data field onto a lower-dimensional grid. SOM has found al- At the first stage of this work (Sect. 3.1) the proposed tech-
most countless applications in fields such as pattern recognrique is applied to each of the three models individually. At
tion, image analysis (Kohonen, 2001) and exploratory datathe second stage (Sect. 3.2) we directly compare the model
analysis (Kaski, 1997). However, applications related torealizations which were obtained from the three models with
hydrological modelling still seem to be the exception (seerespect to the proposed criteria. The discriminatory power of
Minns and Hall, 2005). It has been used by Herbst etthe SOM is again used to identify those model realizations
al. (2009) and Herbst and Casper (2008) for overall modelthat most closely match the given set of criteria; however
evaluation and model identification purposes. Very recentlythese realizations are selected from three different modelling
a SOM has been used by Reusser et al. (2008) to analyze theystems. In order to assess to what extent constraints on the
temporal dynamics of model behaviour. Kalteh et al. (2008)parameters contribute to enhancing the predictive capabili-
provide an overview of SOM applications in hydrological ties of the three models to discharges that exceed the range
modelling. of the calibration data, the parameter sets obtained from the

In previous work in this field Herbst and Casper (2008) SOM are applied to an extreme historical flood event which
used the SOM to obtain a topologically ordered classificationhas not been part of the calibration data. The paper concludes
and clustering of the temporal patterns present in model outwith a discussion of the potential and the shortcomings of the
puts obtained from Monte-Carlo simulations. This clustering presented approach (Sect. 4).
of entire time series allowed the authors to differentiate the
spectrum of simulated time series with a high degree of dis-
criminatory power and shows that the SOM can provide in-
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2.1 Models and data

In the present study we examine the results of 12 000 Monte-
Carlo simulations of hourly discharge over a period of ap-
proximately two years. The time series were generated us-
ing the distributed watershed models NASIM, LARSIM and
WaSIM-ETH, i.e. for each of the models we carried out 4000
simulations for the same test catchment based on input dat: _

for the period from 1 November 1994 to 28 October 1996. o ‘i
The test watershed (Fig. 1) is the 129%mow-mountain I o0
range catchment “Schwarze Pockau” in Saxony (Germany), = g
a tributary of the Freiberger Mulde (Elbe sub-basin) situated =l : 5 e :

near the border to Czech Republic. The catchment extends

from the ridges of the Erzgebirge (Ore Mountains) at approx-Fig. 1. The “Schwarze Pockau” low-mountain range catchment.
imately 980 m.a.s.l. northward to the runoff gaging station

“Zoblitz" at 440 m.a.s.l. The mean discharge at this station

is 2.31 n¥/s while the highest discharge ever measured wad0 the test watershed. It is assumed that these values rep-
recorded on 13.08.2002 with 1603fs. The return period resent the plausible parameter space for this watershed with
for events of this magnitude is estimated to 200 a. AboutVery high probability. All parameters are related to the soil
40% of the catchment is covered with forest. The dominantwater balance and the vertical redistribution of flow compo-
soil type is a sandy loamy cambisol. The availability of dis- Nents respectively. Parameters related to flood routing have
charge measurements from this catchment, especially durinfot been considered for the Monte-Carlo simulation.

the extreme event of August 2002, render this catchment a In the following, we give a brief outline of the model
good data source to investigate the capabilities of hydrologi-structures that were used for our study. Each of the mod-
cal models of reproducing extreme discharges. els has found widespread application in different fields of

The rainfall data consists of spatially interpolated, hourly hydrological modelling, including operational flood forecast-
precipitation fields with a resolution of 1 Khwhich were  ing, throughout Germany and other countries. LARSIM and
generated based on daily measurements from three gagif§ASIM are distributed and operated commercially.
stations and hourly measurements from one gaging station
within the area (Fig. 1). Additionally, gaging stations from 2.1.1 NASIM
outside the test-catchment (not shown in Fig. 1) were in-
cluded in order to assure proper conditions at the boundNASIM (Hydrotec, 2005) is a conceptual distributed model
aries of the field. First, a two-dimensional external drift krig- that uses a spatial discretization based on sub-catchments.
ing (EDK 2D) is carried out on the daily measurements to For the “Schwarze Pockau” watershed the pre-processing of
get the estimate of the daily areal precipitation. In order tospatial data resulted in 71 sub-catchments with a mean size
account for the temporal characteristics of the precipitationof approximately 1.8 ki These are further subdivided into
field additionally a separate EDK 2D is performed on the spatially homogeneous units with respect to soil and land
hourly precipitation measurements. Subsequently, the dailpise. Each of these elementary spatial units is again verti-
measurements are disaggregated according to the temporedlly divided into soil layers. All vertical processes that re-
distribution of the interpolated hourly precipitation. In both late to soil and land use (soil moisture accounting, including
interpolations the square root of the elevation was used a#terception, evapotranspiration, infiltration etc.) are calcu-
drift parameter. EDK 2D was also applied in order to gener-lated on the elementary unit scale. The resulting three lat-
ate the spatio-temporal fields of wind speed, however, in thiseral flow components are subsequently aggregated on the
case elevation data determined the drift in a linear way. Forsub-cachment scale each passing an individual linear stor-
the interpolation of global radiation and relative air humidity age. Two of them, the interflow and surface flow, are in a
measurements a two-dimensional ordinary kriging was usedprior step transformed by convolution with the time-area re-
Streamflow was measured at the outlet of the catchment dationship to integrate sub catchment characteristics into the
gaging station “Bblitz”. process of flow accumulation.

Because appropriate prior information on parameter distri- An outline of the principle elements of the model structure
butions was missing the Monte-Carlo simulations were runis given in Fig. 2. Note that the NASIM parameters exam-
using uniform random sampling. The corresponding param-ned in this study are unit less factors that modify the actual
eter ranges as well as the fixed parameters were set baséuternal parameter values and act on the sub-catchment scale.
on prior knowledge acquired via manual expert calibrationThe internal values are either based on global default values

B Peat bogs
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Table 1. NASIM model parameters used for the Monte-Carlo simulation and their parameter (factor) ranges.

Name Description Factor Range Internal Range  Unit
RetBasis Storage coefficient factor for baseflow component 0.5-35 a500 [h]
Retinf Storage coefficient factor for interflow component 2.0-6.0 a 50 [h]
RetOf Storage coefficient factor for surface runoff from unsealed surfaces 2.0-6.0 P8-57 [h]
StFFRet  Storage coefficient factor for surface runoff from urban areas 2.0-6.0 a 16 [min]

hL Horizontal hydraulic conductivity factor 2.0-8.0 25 [mm]
maxInf Maximum infiltration rate factor 0.025-1.025 11,23°30 [mm/h]
vL Vertical hydraulic conductivity factor 0.005-0.105  11,23%30 [mm/h]

2 fix value, not determined via pre-processing
b depending on sub-catchment slope
€ depeding on soil type

Erf PPT| f(time,Area) Erf |PPT values modified byRetOf are determined in the course of
Onar - - __ the pre-processing depending on the slope in each sub-basin,
I: W while the internalRetInf RetBas StFFRetare set to global
it | | I_ J | values. The correspondentsrabxinf as well as well asL

simulation with NASIM are given in Table 1.

2.1.2 LARSIM

Omax = Max. soil moisture

FC—H====-== . . . .
@ Retor SFFRat are determined _accordmg to soil type. The ranges of calibra-
l I_ tion factors and internal parameter values of the Monte-Carlo

FC = field capacity @ﬁ
WP = wilting point RetBas LARSIM (Bremicker, 2000) is operated using the same spa-
tially distributed input data. However, in our study, a raster
Fig. 2. Simplified schematic representation of the NASIM model based spatial discretization with a resolution of 1km was
structure; only those elements are reproduced that are considered fhosen. LARSIM considers coupled land use and soil com-
the scope of the present study. Parameters that have been subjectpartments on a regular grid but does not explicitly account
variation in the course of the Monte-Carlo simulation are printed in for the spatial distribution of soil and land use related field
italic Times New Roman. capacities on the sub-catchment scale. Instead, the amount of
water which is allowed to infiltrate per time step is given as
the difference between effective rainfall and overland flow.
or have been determined individually for each sub-basin inThe sum of field capacity and air capacity yield the max-
the course of the spatial data pre-processing. The variatioimum soil moisture content. LARSIM then simulates the
of these factors during the Monte-Carlo simulation, however,soil moisture balance using a variable contributing area func-
was performed with global values for all sub-catchments. Ta-ion, similar to the approach implemented by the Xinanjiang
ble 1 provides an overview of the calibration factors, internalmodel (Zhao, 1977): The proportion of contributing satu-
values and their corresponding ranges. The parameteinf ~ rated areas is calculated as a function of mean soil water
determines the maximum infiltration rate of the soil-moisture content and a conceptual paramdBSF (which is an ex-
storage whereas the drainage is controlledlbyThe factors  ponent that controls the shape of the contributing saturated
RetOf RetInf and RetBasscale the storage coefficients for area function, see Fig. 3). The resulting total amount of satu-
the quick, intermediate and the slow flow component, respecrated flow is subsequently partitioned into a quick and a slow
tively. In the context of simulating flood events paraméter  sub-componentQos and Qof2, depending on the threshold
potentially adopts a crucial role by determining the separaparametetA2. Discharge from lateral drainag®; (“inter-
tion of exess flow into quick “overland flow” and interme- flow”) as well as vertical percolatio®, is represented using
diate “interflow” component. A special feature in NASIM non-linear, empirical relationships such that essentially all
is the representation of fast flow components from impervi-flow components are controlled by the soil moisture storage
ous urban areas whose retention is influenced by parametemd the actual soil moisture content: in Figh3 denotes
StFFRet However, in the Schwarze Pockau catchment onlythe minimum soil moisture content to generate interflow (it
6.6% of the area belongs to this land use type. Thus a domiis considered a constant and set to 0.7 mm). The parame-
nant influence of this parameter is not expected. The internalers Dpin and Dmax determine the minimum and maximum
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amount of lateral drainage from the soil-moisture storage (in
mm/d) which is further governed by the actual soil-moisture
contentWy. Percolation into groundwater per time st@p

is linearly controlled by parametg. All flow components

are subsequently forwarded to linear storage elements be-
fore they reach the river channel. The paramep® and
EQD2 determine the storage coefficients that correspond to
the sub-components of saturated fl@y: and Qqr, respec-
tively. They are linear scaling factors of the time of concen-
tration in a sub-basin which is determined in the course of
the pre-processing, i.e. they are proportional to the retention. 0
For our study, the remaining storage coefficients are consid-
ered constant. The parameter ranges used to carry out the ppT E;

o
Jos)

o
o

e
~

o
(S

fraction of saturated area

Monte-Carlo simulation are given in Table 2. The parameter A Qo2 = L

values were identical for all sub-catchments during each run | —

of the Monte-Carlo simulation. @ EQD2

2.1.3 WaSIM-ETH N L
f(BSF,Wo) Ot

WaSIM-ETH 6.4 version 2 (Schulla and Jasper, 1998) is op-

erated with a raster based spatial discretization identical to

the one used by LARSIM.

Infiltration of water into the soil is calculated for each
grid cell following Peschke (1987). The remaining amount
of water constitutes the surface flow componént Sub-
sequently, soil water transport is simulated using the 1-D
Richards differential equation on homogeneous soil columns
which are determined by the spatial discretization. Saoil
hydraulic parameterization was carried out following the
van Genuchten modelling scheme (Van Genuchten, 1976).
The upper and lower boundary conditions are given by the
amount of infiltrating water and the depth of the groundwa-
ter layer respectively. Lateral drainagk results from the
water balance calculations on the soil columns and is gener-
ated whenever the suction in the soil column falls below a
given threshold,,=3.45m). The drainage density param-

Wm ax

Fig. 3. Simplified schematic representation of the LARSIM model

eterdr directly determines the amount of interflow which structure; only those elements are reproduced that are considered in
the scope of the present study. Parameters that have been subject to

can be generated per time step. It expresses the dra"n"jlg/%natlon in the course of the Monte-Carlo simulation are printed in
density of the (sub-)catchment as well as the anisotropy with4jic Times New Roman.

regard to the vertical and horizontal hydraulic conductivities

(Schulla and Jasper, 1998). For the simulations of our test

catchment, however, no sub-basins were defined. A simple As the focus of the present model evaluation lies on the
ground water model with a single linear storage approach igeproduction of high discharges, the generation and concen-
used to generate the slow discharge compoggntThe sub- tration of flow through the model is considered to be the most
sequent concentration of the flow components is simulatedmportant process here. Accordingly, the choice of model pa-
using single linear storages and time-area functions on theameters for the Monte-Carlo simulation includes all parts of
catchment scale. The parametkdsandki denote the stor- the particular model structures that seem to be most mean-
age coefficients of the surface runoff and the lateral flow, re-ingful in this context. The resulting differences in the de-
spectively. The resulting total discharge is calculated as thegrees of freedom between the models are considered here as
superposition of the flow components. A rough outline of the an inevitable consequence of the particular model structure.
model is presented in Fig. 4. The parameter ranges for thén addition, it has to be taken into account that the number of
Monte-Carlo simulation with WaSIM-ETH are reproduced available parameters can be strongly put into perspective by
in Table 3. Again, the parameter values remained identicalndividual parameter sensitivities and by parameter interac-
for all sub-catchments during each simulation run. tion. In other words, model complexity is not a prerequisite
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Table 2. LARSIM model parameters used for the Monte-Carlo simulation and their parameter ranges.

Name  Description Unit Range

EQD  Calibration factor for storage coefficient of fast rungff; [ 100-5000

EQD2 Calibration factor for storage coefficient of fast rungfgso [ 10-1000

BSF Calibration factor of the “soil moisture” — saturated area function, variable contributing area approach  [-] 0.05-1.0

B Drainage coefficient for deep storage [1/d] 0.03-0.05

Dmin  Minimum lateral drainage from soil storage [mm/h]  0-5.0

Dmax Maximum lateral drainage from soil storage [mm/h]  0-5.0

A2 Repartitioning factor for saturation overland flow and fast subsurface runoff [mm/h] 0.8-3.0
Table 3. WaSIM-ETH model parameters used for the Monte-Carlo PPT ET

simulation and their parameter ranges.

Name Description Unit Range > I—

kd Storage coefficient for surface runoff [h] 0.1-40 Qd
ki Storage coefficient for lateral flow [h] 0.1-100

dr Drainage density/anisotropy parameter [1/m] 0.5-100 kd

flkw).dr..) —> | q
for good model performance (see e.g. Gan and Biftu, 2003). =
Thus, we see no strong reason to assume that a model woulc / Kl
have less capabilities of reproducing certain runoff character-
istics due to its degrees of freedom, even more as the presen
study focuses on a very specific aspect of model behaviour.

saturated zone —1> I_ Qs

2.2 Derivation of index measures from the flow duration
curve

In order to capture information on different characteristics of
model behaviour within a specific domain of flow response
we follow an approach which is adapted from the work of
Gupta et al. (2008) and Yilmaz et al. (2008): Five index mea-
sures are derived based on the evaluation of simulated and
observed flow duration curve properties. In contrast to com-Fig. 4. Simplified schematic representation of the WaSIM-ETH
monly used statistical objective functions (e.g. see Legategqodel sFructure — only those elements are reproduced that are con-
and McCabe Jr., 1999) the “Signature Indices” presentec?'de,red |nthe.scl:opei of the present study. Parameters.that h.ave been
by Yilmaz et al. (2008) constitute hydrologically meaningful su_bject to variation in the course of the Monte-Carlo simulation are
measures of system response. In this respect, the indices V\PémtEd in italic Times New Roman.

use differ from the concept proposed by Gupta et al. (2008)

insofar as their diagnostic relation to different elements of thejsame approach (Fig. 5). For each of these subsections indi-
model structure as well as to the natural system is less obvi

X Yidual index measures are calculated according to Egs. (1)
ous. In order to analyze the reproduction of flood events in, 4 (2). According to Yilmaz et al. (2008), the percent dif-

detail the indices were conceptualized to focus solely on thggrance in slope of a flow duration curve segment relative to
characteristics of discharge events with an exceedance probg;e opservations is given as

bility below a given threshold which is derived from the flow

duration curve (Fig. 5). In our study this specific threshold %Bias FDC =

is determined by visual examination of the slope of the ob- (log(Qsimy)— log(Qsim,)) — (log(Qobs)— log(Qobs;))
served flow duration curve which, in our example, shows a (log(Qobs)— log(Qobs,))

marked increase at 2%. The remaining section of the flow

duration curve is further subdivided at 0.42%, following the

100 (1)
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Fig. 6. The iterative training process of SOM (Herbst and Casper,
2008).

Fig. 5. Derivation of index measures from the upper 2% section of o
the flow duration curve (FDC). 2.3 Self-organizing maps

) ) i SOM is an unsupervised learning neural network algorithm
wherei andj denote the thresholds that define a segment ok, 5+ js applied to high-dimensional data sets in order to cate-

the flow duration curve; Qsim being the simulated dischargeqrize the range of data patterns that occur in it and to extract
and Qobs being the corresponding observations. Given thg ge¢ of characteristics that describe its multidimensional dis-
observed flow duration curve in Fig. 5 we define the slopeiiption. A SOM essentially performs a non-linear mapping

of the lower iec'.cion of the flow duration curve segméii- o e ctorial input data items onto a discrete, low-dimensional
asFDCow as%BiasFDC with i=2 and;j=0.42. Accordingly,  orig  Most commonly a two-dimensional, rectangular grid

the slope of the upper section of the flow duration curve segyith hexagonal topology is used. In contrast to common
ment %BiasFDGign is defined a®tBiasFDCwith i=0.42  \jector Quantization methods or k-Means clustering, SOM

andj:O_. Further, the percen_tage of bias in the flow d_urationiS topology preserving, i.e. nearby locations on this mapping
curve high volume segment is calculated based on Yilmaz el ¢ attribyted to similar data patterns. Likewise, the distance

al. (2008) as between two nodes on the mapping is proportional to the dis-
3" (Qsimy, — Qobs,) similarity of the data items they represent. Each input data
Y%BiasFHV — .100 @) item x of the training data seX that has to be examined
> (Qobs,) is considered as a vecter=[x1, xo, ..., x,]T eR”, with n
)

being the dimension of the input data space. Ketepre-
whereh denotes the index of all discharge values with ex- Sent a set of index vectors calculated according to Sect. 2.2,
ceedance probabilities higher thaand lower tharj. Again,  thusn=5. A SOM consists of a fixed number bfneurons
we define the bias for the lower flow duration curve segmenithat are arranged on a regular grid whose dimensions can
volume %BiasFHVow as%BiasFHVwith i=2 and j=0.42.  be determined by means of heuristic algorithms, if no other
Correspondingly, we defingoBiasFHVhigh as %BiasFHV preferences are made. Th_roughout this paper the terms ‘_‘neu-
with i=0.42 and;j=0. In addition, the percentage of error in ron”, “node” and “map unit” are used synonymously. Fig-
maximum peak dischargéDiffMaxPeakis determined after ~Ure 6 provides a schematic representation of the process of
Eq. (3). self-organization which, in the following, is explained based

on the paper by Herbst et al. (2009).:

gsimy; — Qobsy 100 (3) Each neurori is represented through a reference vector

Qobsy
with the index number of the highest element of the flow du—m, = [it, i )7 e (4)
ration curve beingd. = WML Bz Bind &

As none of the model parameters that are subject to varia-
tion in the Monte-Carlo simulation is related to flood routing Whose dimension equals the number of elements in an in-
or exerts a significant influence on the timing of the dischargePut data vectox €X. Typically, the reference vectors;
peaks we refrained from examining potentia| Ume |ags be_are |n|t|al|zed to Sma” I’andom VaIUeS. HOWeVer, in Ol‘der to
tween the simulated data and the observations. However, igssure faster and more reliable convergence of the map, we
a more general model evaluation problem, this might be dhitialize them; along the two greatest principal component
recommendable procedure. eigenvectors of the data (Kohonen, 2001). In the classic se-
guential training the SOM is trained iteratively: In the first

%DiffMaxPeak =
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step an input data iterme X is randomly selected and the wherec is the index number of the BMU of data set and
Euclidean distance N is the number of data samples. This variant of the training

does not make use of the learning rate faot(y.

In the course of the training the reference vectors are
(5) “tuned” to the different patterns contained in the input data.
The final reference vectors form a discrete approximation of
betweenx and each reference vectoy; is computed (the- the input d.ata di§tribution. Thus, patterns that occur more
oretically any appropriate metric can be used as a measurféequently in the input space are mapped onto a larger area.
of similarity). The “winning neuron” (also called the best- Note that, as the number of neurons — and consequently the
matching unit BMU ofx) is the map elementwhose refer- number of reference vectors —is much smaller than the num-
ence vectom, has the smallest distande to x with ber of data items usgd for the training, SOM can also be seen
as a data compression method.

d. = min{llx —m;|}. (6) In our study we also make use of the fact that, once its

! training is finished, the SOM can be applied to project an
In the next step the reference vectey and all of its neigh-  input data vectoy onto the map which has not been part of

bouring neurons are updated according to the training data set. This means that according to BQg. (
the neurorr(y) with reference vectam,,) is determined for

m; (t +1) =m; (t) + o ) hei (1) [x () —m; ()] (7)  which

wherem; (1) is the current weight vector at iteration step (yy — megy) | = min{lly — m;|l}. (10)

Thus, the rate of change for each node of the map is scale i

by three factors: a) the difference({)—m; (1)) between the  Neuronc(y) then represents the domain of input data patterns
input data sek and the prototype vectan; b) the size of a  from x that is most similar toy. It follows that the set of
neighbourhood function.; which decreases monotonically gata itemsX X which is attributed ta:(y) represents those
to zero withs and with distance from the winning neuron  trajning data items that are most similantwith respect to

and c) a learning rate factar(t) which gradually lowers  the criterion given by Egs. (5) and@. The neuron of) is
the height of the neighbourhood function as the iteration adgjled the “best-matching unit” (BMU) of.

vances. Fof; it is common to use the Gaussian function

T
hei (1) = exp <—%) 8)

2.4 Data preparation and training of the SOM

For each of the 4000 time series obtained by running a
Monte-Carlo simulation (Sect. 2.1) a set of five index mea-
whereo (t) defines the width of the topological neighbour- syres was calculated according to Egs. (1-3) (Sect. 2.2). The
hood, and bothr (t) and «(t) decrease monotonically with procedure was carried out for each of the three models.
t. Note that an exact choice of the functiaft) is not re- Prior to the SOM training, each index was normalized to
quired (Kohonen, 2001). Repeated cycling through the train- value having zero mean and variance of one using a linear
ing steps causes different nodes and regions of the map to heansformation such that high index values do not exert a dis-
“tuned” to specific domains of the input space. Importantly, proportionate influence on the training. The side lengths of
the enforced local interaction between the SOM nodes rethe map as well as the initial reference vectors were deter-
sults in the map gradually developing an ordered and smoothnined by means of a heuristic algorithm involving the calcu-
representation of the input data space (Kaski, 1997). lation of the two biggest eigenvalues of the covariance matrix
In this work, however, we used Kohonen's “batch- of the data (Vesanto et al., 2000). For more details on the data
training” algorithm (Vesanto, 2000) to speed up the training preparation and the training please see Herbst et al. (2009).
process. Here, in each training step the data set is partitioned At the first stage of our study the three data sets were
according to the Voronoi regions of tim;. Instead of se-  treated individually. Subsequently, the data preparation and
quentially running through all data items in each training cy- the training were repeated with the combined data set of all
cle the whole data sef is presented to the map as a whole three models.

at each training cycle. The reference vectors are updated ac- For the SOM training as well as for a part of the eval-

cording to the weighted average of the data samples uation procedures the “SOM Toolbox for MATLAB™”
N (Helsinki University of Technologyhttp://www.cis.hut.fi/
> hei(D)xg projects/somtoolboXAvas used.
=1
mit+ 1D ="y © 2.5 Evaluation of SOM results

Z hci (t)
=1 Generally, the number of neurons on the maps is much
smaller than the number of data sets used for the training. As
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a consequence of this, every neuron represents a set of sinmsensitivity, according to the components which were used
ulation runs and their respective index value pattern. In theto train the map.
following, we evaluated the index properties of the individual ~ For each map grid (i.e. for each model) the BMU of the
nodes by de-normalizing the reference vectors of the mapsmeasured discharge time series is determined according to
Each of the nodes/reference vectors represent the mean ind&g. (10). Following Sect. 2.2 (Egs. 1-3) the time series of
value properties of a small sub-set of model data used for th@bserved discharge@obs maps ag=[0 0 0 0 Of into the
training. In the following, these reference vector index valuesindex space. We then calculate the quantization error of the
are visualized by means of a small, coloured bar plot for eactBMU
node. In a bar plot visualization the position of the BMU can
easily be identified by the map unit with the “flattest” bars. _ 1
Note that the height of the individual bars is scaled relativedBMU =
to the range of the corresponding index. Also colour coding
of the index values is used, whereas the same map grid ify order to obtain a rough indicator of how close the data
reproduced five times with a colouring corresponding to thejtemss, € X with » = 1...N which are attributed to the BMU
distribution of the individual index values (so-called compo- ¢(y) of the observation (Eq. 10) approximate the observation
nent planes). (represented by=[0 0 0 0 OF ). In Eq. 11N denotes the

As a result of the self-organizing process that takes placewumber of data items i&X. Note, that it is possible to iden-
in the course of the training, the data items which are groupedify a BMU for any data set that has the same dimensionality
to such a sub-set have similar properties with regard to theias the input data, irrespective of its distance from the obser-
five index values. Due to the topological properties of the vations.
mapping the distance between two nodes on the map is The data items on the BMy) of a map also correspond
roughly a function of the dissimilarities between the data setso one or more model parameter sets which are subsequently
attributed to these nodes. Please note that, to some extenjsed to simulate an extreme flood event from August 2002
the SOM embodies statistical properties, e.g. the number ofhat has not been part of the Monte-Carlo data set. As a
reference vectors on a map that display a certain type of qualreference, we visually compare these simulations to the re-
ity is proportional to the number of data sets with that prop- sults we obtained by using the shuffled complex evolution
erty. As a simple measure of the quality of the mapping theoptimization algorithm (SCE-UA, Duan et al., 1992) to find
“quantization error” (Kohonen, 2001 is calculated using a parameter set that minimizes the root of the mean squared
Eq. (10). error (RMSE) for the same period of time for which a simple,

model specific, weighting scheme after Casper et al. (2009)

N
Yo IE —me| (12)
r=1

n

I is used. This scheme basically applies a higher weight to all
d= N Z ||xp — Me(p) || (11) time steps with a discharge higher than three times the mean
p=1 discharge 0>3MQ).

It represents the average distance of each data vegtof

the N input data items contained in the training dafado 3 Results

its associated BMU reference vectoy,,), with p being the

index of the data items (not to be confused with the index3 1 SOMs generated from the individual model data sets
values of Sect. 2.2!).

We further take advantage of the possibility to label the Although from each of the models the same amount of data
input data items that are attributed to each neuron via thétems was processed, the maps for NASIM, LARSIM and
training. That way, each input data item is linked to a modelWaSIM-ETH slightly differ in number of neurons and side
parameter set and its original simulated time series. Thuslengths which is caused by the initialization of the maps ac-
the neurons of the map can be evaluated with respect to theording to Sect. 2.4. The overall quantization ed¢Eq. 11)
model parameters, e.g. by calculating the mean values ofor the three mappings ranges between 0.236 (NASIM) and
each parameter for the individual map units. The distribu-0.278 (WaSIM-ETH). Thus, it can be assumed that the SOM
tion of parameter values over the map is again visualized byprovides a good fit of the model data. The distributions of ref-
means of colour coding. In doing so, the same map grid is reerence vector properties over the map support that the model
produced for each parameter, however, with different colour-data has been arranged by similarity over the maps. No void,
ing according to the distribution of parameter values. In thei.e. interpolative, units are present. In the following, an ac-
following, this type of visualization is referred to as parame- count of the results for the individual models is given. Note
ter plane. Corresponding patterns on a component plane arthat, as to the simulated time series illustrations, only a repre-
parameter plane indicate that an index value is governed to aentative period of the entire simulated time series is repro-
large extent by a particular parameter. Moreover, an irregu-duced in the following in order to assure better readability
lar pattern on the parameter plane is indicative of parameteof the figures. Representations of the flow duration curve
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Fig. 8. NASIM: (a) Parameter plane, i.e. mean values of each model
Fig. 7. NASIM: Distribution of index properties on the map dis- parameter for the simulations projected onto the individual map el-
played as bar plots and the position of the best-matching unittments(b) Distribution of reference vector (i.e. indices) properties
(BMU). Note that the bars have individual relative scales. on the map. The position of the BMU is marked.

(FDC), however, always refer to the full length of simulated hL in combination with the parameter for the retention of
discharge time series. “overland flow”, RetOF. Figure 8a also reflects that param-
eterRetOfremains insensitive with respect to the indices as
long ashL has high values. According to Sect. 2.1, this be-
haviour is evident because the generation of “overland flow”
The bar plot (Fig. 7) reveals that a significant proportion of is overridden byhL. Moreover,RetInf which governs the re-
simulation runs which were attributed to the upper half of thetention of water allocated to interflow, with high probability
map underestimated all five properties that are represented bgxerts an influence on the increasé@tBiasFHV,,,,, which
the indices. The increase #6BiasFDGgn from the left to  consequently provides a rather simple explanation for the po-
the right hand side implies a general increase in peak runofsition of the BMU on the map. Further, it can be seen from
reaction in this direction of the map. The remaining index Fig. 8a that parametenaxinfis — at best — only partially sen-
components generally tend to smaller negative or positivesitive. vL, RetBasisandStFFRefare insensitive here because
values towards the lower part and the right hand side of thahey are linked to the generation of “base flow” and runoff
map. From the values @bDiffMaxPeakin Fig. 7 it imme-  from urban or impervious areas which for the “Schwarze
diately becomes obvious that only very few simulations ex-Pockau” catchment only comprise 6.6% of the total area.
ceeded the measured peak discharge. Correspondences in the distribution patterns in Fig. 8b re-
A comparison of the parameter plane Fig. 8a with the com-veal significant correlations between the indices with respect
ponent plane Fig. 8b indicates that the increase in peak runoffo the behaviour of NASIM. However, each component plane
reaction%BiasFDGjgh is largely influenced by parameter is scaled separately. Therefore, the individual optima of the

3.1.1 NASIM
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Fig. 10. NASIM: Results for the validation event August 2002
40¢ b) (BMU realizations and SCE-UA, RMSE).
envelope
- Qobserved
351 —SOM-BMU NASIM
3ot tion of only a few events, the runoff peaks could be repro-
duced well. As the FDCs grow almost congruent towards the

-5-25’ ordinate it does not surprise that a part of the simulation runs
E 20 attributed to the BMU performs equally well during the vali-
o dation event compared to the SCE-UA reference simulation,

151 yet none of the model realizations is able to reach the peak

10k . flow (Fig. 10).

5 3.1.2 LARSIM

148 Figure 11 shows that LARSIM, contrary to NASIM, tends

to overestimate almost the entire set of indices whereas for

Fig. 9. NASIM: (a) Flow duration curves (upper 2% section): Sim- at least the lower third Of_the, map this tendency is very prof
ulations corresponding to the BMU compared to the observed disounced. Lower or negative index values as well as sporadic
charge and the results of an optimization approach using SCE-uAUnderestimation of runoff reactio¥BiasFDGgn) and —

(b) Time series corresponding to the BMU compared to the ob-volume ¢6BiasFHVow), are largely recorded in the upper
served discharge. regions. The only index, however, which is constantly over-

estimated throughout the data set is the runoff reaction during

all time steps corresponding to the lower section of the FDC,
indices still do not coincide on the same map location. The%BiasFDGoyw. The maximum peak discharge, expressed by
scales of the component planes additionally give insight into%DiffMaxPeak is also overestimated throughout large por-
the true lengths of the bar plots in Fig. 7. tions of the model data.

The quantization error for the BMU of the observed dis- Towards the right hand corners a marked increase
charge time series, calculated according to Eq. (11), yieldsn %BiasFDGign is superimposed to the comparatively
dsmu=0.85, which suggests that the observations are locatechonotonous pattern of index combinations. From Fig. 12a
somewhat off the model data obtained from the Monte-Carloit can be seen that paramete®D2 decreases in the same
Simulation. Nevertheless, from the simulation results indirection, which most likely reveals a main control for the
Fig. 9a it can be seen that the parameter sets that were reunoff reaction in the fastest portion of flow. Likewise, the
trieved from the BMU associated to the observed runoff re-error in maximum peak flow, which is expressed%piff-
produce the characteristics of the measured FDC with veryPeakMax,grows strongly positive towards the lower right
high accuracy. However, this requirement is also satisfiechand corner. The volume allocated to flow corresponding to
surprisingly well by the reference simulation which was ob- the lower branch of the FDCG4BiasFHMqw), and partially
tained using the SCE-UA algorithm in combination with a also%BiasFHW,gh, increases towards the lower left corner
simple weighting scheme. Notwithstanding, the time seriesof the map (Fig. 12b) which, according to Fig. 12a, indicates
of simulated discharge (Fig. 9b) shows that, with the excep-that these features are likely to be governed by parameter

d/mm/yy
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Fig. 12. LARSIM: (a) Parameter plane, i.e. mean values of each
model parameter for the simulations projected onto the individual

I %BiasFDCiow [ %0BiasFLVhigh map elements.(b) Distribution of reference vector (i.e. indices)
[1 %BiasFDChg» [ %DiffMaxPeak properties on the map. The position of the BMU is marked (top left
[ %BiasFHViow corner of the map.

Fig. 11. LARSIM: Distribution of index properties on the map

displayed as bar plots and the position of the best-matching unicorresponding scales of the component planes in Fig. 12b,

(BMU). Note that the bars have individual relative scales. the sensitivity of%oDiffMaxPeak and %BiasFDGigh is ex-
tremely high. But also the volumé&gBiasFH\Myy and%Bi-
asFHWigh seem to react with sharp gradients on changes of

EQD. As to the remaining parameters, no further correlationsEQD andEQD2 Following Sect. 2.1 it does not surprise

with indices are clearly apparent, although at least parametethat the “base flow” storage coefficiefitas well asDmin or

A2 shows a marked sensitivity with respect to data sets alloevenDmax do not show any apparent sensitivity according to

cated to the right hand side of the mapping which points toFig. 12a. However, the lack of sensitivity with respect to pa-

some degree to an interaction betw&&pD and/orEQD2as  rameteiBSFE which controls the generation of saturated flow

well asA2. via a variable contributing area approach, is unexpected and
The influence oEQD2 on %BiasFDGiigh can easily be does not lend itself to a straightforward explanation.

explained following Sect. 2.1: ABEQD?2 is a scaling factor The impression that LARSIM does not seem to be capa-

for the retention of the “fast” saturated flow componéng., ble of simultaneously meeting the constraints imposed by the

it largely controls the volume per time step which is allocatedfive indices is already conveyed by Fig. 11. The compara-
to peak discharges. Its sensitivity, however, depends on thévely high quantization error for the BMU of the observed
threshold parametet2 which at the same time governs the discharge time seriedggmy=1.1 and the fact that this BMU
function of storage coefficie EQD. As documented by the is located on an extremely marginal position in the upper left
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Fig. 14. LARSIM: Results for the validation event August 2002
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30 the observations (Fig. 13a) point at that the ranges allowed to
these parameters in the course of the Monte-Carlo simulation
- are disproportionate. Consequently, the BMU parameter sets
E 20k comprise high values for botBQD andEQD?2, apparently in
o order to compensate for an excess in fast runoff components.

This excess could have been triggered by of the settings for
parameterA2 and/or overly high values for parame®8F
The model realizations selected by using the BMU criterion
display some kind of “plateau behaviour” which is illustrated

i y by the decrease in slope towards the upper end of the FDC
1481/95 23/02/95 04/04/95 14/35d//95 23//06/95 02/08/95 11/09/95 21/10/95 (F|g 13a) and indicates deficits in discharge volume genera-
ey tion for runoff peaks. These deficits also manifest themselves

Fig. 13. LARSIM: (a) Flow duration curves (upper 2% section): V}/__Ith rleggrd t%the time serlefs rer;sults for the tralnln?Eerlod
Simulations corresponding to the BMU compared to the observeo( 9. ) and, even more, for the extreme event of August

discharge and the results of an optimization approach using SCE2002 (Fig. 14). Here, the model realizations that were at-
UA. (b) Time series corresponding to the BMU compared to the tributed to the BMU perform even worse than the reference

observed discharge. simulation which was obtained using the SCE-UA algorithm
and hardly reach about 50%s peak flow compared to ap-
proximately 160 /s of observed peak discharge.

u J b A
—

hand corner of the map further corroborates this finding. The

resulting model behaviour is illustrated in Fig. 13a and b.3.1.3 WaSIM-ETH

The envelope of the simulations in Fig. 13a shows that, in ac-

cordance with Fig. 11, a significant proportion of simulation Regarding the WaSIM-ETH model realizations, the indices
runs (i.e. parameter combinations) is potentially capable ofused to examine the model behaviour show a marked corre-
reaching sufficiently high and even excessive peak dischargkation and a general gradient extending from the upper left
values. However, the constraints linked to the lower (0.42—to the lower right corner (Fig. 15). Nevertheless, the index
2%) part of the FDC counteract this behaviour with very high ranges covered by the Monte-Carlo simulation with WaSIM-
probability and force the position of the BMU (Fig. 11) to- ETH are quite individual and comprise negative as well as
wards the upper left hand side of the map. This finding ispositive values. Thus, the upper third of the map is generally
further supported by the results obtained by using the SCEe€haracterized by underestimation of the indices which grad-
UA optimization algorithm (Duan et al., 1992) to minimize ually fades to high index values towards the lower right hand
the RMSE of the simulated time series. In addition, the shargside of the map such that the lowest index values (i.e. the
gradients and extreme overestimatiorveDiffMaxPeakand model realizations that best “fit” the observations), and thus
%BiasFDGyjgh in reaction to changes &QD andEQD2as the BMU, can be found only a few nodes below the centre of
well as the position of the simulation envelope in relation to the map.
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Fig. 16. WaSIM: (a) Parameter plane, i.e. mean values of each
model parameter for the simulations projected onto the individual
L Ben. men e adie el Wi Dol o OO0 il map elements.(b) Distribution of reference vector (i.e. indices)
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[ 1 %BiasFDCrgn I %DiffMaxPeak measures. However, to some extent, the parameter planes
I %BiasFHViow themselves (Fig. 16a) display correlated patterns, e.g. the

map units with high values fdd suspiciously coincide with
the map units for which parameted acquires predominantly
Fig. 15. WaSIM: Distribution of index properties on the map |qw values. As to the general behaviour of the WaSIM-ETH
displayed as bar plots and the_po_si_tion of th‘? best-matching unify, e structure with respect to the indices, it can be stated
(BMU). Note that the bars have individual relative scales. that low values for parametéd anddr in combination with
intermediateki values redound to an increase of peak flow.
From these findings we infer that all three model param-
Contrary to the other models we examined, from a visualeters are equally important for matching the five index mea-
comparison of Fig. 16a and the component planes (Fig. 16b¥ures and that parts of the model structure exhibit a strongly
it is not possible to isolate any straightforward relationship interacting, maybe even equifinal behaviour. That way, the
between individual model parameters and indices, althougleffect of one parameter can be compensated to some extent
each of the parameters we included in the Monte-Carlo simby a combination of the other parameters. This would also
ulation shows a marked sensitivity with respect to the indexprovide some explanation for the fact that the BMU is located
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Fig. 18. WaSIM: Results for the validation event August 2002
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- Qobserved
—SOM-BMU WaSIM

30f tics, especially regarding the highest runoff values (Fig. 17a)
whereas the FDC of the SCE-UA reference simulation adopts
a steeper trajectory and hits the ordinate somewhat above the
FDC of the observations. The model time series (Fig. 17b)
finally exemplify that the BMU model realizations were ob-
tained using parameter sets from disjoint regions of the pa-
rameter space. The peaks, however, are reproduced very
well, with the exception of only a few minor runoff events. In
contrast, the peak of the validation event (Fig. 18) is strongly
; underestimated by all model realizations, whereas only one
half of the BMU model realizations exceed the peak flow of
the SCE-UA reference simulation.

14/01/95 23/02/95 04/04/95 14/05/95 23/06/95 02/08/95 11/09/95 21/10/95
/mm/yy

Fig. 17. WaSIM: (a) Flow duration curves (upper 2% section): o
Simulations corresponding to the BMU compared to the observed3.2 Results generated from SOM of the joint model data

discharge and the results of an optimization approach using SCE- set
UA. (b) Time series corresponding to the BMU compared to the
observed discharge. According to the initialization procedure (Sect. 2.4) the num-

ber of neurons on a map does not increase linearly with the
number of data items used for the training. Therefore, the
in a map region where all three parameters are subject tproportion of data items to the number of map units results
considerable alterations. It finally results that the parametesomewhat higher for the SOM trained on the joint data set
sets associated to the BMU can be divided into two groupghan for the SOMs we discussed in the previous section. The
with strongly contrasting values: The first group has low val- overall quantization erra#=0.38 (Eq. 10) of this SOM re-
ues with respect tkd and simultaneously high values fdr sult appears to be sufficiently low so as to characterize the
while the second group displays higt values in combina- mapping as a very good approximation of the model data.
tion with low values fordr. The respective index measures, |n Fig. 19a the neurons of the map are reproduced as pie
however, turned out to be quite similar. charts in order to illustrate the distribution of data items from
With dgmy=0.76 the quantization error of the BMU model the different models on the SOM. These represent the per-
realizations that correspond to the time series of measuredentage of data from each model that has been attributed to
discharges is the smallest among the three models and indthe neurons via the training. In Fig. 19b the same pie charts
cates that these parameter sets match the observed behavi@are scaled using the number of data items on each map unit
of the system relatively well. This is further supported by the in order to simultaneously visualize the distribution of data
rather central position of the BMU on the map. The model quality and quantity on the map. The void regions on the map
realizations which are retrieved from the BMU thus result indicate interpolative units where the data items are clearly
in a rather accurate representation of the FDC characterisdisjoint and characterized by marked differences with regard
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of data items attributed to the corresponding neuron.

to their indices. With the exception of some very isolated
occurrences there are no nodes on the map that are simul-
taneously populated with model realizations from all three
models. The same holds true for simultaneous occurrences
of NASIM and LARSIM realizations on a node. Close to
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the center of the map the nodes are predominantly popu- B e R B Lo B B Lot Bt Bt o Bl Bl WL

lated with mixtures of model realizations from LARSIM and
WaSIM-ETH as well as WaSIM-ETH and NASIM. Follow-
ing the theory of Self-Organizing Maps (Sects. 2.3 and 2.5),
it can be assumed that these model realizations display equiv-
alent characteristics with respect to the indices we used to de-
scribe them. The distances between the nodes further allow
inferring that the differences between NASIM and LARSIM )
in terms of index characteristics are stronger than the dif- I %BfaSFDC'OW
ferences between realizations of NASIM and WaSIM-ETH | L1 %BiasFDCign
or LARSIM and WaSIM-ETH, which is most importantly | EE20 %BiasFHViow
highlighted by the fact that hardly any node is populated at

the same time with realizations from NASIM and LARSIM. Fig. 20. SOM of the combined data from all models in bar plot
The neurons close to the bottom of the map, on which si-illustration.

multaneous occurrences of LARSIM and WaSIM-ETH can

be found, point at sporadic extremes of WaSIM-ETH modelwards its margins it can not always be covered entirely by the
behaviour. Figure 19b further exemplifies that similarities SOM reference vectors. Consequently, the remaining data
between model realizations from the three models only ocsets are attributed to the nearest, marginal nodes. Otherwise,
cur with rather low probability. Moreover, it can be seen that this type of distribution could indicate that the corresponding
the data items are distributed with a higher density around thenodel realizations are indeed very similar compared to the
upper margin of the map. There are two potential possibili-remaining data set and thus attributed to the same neuron.
ties that lend themselves to explain this phenomenon: When The aforementioned individuality of model realizations is
the multidimensional data distribution is rapidly thinning to- further demonstrated by the bar plot of the map (Fig. 20)
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which compares the index characteristics that distinguishes 5

R .. . envelope
the models. The mapping shows a very distinct organiza- _Qobsefved
tion of data properties: Predominantly underestimated index —SOM-BMU WaSIM
\ —SOM-BMU NASIM

values on the upper part gradually fade to overestimated in-
dices in the lower part. The model characteristics that are
captured in this representation of the map correspond exactly @' 15
with Figs. 7, 11 and 15. The position of the BMU which &
represents the most likely location of the measured time se-©
ries on the map, is already roughly identifiable from the bar
plots in Fig. 20 and coincides, according to Fig. 19a, with
the map region in which the neurons are simultaneously pop-
ulated with data from the models NASIM and WaSIM-ETH.
Thus, these models can be characterized as equivalent, o
course, only according to the criteria which have been im-
posed in our study to discriminate between individual model
realizations. envelope
The model realizations allocated to the BMU partly corre- 320 e
spond with the BMU realizations which have been identified
using the mappings of the individual data sets. However, as o'
a consequence of the map dimensions, a somewhat highe
number of model realizations are attributed to this BMU.  1481/95 23/02/95 04/04/95 14/05/95 23/06/95 02/08/95 11/09/95 21/10/95
Nevertheless, it can be seen from the FDC plot in Fig. 21a
and from Fig. 21b and c that these model realizations still “envelope
represent the characteristics of the observed discharge tim¢-20 - Qobe | i
series very well. A distinctive feature of the model realiza-
tions obtained from NASIM (Fig. 21b) is the partial overesti-
mation of peak discharge which is why a better performance
of these realizations with respect to the extreme flood event 14/%1/95 23/02/95 04/04/95 14/05/95 23/06/95 02/08/95 11/09/95 21/10/95
from August 2008 can be expected, compared to the resultsc) dd/mmlyy
from Sect. 3.1. This effect, however, can not be influenced
deliberately and must be attributed to the wider range of datgrig. 21. (a)Flow duration curves (upper 2% section): Simulations
items on the BMU. corresponding to the BMU of the SOM trained on the combined
model data compared to the observed discharge and the results of
an optimization approach using SCE-Uf) Time series of the
4 Discussion and conclusion model NASIM corresponding to the BMU of the SOM trained on
the combined model data compared to the observed disch@ige.
Similar to Herbst et al. (2009) our study is based on a com-Time series of the model WaSiM-ETH corresponding to the BMU
bined approach: While the indices adopt the function of per-°f the SOM trained on the combined model data compared to the
formance measures (rather than Signature Measures, accorgRserved discharge.
ing to their underlying theory, see Gupta et al., 2008) the
Self-Organizing Map serves as a tool to analyze and visual-
ize the data which is obtained through them. Herbst et al. (2009), namely that the index or performance
The indices we used were conceptualized to extract datdneasures are equally relevant and that the model is capable
on very specific characteristics of model behaviour accord-of reproducing them.
ing to the focus of our study. These characteristics are rep- The SOM helps to analyze the data obtained via the in-
resented by a choice of FDC-based indices that are intendedices by producing a discretized (and thus data-compressed)
to focus on the reproduction of peak discharges. They conmapping of their distribution in the index space onto a two
sequently have to be understood as an example of a modelimensional plane such that their pattern and consequently
evaluation problem. Of course, the choice of indices can bdahe patterns of model behaviour can be conveyed in a com-
tailored, according to the individual goals of the model anal-prehensive manner. This is achieved by different visualiza-
ysis. This also includes a weighting of individual indices tion techniques (see also Vesanto, 1999) and importantly by
or measures in order to put more emphasis on specific timéinking the model properties to the corresponding parameter
series features. However, we did not make use of this opspace. In a sense, the SOM helps to turn the data extracted
tion and preferred to weight all indices with 1 instead. Thus,via the indices into information on model behaviour which
our study shares the underlying assumptions of the work bysubsequently can be used in the decision making process.

10

a) 0 0.5 1 1.5
Flow exceed. probab. %

m
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The results from Sects. 3.1 and 3.2 clearly demonstratgredictive abilities of hydrological models can be enhanced
that a SOM can be used to cluster model output data accordising this approach. In contrast, the results rather indicate
ing to different (time series) characteristics. Although the that the ability of a model to “extrapolate” to behavioural do-
indices used in our study are not fully independent (finally mains beyond the calibration data can be exploited with a
they are all derived from the FDC) they effectively helped higher probability if the model realizations match or overes-
differentiating the simulation results obtained from the wa- timate the highest section of the FDC. Another, rather self-
tershed models NASIM, LARSIM and WaSIM-ETH. It has evident conclusion from the LARSIM result is that a suc-
been demonstrated that the clustering of model output dataessful calibration strategy always has to consider the pecu-
provides useful insights, such as a preliminary sensitivityliarities of model behaviour. However, this behaviour is also
analysis and a general characterization of model behavioutargely determined by the parameters which, in the scope of
regarding the reproduction of peak discharges. In additionpur study, are considered as constant, among other important
the presented approach allows identifying the model paraminfluences such as the input data. Thus, the parameterization
eters and -time series that best approximate the observationssed for the LARSIM model deserves further critical analy-
with respect to a given set of constraints embodied by the insis in order to elucidate its behaviour.
dices. This is achieved by determining the BMU of the index The most prominent advantage of the SOM in the context
vector that corresponds to the observations, which involveof model analysis is that it allows to simultaneously evalu-
identifying the reference vector that minimizes the Euclideanating the data from two or more models. Using a SOM in
distance to the observations vector. This procedure, comeombination with an appropriate set of “measures” that help
monly used in many SOM applications, deserves critical at-extracting specific information from time series, model re-
tention as it implies converting a multi-objective optimiza- alizations that satisfy a given set of criteria can be selected
tion to a single-objective problem (e.g. Madsen 2003) whichfrom among various model structures at a time. As only
does not always permit to find the optimal solution of a multi- similar data items are attributed to the same map unit (see
objective problem (Zadeh, 1963; see also Gupta et al., 1998)Sects. 2.3 and 2.5) the distribution in Fig. 19a, on one hand,

Notwithstanding, the results obtained for the BMU of the highlights the individuality of the different model data sets
NASIM map and the WaSIM-ETH map represent the char-with regard to their behaviour which is expressed through
acteristics of the observed time series with similar or par-characteristic combinations of index values. On the other
tially superior accuracy compared to the results we obtainedand, it provides a vivid evidence of the high discriminatory
by implementing a simple calibration strategy by means ofpower of the SOM approach.
the optimization algorithm SCE-UA. This finding, on one  The possibility of a direct comparison of model behaviour
hand, is partly owed to the fact that the SCE-UA optimiza- properties lends itself for a series of potential applications,
tion algorithm, in contrast to the SOM approach, allows toe.g. in a model ensemble framework: The proportion of
globally searching the parameter space with potentially in-“equivalent” model realizations in a data set obtained from
finite resolution. On the other hand, the poor results withthe results of an ensemble simulation, in turn, could serve
respect to the BMU of the LARSIM map are attributable to as a “proxy” for the independence of model structures. That
the constraints that were imposed by applying the five indexway, a set of model realizations or model structures that to-
measures. These constraints turned out to be overly rigorougether cover a broader range of measured system behaviour
to be simultaneously satisfied by the LARSIM model and than each individual model (e.g. model realizations that em-
are probably incompatible with its general behaviour. Con-phasize different sections of the FDC) could be determined
sequently, the given set of indices avoided that its potentiabnd constitute the base of a (multi-)model ensemble applica-
could be exploited to the full extent. At this point it has to be tion (Fenicia et al., 2007).
stressed that an accurate reproduction of runoff events in the
first place depends on the quality of the precipitation inputAcknowledgementskinancial support for this research provided
data. However, as to this aspect, the results obtained with thgy the German Federal Ministry of Education and Research
three models give no reason for concern. Besides the infortBMBF grant 0330699D) is gratefully acknowledged.
mation on model beha\_/iour that can be extracted using Fh‘Edited by: A. Schumann
SOM apprpach, one of its strengths has to be seen especiallyayiewed by: two anonymous referees
in the ability to extract a set of model parameters that meet
a set of very specific criteria (which e.g. could have been
imposed by decision makers). The corresponding parameter
ranges, in turn, constitute a potential key for the assessment
of parameter uncertainties.

Regarding the simulation of the extreme flood event (11—

15 August 2008) our approach did not yield clear improve-
ments compared to the much simpler SCE-UA calibration
strategy. Thus, it has to be put into question whether the
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