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Abstract. Distributed watershed models constitute a key
component in flood forecasting systems. It is widely rec-
ognized that models because of their structural differences
have varying capabilities of capturing different aspects of the
system behaviour equally well. Of course, this also applies
to the reproduction of peak discharges by a simulation model
which is of particular interest regarding the flood forecasting
problem.

In our study we use a Self-Organizing Map (SOM) in com-
bination with index measures which are derived from the
flow duration curve in order to examine the conditions un-
der which three different distributed watershed models are
capable of reproducing flood events present in the calibration
data. These indices are specifically conceptualized to extract
data on the peak discharge characteristics of model output
time series which are obtained from Monte-Carlo simula-
tions with the distributed watershed models NASIM, LAR-
SIM and WaSIM-ETH. The SOM helps to analyze this data
by producing a discretized mapping of their distribution in
the index space onto a two dimensional plane such that their
pattern and consequently the patterns of model behaviour can
be conveyed in a comprehensive manner. It is demonstrated
how the SOM provides useful information about details of
model behaviour and also helps identifying the model param-
eters that are relevant for the reproduction of peak discharges
and thus for flood prediction problems. It is further shown
how the SOM can be used to identify those parameter sets
from among the Monte-Carlo data that most closely approx-
imate the peak discharges of a measured time series. The re-
sults represent the characteristics of the observed time series
with partially superior accuracy than the reference simula-
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tion obtained by implementing a simple calibration strategy
using the global optimization algorithm SCE-UA. The most
prominent advantage of using SOM in the context of model
analysis is that it allows to comparatively evaluating the data
from two or more models. Our results highlight the individu-
ality of the model realizations in terms of the index measures
and shed a critical light on the use and implementation of
simple and yet too rigorous calibration strategies.

1 Introduction

In the course of climate change the expected increase in the
occurrence of meteorological conditions that trigger extreme
flood events has raised the demand for operational flood man-
agement and flood forecasting systems, also in small- to
medium-sized catchments (Kundzewicz et al., 2007; Merz
and Didzun, 2005). A key component of these systems
is very often represented by spatially distributed determin-
istic hydrological modelling systems whose properties and
concepts have been subject to extensive research during the
HORIX project. This project aims at developing an oper-
ational expert system for flood risk management in meso-
scale watersheds considering prediction uncertainty (Disse et
al., 2008) and forms part of the national research programme
RIMAX (RIsk MAnagement of eXtrme flood events) which
is dedicated to developing and implementing instruments to-
wards improved flood risk management (Merz et al., 2007).
An important aspect of the HORIX project is also to examine
to what extent and under which circumstances different hy-
drological modelling systems support the prediction of (ex-
treme) flood events in river catchments (Disse et al., 2007).

The discharge simulations that are produced using deter-
ministic hydrological models are subject to different types of
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uncertainties which stem from the fact that every model is
necessarily a conceptual and hence simplified representation
of the natural system (e.g. Klemeš, 1983; Bossel, 2004; Siva-
palan, 2005). As a consequence of this simplification, mod-
els are often not capable of covering the entire behavioural
domain of the natural system with only one set of model
parameters (Wagener et al., 2003). It is therefore recog-
nized that models, because of their structural differences,
have varying capabilities of capturing different aspects of the
system behaviour equally well (Fenicia et al., 2007). In addi-
tion, the behavioural domain which can be reproduced by a
model is further determined via calibration on historical dis-
charge measurements which, in general, strives to account
for the mean behaviour of the natural system although auto-
matic calibration techniques (Duan et al., 2003) can empha-
size, to some degree, different features of the data, depending
on the performance measure which is chosen for the evalua-
tion (Gupta et al., 1998). This, as a matter of course, excludes
extreme events. Moore and Doherty (2005), however, have
shown that the predictive capability of a model can be en-
hanced if weights are associated to those observations with
the highest information content with respect to the required
prediction. In order to maximize the probability that high dis-
charge events can be simulated with a model it consequently
appears reasonable to adapt the calibration strategy such that
model performance in the domain of high discharges is em-
phasized.

In our study we use a Self-Organizing Map (SOM; Koho-
nen, 2001) in combination with index measures which are
derived from the flow duration curve in order to examine the
conditions under which three different distributed watershed
models are capable of reproducing flood events present in the
calibration data.

A Self-Organizing Map consists of an unsupervised learn-
ing neural network algorithm that performs a non-linear map-
ping of the dominant structures present in a high-dimensional
data field onto a lower-dimensional grid. SOM has found al-
most countless applications in fields such as pattern recogni-
tion, image analysis (Kohonen, 2001) and exploratory data
analysis (Kaski, 1997). However, applications related to
hydrological modelling still seem to be the exception (see
Minns and Hall, 2005). It has been used by Herbst et
al. (2009) and Herbst and Casper (2008) for overall model
evaluation and model identification purposes. Very recently,
a SOM has been used by Reusser et al. (2008) to analyze the
temporal dynamics of model behaviour. Kalteh et al. (2008)
provide an overview of SOM applications in hydrological
modelling.

In previous work in this field Herbst and Casper (2008)
used the SOM to obtain a topologically ordered classification
and clustering of the temporal patterns present in model out-
puts obtained from Monte-Carlo simulations. This clustering
of entire time series allowed the authors to differentiate the
spectrum of simulated time series with a high degree of dis-
criminatory power and shows that the SOM can provide in-

sights into parameter sensitivities, while helping to constrain
the model parameter space to the region that best represents
the measured time series. The major shortcoming of this ap-
proach, however, was that, in the hydrological context, the
underlying criteria of this mapping (“pattern”) did not pro-
vide meaningful information on the trade-offs of model be-
haviour. In order to improve the extraction of information in
terms of interpretable time series features (see also Boyle et
al., 2000) Herbst et al. (2009) linked the SOM approach to
the Signature Index concept by Gupta et al. (2008). Using
the Signature Indices presented by Yilmaz et al. (2008), the
dissimilarities between measured and simulated time series
could now be expressed in hydrologically meaningful terms
referring e.g. to water balance, mean runoff reaction velocity
and the volume associated to long term base flow. Conse-
quently, the SOM of these Signature Indices provided a con-
cise summary of model behaviour which can potentially be
used for model diagnostics. The present study follows a simi-
lar approach, however, with a more specific focus: The index
measures we use to compare the simulated and the observed
runoff were designed with the sole purpose of extracting dif-
ferent characteristics in the reproduction of peak flow and
do not strictly follow the Signature Index concept by Gupta
et al. (2008). A SOM of these indices is used to represent
the spectra of model realizations obtained from Monte-Carlo
simulations with the distributed watershed models NASIM
(Hydrotec, 2005), LARSIM (Bremicker, 2000) and WaSIM-
ETH (Schulla and Jasper, 2001) and subsequently analyze
the individual trade-offs of model behaviour in the peak flow
domain. It is demonstrated how the SOM of indices provide
useful information about specific details of model behaviour
and also helps identifying the model parameters that are rel-
evant for the reproduction of peak discharges. It is further
shown how the SOM can be used to identify those parame-
ter sets from among the Monte-Carlo data that most closely
approximate the peak discharges of a measured time series.
At the first stage of this work (Sect. 3.1) the proposed tech-
nique is applied to each of the three models individually. At
the second stage (Sect. 3.2) we directly compare the model
realizations which were obtained from the three models with
respect to the proposed criteria. The discriminatory power of
the SOM is again used to identify those model realizations
that most closely match the given set of criteria; however
these realizations are selected from three different modelling
systems. In order to assess to what extent constraints on the
parameters contribute to enhancing the predictive capabili-
ties of the three models to discharges that exceed the range
of the calibration data, the parameter sets obtained from the
SOM are applied to an extreme historical flood event which
has not been part of the calibration data. The paper concludes
with a discussion of the potential and the shortcomings of the
presented approach (Sect. 4).
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2 Methods and material

2.1 Models and data

In the present study we examine the results of 12 000 Monte-
Carlo simulations of hourly discharge over a period of ap-
proximately two years. The time series were generated us-
ing the distributed watershed models NASIM, LARSIM and
WaSIM-ETH, i.e. for each of the models we carried out 4000
simulations for the same test catchment based on input data
for the period from 1 November 1994 to 28 October 1996.
The test watershed (Fig. 1) is the 129 km2 low-mountain
range catchment “Schwarze Pockau” in Saxony (Germany),
a tributary of the Freiberger Mulde (Elbe sub-basin) situated
near the border to Czech Republic. The catchment extends
from the ridges of the Erzgebirge (Ore Mountains) at approx-
imately 980 m.a.s.l. northward to the runoff gaging station
“Zöblitz” at 440 m.a.s.l. The mean discharge at this station
is 2.31 m3/s while the highest discharge ever measured was
recorded on 13.08.2002 with 160 m3/s. The return period
for events of this magnitude is estimated to 200 a. About
40% of the catchment is covered with forest. The dominant
soil type is a sandy loamy cambisol. The availability of dis-
charge measurements from this catchment, especially during
the extreme event of August 2002, render this catchment a
good data source to investigate the capabilities of hydrologi-
cal models of reproducing extreme discharges.

The rainfall data consists of spatially interpolated, hourly
precipitation fields with a resolution of 1 km2 which were
generated based on daily measurements from three gaging
stations and hourly measurements from one gaging station
within the area (Fig. 1). Additionally, gaging stations from
outside the test-catchment (not shown in Fig. 1) were in-
cluded in order to assure proper conditions at the bound-
aries of the field. First, a two-dimensional external drift krig-
ing (EDK 2D) is carried out on the daily measurements to
get the estimate of the daily areal precipitation. In order to
account for the temporal characteristics of the precipitation
field additionally a separate EDK 2D is performed on the
hourly precipitation measurements. Subsequently, the daily
measurements are disaggregated according to the temporal
distribution of the interpolated hourly precipitation. In both
interpolations the square root of the elevation was used as
drift parameter. EDK 2D was also applied in order to gener-
ate the spatio-temporal fields of wind speed, however, in this
case elevation data determined the drift in a linear way. For
the interpolation of global radiation and relative air humidity
measurements a two-dimensional ordinary kriging was used.
Streamflow was measured at the outlet of the catchment at
gaging station “Z̈oblitz”.

Because appropriate prior information on parameter distri-
butions was missing the Monte-Carlo simulations were run
using uniform random sampling. The corresponding param-
eter ranges as well as the fixed parameters were set based
on prior knowledge acquired via manual expert calibration
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Fig. 1. The “Schwarze Pockau” low-mountain range catchment.

to the test watershed. It is assumed that these values rep-
resent the plausible parameter space for this watershed with
very high probability. All parameters are related to the soil
water balance and the vertical redistribution of flow compo-
nents respectively. Parameters related to flood routing have
not been considered for the Monte-Carlo simulation.

In the following, we give a brief outline of the model
structures that were used for our study. Each of the mod-
els has found widespread application in different fields of
hydrological modelling, including operational flood forecast-
ing, throughout Germany and other countries. LARSIM and
NASIM are distributed and operated commercially.

2.1.1 NASIM

NASIM (Hydrotec, 2005) is a conceptual distributed model
that uses a spatial discretization based on sub-catchments.
For the “Schwarze Pockau” watershed the pre-processing of
spatial data resulted in 71 sub-catchments with a mean size
of approximately 1.8 km2. These are further subdivided into
spatially homogeneous units with respect to soil and land
use. Each of these elementary spatial units is again verti-
cally divided into soil layers. All vertical processes that re-
late to soil and land use (soil moisture accounting, including
interception, evapotranspiration, infiltration etc.) are calcu-
lated on the elementary unit scale. The resulting three lat-
eral flow components are subsequently aggregated on the
sub-cachment scale each passing an individual linear stor-
age. Two of them, the interflow and surface flow, are in a
prior step transformed by convolution with the time-area re-
lationship to integrate sub catchment characteristics into the
process of flow accumulation.

An outline of the principle elements of the model structure
is given in Fig. 2. Note that the NASIM parameters exam-
ined in this study are unit less factors that modify the actual
internal parameter values and act on the sub-catchment scale.
The internal values are either based on global default values
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Table 1. NASIM model parameters used for the Monte-Carlo simulation and their parameter (factor) ranges.

Name Description Factor Range Internal Range Unit

RetBasis Storage coefficient factor for baseflow component 0.5–3.5 500a [h]
RetInf Storage coefficient factor for interflow component 2.0–6.0 50a [h]
RetOf Storage coefficient factor for surface runoff from unsealed surfaces 2.0–6.0 1.8–5.7b [h]
StFFRet Storage coefficient factor for surface runoff from urban areas 2.0–6.0 16a [min]
hL Horizontal hydraulic conductivity factor 2.0–8.0 1.5a [mm]
maxInf Maximum infiltration rate factor 0.025–1.025 11, 23, 30c [mm/h]
vL Vertical hydraulic conductivity factor 0.005–0.105 11, 23, 30c [mm/h]

a fix value, not determined via pre-processing
b depending on sub-catchment slope
c depeding on soil type

hL

FC

maxInf
ET PPT

RetBas

RetInfvL

RetOf

PPTET

StFFRet

f(time,Area)

Q

Inf.

WP

Θmax

Θmax = max. soil moisture

FC = field capacity

WP = wilting point

Fig. 2. Simplified schematic representation of the NASIM model
structure; only those elements are reproduced that are considered in
the scope of the present study. Parameters that have been subject to
variation in the course of the Monte-Carlo simulation are printed in
italic Times New Roman.

or have been determined individually for each sub-basin in
the course of the spatial data pre-processing. The variation
of these factors during the Monte-Carlo simulation, however,
was performed with global values for all sub-catchments. Ta-
ble 1 provides an overview of the calibration factors, internal
values and their corresponding ranges. The parametermaxInf
determines the maximum infiltration rate of the soil-moisture
storage whereas the drainage is controlled byvL. The factors
RetOf, RetInf andRetBasscale the storage coefficients for
the quick, intermediate and the slow flow component, respec-
tively. In the context of simulating flood events parameterhL
potentially adopts a crucial role by determining the separa-
tion of exess flow into quick “overland flow” and interme-
diate “interflow” component. A special feature in NASIM
is the representation of fast flow components from impervi-
ous urban areas whose retention is influenced by parameter
StFFRet. However, in the Schwarze Pockau catchment only
6.6% of the area belongs to this land use type. Thus a domi-
nant influence of this parameter is not expected. The internal

values modified byRetOf are determined in the course of
the pre-processing depending on the slope in each sub-basin,
while the internalRetInf, RetBas, StFFRetare set to global
values. The correspondents ofmaxInf as well as well asvL
are determined according to soil type. The ranges of calibra-
tion factors and internal parameter values of the Monte-Carlo
simulation with NASIM are given in Table 1.

2.1.2 LARSIM

LARSIM (Bremicker, 2000) is operated using the same spa-
tially distributed input data. However, in our study, a raster
based spatial discretization with a resolution of 1 km was
chosen. LARSIM considers coupled land use and soil com-
partments on a regular grid but does not explicitly account
for the spatial distribution of soil and land use related field
capacities on the sub-catchment scale. Instead, the amount of
water which is allowed to infiltrate per time step is given as
the difference between effective rainfall and overland flow.
The sum of field capacity and air capacity yield the max-
imum soil moisture content. LARSIM then simulates the
soil moisture balance using a variable contributing area func-
tion, similar to the approach implemented by the Xinanjiang
model (Zhao, 1977): The proportion of contributing satu-
rated areas is calculated as a function of mean soil water
content and a conceptual parameterBSF (which is an ex-
ponent that controls the shape of the contributing saturated
area function, see Fig. 3). The resulting total amount of satu-
rated flow is subsequently partitioned into a quick and a slow
sub-component,Qof andQof2, depending on the threshold
parameterA2. Discharge from lateral drainageQi (“inter-
flow”) as well as vertical percolationQb is represented using
non-linear, empirical relationships such that essentially all
flow components are controlled by the soil moisture storage
and the actual soil moisture content: in Fig. 3Wz denotes
the minimum soil moisture content to generate interflow (it
is considered a constant and set to 0.7 mm). The parame-
tersDmin andDmax determine the minimum and maximum
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amount of lateral drainage from the soil-moisture storage (in
mm/d) which is further governed by the actual soil-moisture
contentW0. Percolation into groundwater per time stepQb

is linearly controlled by parameterβ. All flow components
are subsequently forwarded to linear storage elements be-
fore they reach the river channel. The parametersEQD and
EQD2 determine the storage coefficients that correspond to
the sub-components of saturated flowQof andQof2 respec-
tively. They are linear scaling factors of the time of concen-
tration in a sub-basin which is determined in the course of
the pre-processing, i.e. they are proportional to the retention.
For our study, the remaining storage coefficients are consid-
ered constant. The parameter ranges used to carry out the
Monte-Carlo simulation are given in Table 2. The parameter
values were identical for all sub-catchments during each run
of the Monte-Carlo simulation.

2.1.3 WaSIM-ETH

WaSIM-ETH 6.4 version 2 (Schulla and Jasper, 1998) is op-
erated with a raster based spatial discretization identical to
the one used by LARSIM.

Infiltration of water into the soil is calculated for each
grid cell following Peschke (1987). The remaining amount
of water constitutes the surface flow componentQd . Sub-
sequently, soil water transport is simulated using the 1-D
Richards differential equation on homogeneous soil columns
which are determined by the spatial discretization. Soil
hydraulic parameterization was carried out following the
van Genuchten modelling scheme (Van Genuchten, 1976).
The upper and lower boundary conditions are given by the
amount of infiltrating water and the depth of the groundwa-
ter layer respectively. Lateral drainageQi results from the
water balance calculations on the soil columns and is gener-
ated whenever the suction in the soil column falls below a
given threshold (ψm=3.45 m). The drainage density param-
eterdr directly determines the amount of interflow which
can be generated per time step. It expresses the drainage
density of the (sub-)catchment as well as the anisotropy with
regard to the vertical and horizontal hydraulic conductivities
(Schulla and Jasper, 1998). For the simulations of our test
catchment, however, no sub-basins were defined. A simple
ground water model with a single linear storage approach is
used to generate the slow discharge componentQb. The sub-
sequent concentration of the flow components is simulated
using single linear storages and time-area functions on the
catchment scale. The parameterskd andki denote the stor-
age coefficients of the surface runoff and the lateral flow, re-
spectively. The resulting total discharge is calculated as the
superposition of the flow components. A rough outline of the
model is presented in Fig. 4. The parameter ranges for the
Monte-Carlo simulation with WaSIM-ETH are reproduced
in Table 3. Again, the parameter values remained identical
for all sub-catchments during each simulation run.
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Fig. 3. Simplified schematic representation of the LARSIM model
structure; only those elements are reproduced that are considered in
the scope of the present study. Parameters that have been subject to
variation in the course of the Monte-Carlo simulation are printed in
italic Times New Roman.

As the focus of the present model evaluation lies on the
reproduction of high discharges, the generation and concen-
tration of flow through the model is considered to be the most
important process here. Accordingly, the choice of model pa-
rameters for the Monte-Carlo simulation includes all parts of
the particular model structures that seem to be most mean-
ingful in this context. The resulting differences in the de-
grees of freedom between the models are considered here as
an inevitable consequence of the particular model structure.
In addition, it has to be taken into account that the number of
available parameters can be strongly put into perspective by
individual parameter sensitivities and by parameter interac-
tion. In other words, model complexity is not a prerequisite
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Table 2. LARSIM model parameters used for the Monte-Carlo simulation and their parameter ranges.

Name Description Unit Range

EQD Calibration factor for storage coefficient of fast runoffQof [–] 100–5000
EQD2 Calibration factor for storage coefficient of fast runoffQof2 [–] 10–1000
BSF Calibration factor of the “soil moisture” – saturated area function, variable contributing area approach [–] 0.05–1.0
β Drainage coefficient for deep storage [1/d] 0.03–0.05
Dmin Minimum lateral drainage from soil storage [mm/h] 0–5.0
Dmax Maximum lateral drainage from soil storage [mm/h] 0–5.0
A2 Repartitioning factor for saturation overland flow and fast subsurface runoff [mm/h] 0.8–3.0

Table 3. WaSIM-ETH model parameters used for the Monte-Carlo
simulation and their parameter ranges.

Name Description Unit Range

kd Storage coefficient for surface runoff [h] 0.1–40
ki Storage coefficient for lateral flow [h] 0.1–100
dr Drainage density/anisotropy parameter [1/m] 0.5–100

for good model performance (see e.g. Gan and Biftu, 2003).
Thus, we see no strong reason to assume that a model would
have less capabilities of reproducing certain runoff character-
istics due to its degrees of freedom, even more as the present
study focuses on a very specific aspect of model behaviour.

2.2 Derivation of index measures from the flow duration
curve

In order to capture information on different characteristics of
model behaviour within a specific domain of flow response
we follow an approach which is adapted from the work of
Gupta et al. (2008) and Yilmaz et al. (2008): Five index mea-
sures are derived based on the evaluation of simulated and
observed flow duration curve properties. In contrast to com-
monly used statistical objective functions (e.g. see Legates
and McCabe Jr., 1999) the “Signature Indices” presented
by Yilmaz et al. (2008) constitute hydrologically meaningful
measures of system response. In this respect, the indices we
use differ from the concept proposed by Gupta et al. (2008)
insofar as their diagnostic relation to different elements of the
model structure as well as to the natural system is less obvi-
ous. In order to analyze the reproduction of flood events in
detail the indices were conceptualized to focus solely on the
characteristics of discharge events with an exceedance proba-
bility below a given threshold which is derived from the flow
duration curve (Fig. 5). In our study this specific threshold
is determined by visual examination of the slope of the ob-
served flow duration curve which, in our example, shows a
marked increase at 2%. The remaining section of the flow
duration curve is further subdivided at 0.42%, following the

saturated zone

PPT ET

f(k(ψ),dr,…)

Qd

Qi

Qb

Q

kd

ki

Fig. 4. Simplified schematic representation of the WaSIM-ETH
model structure – only those elements are reproduced that are con-
sidered in the scope of the present study. Parameters that have been
subject to variation in the course of the Monte-Carlo simulation are
printed in italic Times New Roman.

same approach (Fig. 5). For each of these subsections indi-
vidual index measures are calculated according to Eqs. (1)
and (2). According to Yilmaz et al. (2008), the percent dif-
ference in slope of a flow duration curve segment relative to
the observations is given as

%BiasFDC =(
log(Qsimi)− log(Qsimj )

)
−
(
log(Qobsi)− log(Qobsj )

)(
log(Qobsi)− log(Qobsj )

) ·100 (1)
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wherei andj denote the thresholds that define a segment of
the flow duration curve; Qsim being the simulated discharges
and Qobs being the corresponding observations. Given the
observed flow duration curve in Fig. 5 we define the slope
of the lower section of the flow duration curve segment%Bi-
asFDClow as%BiasFDC with i=2 andj=0.42. Accordingly,
the slope of the upper section of the flow duration curve seg-
ment %BiasFDChigh is defined as%BiasFDCwith i=0.42
andj=0. Further, the percentage of bias in the flow duration
curve high volume segment is calculated based on Yilmaz et
al. (2008) as

%BiasFHV =

∑
h

(Qsimh −Qobsh)∑
h

(Qobsh)
· 100 (2)

whereh denotes the index of all discharge values with ex-
ceedance probabilities higher thani and lower thanj . Again,
we define the bias for the lower flow duration curve segment
volume%BiasFHVlow as%BiasFHVwith i=2 andj=0.42.
Correspondingly, we define%BiasFHVhigh as %BiasFHV
with i=0.42 andj=0. In addition, the percentage of error in
maximum peak discharge%DiffMaxPeakis determined after
Eq. (3).

%DiffMaxPeak =
QsimH −QobsH

QobsH
· 100 (3)

with the index number of the highest element of the flow du-
ration curve beingH.

As none of the model parameters that are subject to varia-
tion in the Monte-Carlo simulation is related to flood routing
or exerts a significant influence on the timing of the discharge
peaks we refrained from examining potential time lags be-
tween the simulated data and the observations. However, in
a more general model evaluation problem, this might be a
recommendable procedure.
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vectors of the units

Step 3:
assign input vector x to
its BMU,
update reference
vectors within neighborhood

Step 4: repeat step 2 + 3 for each new xєX

BMUBMU

Fig. 6. The iterative training process of SOM (Herbst and Casper,
2008).

2.3 Self-organizing maps

SOM is an unsupervised learning neural network algorithm
that is applied to high-dimensional data sets in order to cate-
gorize the range of data patterns that occur in it and to extract
a set of characteristics that describe its multidimensional dis-
tribution. A SOM essentially performs a non-linear mapping
of vectorial input data items onto a discrete, low-dimensional
grid. Most commonly a two-dimensional, rectangular grid
with hexagonal topology is used. In contrast to common
Vector Quantization methods or k-Means clustering, SOM
is topology preserving, i.e. nearby locations on this mapping
are attributed to similar data patterns. Likewise, the distance
between two nodes on the mapping is proportional to the dis-
similarity of the data items they represent. Each input data
item x of the training data setX that has to be examined
is considered as a vectorx= [x1, x2, . . . , xn]T ∈<

n, with n
being the dimension of the input data space. LetX repre-
sent a set of index vectors calculated according to Sect. 2.2,
thusn=5. A SOM consists of a fixed number ofk neurons
that are arranged on a regular grid whose dimensions can
be determined by means of heuristic algorithms, if no other
preferences are made. Throughout this paper the terms “neu-
ron”, “node” and “map unit” are used synonymously. Fig-
ure 6 provides a schematic representation of the process of
self-organization which, in the following, is explained based
on the paper by Herbst et al. (2009).:

Each neuroni is represented through a reference vector

mi = [µi1, µi2, . . . , µin]
T

∈<
n (4)

whose dimensionn equals the number of elements in an in-
put data vectorx ∈X. Typically, the reference vectorsmi

are initialized to small random values. However, in order to
assure faster and more reliable convergence of the map, we
initialize themi along the two greatest principal component
eigenvectors of the data (Kohonen, 2001). In the classic se-
quential training the SOM is trained iteratively: In the first
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step an input data itemx∈X is randomly selected and the
Euclidean distance

di =

√√√√ n∑
j=1

(
xj −mij

)2
i = 1. . .k; j = 1. . .n (5)

betweenx and each reference vectormi is computed (the-
oretically any appropriate metric can be used as a measure
of similarity). The “winning neuron” (also called the best-
matching unit BMU ofx) is the map elementc whose refer-
ence vectormc has the smallest distancedc to x with

dc = min
i

{‖x − mi‖} . (6)

In the next step the reference vectormi and all of its neigh-
bouring neurons are updated according to

mi (t + 1) = mi (t)+ α (t) hci (t) [x (t)− mi (t)] (7)

wheremi(t) is the current weight vector at iteration stept .
Thus, the rate of change for each node of the map is scaled
by three factors: a) the difference (x(t)−mi(t)) between the
input data setx and the prototype vectormi b) the size of a
neighbourhood functionhci which decreases monotonically
to zero with t and with distance from the winning neuron
and c) a learning rate factorα(t) which gradually lowers
the height of the neighbourhood function as the iteration ad-
vances. Forhci it is common to use the Gaussian function

hci (t) = exp

(
−

‖rc − r i‖
2

2σ 2 (t)

)
(8)

whereσ (t) defines the width of the topological neighbour-
hood, and bothσ (t) andα(t) decrease monotonically with
t . Note that an exact choice of the functionα(t) is not re-
quired (Kohonen, 2001). Repeated cycling through the train-
ing steps causes different nodes and regions of the map to be
“tuned” to specific domains of the input space. Importantly,
the enforced local interaction between the SOM nodes re-
sults in the map gradually developing an ordered and smooth
representation of the input data space (Kaski, 1997).

In this work, however, we used Kohonen’s “batch-
training” algorithm (Vesanto, 2000) to speed up the training
process. Here, in each training step the data set is partitioned
according to the Voronoi regions of themi . Instead of se-
quentially running through all data items in each training cy-
cle the whole data setX is presented to the map as a whole
at each training cycle. The reference vectors are updated ac-
cording to the weighted average of the data samples

mi(t + 1) =

N∑
l=1
hci(t)xl

N∑
l=1
hci(t)

(9)

wherec is the index number of the BMU of data setxl , and
N is the number of data samples. This variant of the training
does not make use of the learning rate factorα(t).

In the course of the training the reference vectors are
“tuned” to the different patterns contained in the input data.
The final reference vectors form a discrete approximation of
the input data distribution. Thus, patterns that occur more
frequently in the input space are mapped onto a larger area.
Note that, as the number of neurons – and consequently the
number of reference vectors – is much smaller than the num-
ber of data items used for the training, SOM can also be seen
as a data compression method.

In our study we also make use of the fact that, once its
training is finished, the SOM can be applied to project an
input data vectory onto the map which has not been part of
the training data set. This means that according to Eq. (6)
the neuronc(y) with reference vectormc(y) is determined for
which∥∥y − mc(y)

∥∥ = min
i

{‖y − mi‖} . (10)

Neuronc(y) then represents the domain of input data patterns
from X that is most similar toy. It follows that the set of
data itemsX̂⊂X which is attributed toc(y) represents those
training data items that are most similar toy with respect to
the criterion given by Eqs. (5) and (10). The neuron c(y) is
called the “best-matching unit” (BMU) ofy.

2.4 Data preparation and training of the SOM

For each of the 4000 time series obtained by running a
Monte-Carlo simulation (Sect. 2.1) a set of five index mea-
sures was calculated according to Eqs. (1–3) (Sect. 2.2). The
procedure was carried out for each of the three models.

Prior to the SOM training, each index was normalized to
a value having zero mean and variance of one using a linear
transformation such that high index values do not exert a dis-
proportionate influence on the training. The side lengths of
the map as well as the initial reference vectors were deter-
mined by means of a heuristic algorithm involving the calcu-
lation of the two biggest eigenvalues of the covariance matrix
of the data (Vesanto et al., 2000). For more details on the data
preparation and the training please see Herbst et al. (2009).

At the first stage of our study the three data sets were
treated individually. Subsequently, the data preparation and
the training were repeated with the combined data set of all
three models.

For the SOM training as well as for a part of the eval-
uation procedures the “SOM Toolbox for MATLAB™”
(Helsinki University of Technology,http://www.cis.hut.fi/
projects/somtoolbox/) was used.

2.5 Evaluation of SOM results

Generally, the number of neurons on the maps is much
smaller than the number of data sets used for the training. As
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a consequence of this, every neuron represents a set of sim-
ulation runs and their respective index value pattern. In the
following, we evaluated the index properties of the individual
nodes by de-normalizing the reference vectors of the maps.
Each of the nodes/reference vectors represent the mean index
value properties of a small sub-set of model data used for the
training. In the following, these reference vector index values
are visualized by means of a small, coloured bar plot for each
node. In a bar plot visualization the position of the BMU can
easily be identified by the map unit with the “flattest” bars.
Note that the height of the individual bars is scaled relative
to the range of the corresponding index. Also colour coding
of the index values is used, whereas the same map grid is
reproduced five times with a colouring corresponding to the
distribution of the individual index values (so-called compo-
nent planes).

As a result of the self-organizing process that takes place
in the course of the training, the data items which are grouped
to such a sub-set have similar properties with regard to their
five index values. Due to the topological properties of the
mapping the distance between two nodes on the map is
roughly a function of the dissimilarities between the data sets
attributed to these nodes. Please note that, to some extent,
the SOM embodies statistical properties, e.g. the number of
reference vectors on a map that display a certain type of qual-
ity is proportional to the number of data sets with that prop-
erty. As a simple measure of the quality of the mapping the
“quantization error” (Kohonen, 2001)̄d is calculated using
Eq. (10).

d̄ =
1

N

N∑
p=1

∥∥xp − mc(p)

∥∥ (11)

It represents the average distance of each data vectorxp of
theN input data items contained in the training dataX to
its associated BMU reference vectormc(p), with p being the
index of the data items (not to be confused with the index
values of Sect. 2.2!).

We further take advantage of the possibility to label the
input data items that are attributed to each neuron via the
training. That way, each input data item is linked to a model
parameter set and its original simulated time series. Thus,
the neurons of the map can be evaluated with respect to the
model parameters, e.g. by calculating the mean values of
each parameter for the individual map units. The distribu-
tion of parameter values over the map is again visualized by
means of colour coding. In doing so, the same map grid is re-
produced for each parameter, however, with different colour-
ing according to the distribution of parameter values. In the
following, this type of visualization is referred to as parame-
ter plane. Corresponding patterns on a component plane and
parameter plane indicate that an index value is governed to a
large extent by a particular parameter. Moreover, an irregu-
lar pattern on the parameter plane is indicative of parameter

insensitivity, according to the components which were used
to train the map.

For each map grid (i.e. for each model) the BMU of the
measured discharge time series is determined according to
Eq. (10). Following Sect. 2.2 (Eqs. 1–3) the time series of
observed dischargesQobs maps asy=[0 0 0 0 0]T into the
index space. We then calculate the quantization error of the
BMU

d̄BMU =
1

n

N̂∑
r=1

∥∥x̂r − mc(y)

∥∥ (12)

in order to obtain a rough indicator of how close the data
itemsx̂r∈X̂ with r = 1. . .N̂ which are attributed to the BMU
c(y) of the observation (Eq. 10) approximate the observation
(represented byy=[0 0 0 0 0]T ). In Eq. 11N̂ denotes the
number of data items in̂X. Note, that it is possible to iden-
tify a BMU for any data set that has the same dimensionality
as the input data, irrespective of its distance from the obser-
vations.

The data items on the BMUc(y) of a map also correspond
to one or more model parameter sets which are subsequently
used to simulate an extreme flood event from August 2002
that has not been part of the Monte-Carlo data set. As a
reference, we visually compare these simulations to the re-
sults we obtained by using the shuffled complex evolution
optimization algorithm (SCE-UA, Duan et al., 1992) to find
a parameter set that minimizes the root of the mean squared
error (RMSE) for the same period of time for which a simple,
model specific, weighting scheme after Casper et al. (2009)
is used. This scheme basically applies a higher weight to all
time steps with a discharge higher than three times the mean
discharge (Q>3MQ).

3 Results

3.1 SOMs generated from the individual model data sets

Although from each of the models the same amount of data
items was processed, the maps for NASIM, LARSIM and
WaSIM-ETH slightly differ in number of neurons and side
lengths which is caused by the initialization of the maps ac-
cording to Sect. 2.4. The overall quantization errord̄ (Eq. 11)
for the three mappings ranges between 0.236 (NASIM) and
0.278 (WaSIM-ETH). Thus, it can be assumed that the SOM
provides a good fit of the model data. The distributions of ref-
erence vector properties over the map support that the model
data has been arranged by similarity over the maps. No void,
i.e. interpolative, units are present. In the following, an ac-
count of the results for the individual models is given. Note
that, as to the simulated time series illustrations, only a repre-
sentative period of the entire simulated time series is repro-
duced in the following in order to assure better readability
of the figures. Representations of the flow duration curve
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%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

BMU

Fig. 7. NASIM: Distribution of index properties on the map dis-
played as bar plots and the position of the best-matching unit
(BMU). Note that the bars have individual relative scales.

(FDC), however, always refer to the full length of simulated
discharge time series.

3.1.1 NASIM

The bar plot (Fig. 7) reveals that a significant proportion of
simulation runs which were attributed to the upper half of the
map underestimated all five properties that are represented by
the indices. The increase of%BiasFDChigh from the left to
the right hand side implies a general increase in peak runoff
reaction in this direction of the map. The remaining index
components generally tend to smaller negative or positive
values towards the lower part and the right hand side of the
map. From the values of%DiffMaxPeakin Fig. 7 it imme-
diately becomes obvious that only very few simulations ex-
ceeded the measured peak discharge.

A comparison of the parameter plane Fig. 8a with the com-
ponent plane Fig. 8b indicates that the increase in peak runoff
reaction%BiasFDChigh is largely influenced by parameter

Fig. 8. NASIM: (a) Parameter plane, i.e. mean values of each model
parameter for the simulations projected onto the individual map el-
ements.(b) Distribution of reference vector (i.e. indices) properties
on the map. The position of the BMU is marked.

hL in combination with the parameter for the retention of
“overland flow”, RetOF. Figure 8a also reflects that param-
eterRetOf remains insensitive with respect to the indices as
long ashL has high values. According to Sect. 2.1, this be-
haviour is evident because the generation of “overland flow”
is overridden byhL. Moreover,RetInf, which governs the re-
tention of water allocated to interflow, with high probability
exerts an influence on the increase in%BiasFHVlow, which
consequently provides a rather simple explanation for the po-
sition of the BMU on the map. Further, it can be seen from
Fig. 8a that parametermaxInf is – at best – only partially sen-
sitive. vL, RetBasisandStFFRetare insensitive here because
they are linked to the generation of “base flow” and runoff
from urban or impervious areas which for the “Schwarze
Pockau” catchment only comprise 6.6% of the total area.

Correspondences in the distribution patterns in Fig. 8b re-
veal significant correlations between the indices with respect
to the behaviour of NASIM. However, each component plane
is scaled separately. Therefore, the individual optima of the
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Fig. 9. NASIM: (a) Flow duration curves (upper 2% section): Sim-
ulations corresponding to the BMU compared to the observed dis-
charge and the results of an optimization approach using SCE-UA.
(b) Time series corresponding to the BMU compared to the ob-
served discharge.

indices still do not coincide on the same map location. The
scales of the component planes additionally give insight into
the true lengths of the bar plots in Fig. 7.

The quantization error for the BMU of the observed dis-
charge time series, calculated according to Eq. (11), yields
d̄BMU=0.85, which suggests that the observations are located
somewhat off the model data obtained from the Monte-Carlo
Simulation. Nevertheless, from the simulation results in
Fig. 9a it can be seen that the parameter sets that were re-
trieved from the BMU associated to the observed runoff re-
produce the characteristics of the measured FDC with very
high accuracy. However, this requirement is also satisfied
surprisingly well by the reference simulation which was ob-
tained using the SCE-UA algorithm in combination with a
simple weighting scheme. Notwithstanding, the time series
of simulated discharge (Fig. 9b) shows that, with the excep-

Fig. 10. NASIM: Results for the validation event August 2002
(BMU realizations and SCE-UA, RMSE).

tion of only a few events, the runoff peaks could be repro-
duced well. As the FDCs grow almost congruent towards the
ordinate it does not surprise that a part of the simulation runs
attributed to the BMU performs equally well during the vali-
dation event compared to the SCE-UA reference simulation,
yet none of the model realizations is able to reach the peak
flow (Fig. 10).

3.1.2 LARSIM

Figure 11 shows that LARSIM, contrary to NASIM, tends
to overestimate almost the entire set of indices whereas for
at least the lower third of the map this tendency is very pro-
nounced. Lower or negative index values as well as sporadic
underestimation of runoff reaction (%BiasFDChigh) and –
volume (%BiasFHVlow), are largely recorded in the upper
regions. The only index, however, which is constantly over-
estimated throughout the data set is the runoff reaction during
all time steps corresponding to the lower section of the FDC,
%BiasFDClow. The maximum peak discharge, expressed by
%DiffMaxPeak, is also overestimated throughout large por-
tions of the model data.

Towards the right hand corners a marked increase
in %BiasFDChigh is superimposed to the comparatively
monotonous pattern of index combinations. From Fig. 12a
it can be seen that parameterEQD2 decreases in the same
direction, which most likely reveals a main control for the
runoff reaction in the fastest portion of flow. Likewise, the
error in maximum peak flow, which is expressed by%Diff-
PeakMax,grows strongly positive towards the lower right
hand corner. The volume allocated to flow corresponding to
the lower branch of the FDC (%BiasFHVlow), and partially
also%BiasFHVhigh, increases towards the lower left corner
of the map (Fig. 12b) which, according to Fig. 12a, indicates
that these features are likely to be governed by parameter
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%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

BMU

Fig. 11. LARSIM: Distribution of index properties on the map
displayed as bar plots and the position of the best-matching unit
(BMU). Note that the bars have individual relative scales.

EQD. As to the remaining parameters, no further correlations
with indices are clearly apparent, although at least parameter
A2 shows a marked sensitivity with respect to data sets allo-
cated to the right hand side of the mapping which points to
some degree to an interaction betweenEQDand/orEQD2as
well asA2.

The influence ofEQD2 on %BiasFDChigh can easily be
explained following Sect. 2.1: AsEQD2 is a scaling factor
for the retention of the “fast” saturated flow componentQof2,
it largely controls the volume per time step which is allocated
to peak discharges. Its sensitivity, however, depends on the
threshold parameterA2 which at the same time governs the
function of storage coefficientEQD. As documented by the

Fig. 12. LARSIM: (a) Parameter plane, i.e. mean values of each
model parameter for the simulations projected onto the individual
map elements.(b) Distribution of reference vector (i.e. indices)
properties on the map. The position of the BMU is marked (top left
corner of the map.

corresponding scales of the component planes in Fig. 12b,
the sensitivity of%DiffMaxPeak and%BiasFDChigh is ex-
tremely high. But also the volumes%BiasFHVlow and%Bi-
asFHVhigh seem to react with sharp gradients on changes of
EQD andEQD2. Following Sect. 2.1 it does not surprise
that the “base flow” storage coefficientβ as well asDmin or
evenDmax do not show any apparent sensitivity according to
Fig. 12a. However, the lack of sensitivity with respect to pa-
rameterBSF, which controls the generation of saturated flow
via a variable contributing area approach, is unexpected and
does not lend itself to a straightforward explanation.

The impression that LARSIM does not seem to be capa-
ble of simultaneously meeting the constraints imposed by the
five indices is already conveyed by Fig. 11. The compara-
tively high quantization error for the BMU of the observed
discharge time series̄dBMU=1.1 and the fact that this BMU
is located on an extremely marginal position in the upper left
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Fig. 13. LARSIM: (a) Flow duration curves (upper 2% section):
Simulations corresponding to the BMU compared to the observed
discharge and the results of an optimization approach using SCE-
UA. (b) Time series corresponding to the BMU compared to the
observed discharge.

hand corner of the map further corroborates this finding. The
resulting model behaviour is illustrated in Fig. 13a and b.
The envelope of the simulations in Fig. 13a shows that, in ac-
cordance with Fig. 11, a significant proportion of simulation
runs (i.e. parameter combinations) is potentially capable of
reaching sufficiently high and even excessive peak discharge
values. However, the constraints linked to the lower (0.42–
2%) part of the FDC counteract this behaviour with very high
probability and force the position of the BMU (Fig. 11) to-
wards the upper left hand side of the map. This finding is
further supported by the results obtained by using the SCE-
UA optimization algorithm (Duan et al., 1992) to minimize
the RMSE of the simulated time series. In addition, the sharp
gradients and extreme overestimation of%DiffMaxPeakand
%BiasFDChigh in reaction to changes ofEQD andEQD2as
well as the position of the simulation envelope in relation to

Fig. 14. LARSIM: Results for the validation event August 2002
(BMU realizations and SCE-UA, RMSE).

the observations (Fig. 13a) point at that the ranges allowed to
these parameters in the course of the Monte-Carlo simulation
are disproportionate. Consequently, the BMU parameter sets
comprise high values for bothEQDandEQD2, apparently in
order to compensate for an excess in fast runoff components.
This excess could have been triggered by of the settings for
parameterA2 and/or overly high values for parameterBSF.
The model realizations selected by using the BMU criterion
display some kind of “plateau behaviour” which is illustrated
by the decrease in slope towards the upper end of the FDC
(Fig. 13a) and indicates deficits in discharge volume genera-
tion for runoff peaks. These deficits also manifest themselves
with regard to the time series results for the training period
(Fig. 13b) and, even more, for the extreme event of August
2002 (Fig. 14). Here, the model realizations that were at-
tributed to the BMU perform even worse than the reference
simulation which was obtained using the SCE-UA algorithm
and hardly reach about 50 m3/s peak flow compared to ap-
proximately 160 m3/s of observed peak discharge.

3.1.3 WaSIM-ETH

Regarding the WaSIM-ETH model realizations, the indices
used to examine the model behaviour show a marked corre-
lation and a general gradient extending from the upper left
to the lower right corner (Fig. 15). Nevertheless, the index
ranges covered by the Monte-Carlo simulation with WaSIM-
ETH are quite individual and comprise negative as well as
positive values. Thus, the upper third of the map is generally
characterized by underestimation of the indices which grad-
ually fades to high index values towards the lower right hand
side of the map such that the lowest index values (i.e. the
model realizations that best “fit” the observations), and thus
the BMU, can be found only a few nodes below the centre of
the map.
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%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

BMU

Fig. 15. WaSIM: Distribution of index properties on the map
displayed as bar plots and the position of the best-matching unit
(BMU). Note that the bars have individual relative scales.

Contrary to the other models we examined, from a visual
comparison of Fig. 16a and the component planes (Fig. 16b)
it is not possible to isolate any straightforward relationship
between individual model parameters and indices, although
each of the parameters we included in the Monte-Carlo sim-
ulation shows a marked sensitivity with respect to the index

Fig. 16. WaSIM: (a) Parameter plane, i.e. mean values of each
model parameter for the simulations projected onto the individual
map elements.(b) Distribution of reference vector (i.e. indices)
properties on the map. The position of the BMU is marked.

measures. However, to some extent, the parameter planes
themselves (Fig. 16a) display correlated patterns, e.g. the
map units with high values forki suspiciously coincide with
the map units for which parameterkdacquires predominantly
low values. As to the general behaviour of the WaSIM-ETH
model structure with respect to the indices, it can be stated
that low values for parameterkd anddr in combination with
intermediateki values redound to an increase of peak flow.

From these findings we infer that all three model param-
eters are equally important for matching the five index mea-
sures and that parts of the model structure exhibit a strongly
interacting, maybe even equifinal behaviour. That way, the
effect of one parameter can be compensated to some extent
by a combination of the other parameters. This would also
provide some explanation for the fact that the BMU is located
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Fig. 17. WaSIM: (a) Flow duration curves (upper 2% section):
Simulations corresponding to the BMU compared to the observed
discharge and the results of an optimization approach using SCE-
UA. (b) Time series corresponding to the BMU compared to the
observed discharge.

in a map region where all three parameters are subject to
considerable alterations. It finally results that the parameter
sets associated to the BMU can be divided into two groups
with strongly contrasting values: The first group has low val-
ues with respect tokd and simultaneously high values fordr
while the second group displays highkd values in combina-
tion with low values fordr. The respective index measures,
however, turned out to be quite similar.

With d̄BMU=0.76 the quantization error of the BMU model
realizations that correspond to the time series of measured
discharges is the smallest among the three models and indi-
cates that these parameter sets match the observed behaviour
of the system relatively well. This is further supported by the
rather central position of the BMU on the map. The model
realizations which are retrieved from the BMU thus result
in a rather accurate representation of the FDC characteris-

Fig. 18. WaSIM: Results for the validation event August 2002
(BMU realizations and SCE-UA, RMSE).

tics, especially regarding the highest runoff values (Fig. 17a)
whereas the FDC of the SCE-UA reference simulation adopts
a steeper trajectory and hits the ordinate somewhat above the
FDC of the observations. The model time series (Fig. 17b)
finally exemplify that the BMU model realizations were ob-
tained using parameter sets from disjoint regions of the pa-
rameter space. The peaks, however, are reproduced very
well, with the exception of only a few minor runoff events. In
contrast, the peak of the validation event (Fig. 18) is strongly
underestimated by all model realizations, whereas only one
half of the BMU model realizations exceed the peak flow of
the SCE-UA reference simulation.

3.2 Results generated from SOM of the joint model data
set

According to the initialization procedure (Sect. 2.4) the num-
ber of neurons on a map does not increase linearly with the
number of data items used for the training. Therefore, the
proportion of data items to the number of map units results
somewhat higher for the SOM trained on the joint data set
than for the SOMs we discussed in the previous section. The
overall quantization error̄d=0.38 (Eq. 10) of this SOM re-
sult appears to be sufficiently low so as to characterize the
mapping as a very good approximation of the model data.

In Fig. 19a the neurons of the map are reproduced as pie
charts in order to illustrate the distribution of data items from
the different models on the SOM. These represent the per-
centage of data from each model that has been attributed to
the neurons via the training. In Fig. 19b the same pie charts
are scaled using the number of data items on each map unit
in order to simultaneously visualize the distribution of data
quality and quantity on the map. The void regions on the map
indicate interpolative units where the data items are clearly
disjoint and characterized by marked differences with regard

www.nat-hazards-earth-syst-sci.net/9/373/2009/ Nat. Hazards Earth Syst. Sci., 9, 373–392, 2009



388 M. Herbst et al.: Comparative analysis of model behaviour for flood prediction purposes

Fig. 19. Comaparison of NASIM, LARSIM and WaSIM:(a) The
neurons of the SOM are reproduced as pie charts that represent the
percentage of data from each model that has been attributed to the
neurons via the training.(b) same as (a) but displayed as a “hit his-
togram”, i.e. the size of the pie charts is proportional to the number
of data items attributed to the corresponding neuron.

to their indices. With the exception of some very isolated
occurrences there are no nodes on the map that are simul-
taneously populated with model realizations from all three
models. The same holds true for simultaneous occurrences
of NASIM and LARSIM realizations on a node. Close to
the center of the map the nodes are predominantly popu-
lated with mixtures of model realizations from LARSIM and
WaSIM-ETH as well as WaSIM-ETH and NASIM. Follow-
ing the theory of Self-Organizing Maps (Sects. 2.3 and 2.5),
it can be assumed that these model realizations display equiv-
alent characteristics with respect to the indices we used to de-
scribe them. The distances between the nodes further allow
inferring that the differences between NASIM and LARSIM
in terms of index characteristics are stronger than the dif-
ferences between realizations of NASIM and WaSIM-ETH
or LARSIM and WaSIM-ETH, which is most importantly
highlighted by the fact that hardly any node is populated at
the same time with realizations from NASIM and LARSIM.
The neurons close to the bottom of the map, on which si-
multaneous occurrences of LARSIM and WaSIM-ETH can
be found, point at sporadic extremes of WaSIM-ETH model
behaviour. Figure 19b further exemplifies that similarities
between model realizations from the three models only oc-
cur with rather low probability. Moreover, it can be seen that
the data items are distributed with a higher density around the
upper margin of the map. There are two potential possibili-
ties that lend themselves to explain this phenomenon: When
the multidimensional data distribution is rapidly thinning to-

BMU

%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

Fig. 20. SOM of the combined data from all models in bar plot
illustration.

wards its margins it can not always be covered entirely by the
SOM reference vectors. Consequently, the remaining data
sets are attributed to the nearest, marginal nodes. Otherwise,
this type of distribution could indicate that the corresponding
model realizations are indeed very similar compared to the
remaining data set and thus attributed to the same neuron.

The aforementioned individuality of model realizations is
further demonstrated by the bar plot of the map (Fig. 20)
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which compares the index characteristics that distinguishes
the models. The mapping shows a very distinct organiza-
tion of data properties: Predominantly underestimated index
values on the upper part gradually fade to overestimated in-
dices in the lower part. The model characteristics that are
captured in this representation of the map correspond exactly
with Figs. 7, 11 and 15. The position of the BMU which
represents the most likely location of the measured time se-
ries on the map, is already roughly identifiable from the bar
plots in Fig. 20 and coincides, according to Fig. 19a, with
the map region in which the neurons are simultaneously pop-
ulated with data from the models NASIM and WaSIM-ETH.
Thus, these models can be characterized as equivalent, of
course, only according to the criteria which have been im-
posed in our study to discriminate between individual model
realizations.

The model realizations allocated to the BMU partly corre-
spond with the BMU realizations which have been identified
using the mappings of the individual data sets. However, as
a consequence of the map dimensions, a somewhat higher
number of model realizations are attributed to this BMU.
Nevertheless, it can be seen from the FDC plot in Fig. 21a
and from Fig. 21b and c that these model realizations still
represent the characteristics of the observed discharge time
series very well. A distinctive feature of the model realiza-
tions obtained from NASIM (Fig. 21b) is the partial overesti-
mation of peak discharge which is why a better performance
of these realizations with respect to the extreme flood event
from August 2008 can be expected, compared to the results
from Sect. 3.1. This effect, however, can not be influenced
deliberately and must be attributed to the wider range of data
items on the BMU.

4 Discussion and conclusion

Similar to Herbst et al. (2009) our study is based on a com-
bined approach: While the indices adopt the function of per-
formance measures (rather than Signature Measures, accord-
ing to their underlying theory, see Gupta et al., 2008) the
Self-Organizing Map serves as a tool to analyze and visual-
ize the data which is obtained through them.

The indices we used were conceptualized to extract data
on very specific characteristics of model behaviour accord-
ing to the focus of our study. These characteristics are rep-
resented by a choice of FDC-based indices that are intended
to focus on the reproduction of peak discharges. They con-
sequently have to be understood as an example of a model
evaluation problem. Of course, the choice of indices can be
tailored, according to the individual goals of the model anal-
ysis. This also includes a weighting of individual indices
or measures in order to put more emphasis on specific time
series features. However, we did not make use of this op-
tion and preferred to weight all indices with 1 instead. Thus,
our study shares the underlying assumptions of the work by

Fig. 21. (a)Flow duration curves (upper 2% section): Simulations
corresponding to the BMU of the SOM trained on the combined
model data compared to the observed discharge and the results of
an optimization approach using SCE-UA.(b) Time series of the
model NASIM corresponding to the BMU of the SOM trained on
the combined model data compared to the observed discharge.(c)
Time series of the model WaSiM-ETH corresponding to the BMU
of the SOM trained on the combined model data compared to the
observed discharge.

Herbst et al. (2009), namely that the index or performance
measures are equally relevant and that the model is capable
of reproducing them.

The SOM helps to analyze the data obtained via the in-
dices by producing a discretized (and thus data-compressed)
mapping of their distribution in the index space onto a two
dimensional plane such that their pattern and consequently
the patterns of model behaviour can be conveyed in a com-
prehensive manner. This is achieved by different visualiza-
tion techniques (see also Vesanto, 1999) and importantly by
linking the model properties to the corresponding parameter
space. In a sense, the SOM helps to turn the data extracted
via the indices into information on model behaviour which
subsequently can be used in the decision making process.
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The results from Sects. 3.1 and 3.2 clearly demonstrate
that a SOM can be used to cluster model output data accord-
ing to different (time series) characteristics. Although the
indices used in our study are not fully independent (finally
they are all derived from the FDC) they effectively helped
differentiating the simulation results obtained from the wa-
tershed models NASIM, LARSIM and WaSIM-ETH. It has
been demonstrated that the clustering of model output data
provides useful insights, such as a preliminary sensitivity
analysis and a general characterization of model behaviour
regarding the reproduction of peak discharges. In addition,
the presented approach allows identifying the model param-
eters and -time series that best approximate the observations
with respect to a given set of constraints embodied by the in-
dices. This is achieved by determining the BMU of the index
vector that corresponds to the observations, which involves
identifying the reference vector that minimizes the Euclidean
distance to the observations vector. This procedure, com-
monly used in many SOM applications, deserves critical at-
tention as it implies converting a multi-objective optimiza-
tion to a single-objective problem (e.g. Madsen 2003) which
does not always permit to find the optimal solution of a multi-
objective problem (Zadeh, 1963; see also Gupta et al., 1998).

Notwithstanding, the results obtained for the BMU of the
NASIM map and the WaSIM-ETH map represent the char-
acteristics of the observed time series with similar or par-
tially superior accuracy compared to the results we obtained
by implementing a simple calibration strategy by means of
the optimization algorithm SCE-UA. This finding, on one
hand, is partly owed to the fact that the SCE-UA optimiza-
tion algorithm, in contrast to the SOM approach, allows to
globally searching the parameter space with potentially in-
finite resolution. On the other hand, the poor results with
respect to the BMU of the LARSIM map are attributable to
the constraints that were imposed by applying the five index
measures. These constraints turned out to be overly rigorous
to be simultaneously satisfied by the LARSIM model and
are probably incompatible with its general behaviour. Con-
sequently, the given set of indices avoided that its potential
could be exploited to the full extent. At this point it has to be
stressed that an accurate reproduction of runoff events in the
first place depends on the quality of the precipitation input
data. However, as to this aspect, the results obtained with the
three models give no reason for concern. Besides the infor-
mation on model behaviour that can be extracted using the
SOM approach, one of its strengths has to be seen especially
in the ability to extract a set of model parameters that meet
a set of very specific criteria (which e.g. could have been
imposed by decision makers). The corresponding parameter
ranges, in turn, constitute a potential key for the assessment
of parameter uncertainties.

Regarding the simulation of the extreme flood event (11–
15 August 2008) our approach did not yield clear improve-
ments compared to the much simpler SCE-UA calibration
strategy. Thus, it has to be put into question whether the

predictive abilities of hydrological models can be enhanced
using this approach. In contrast, the results rather indicate
that the ability of a model to “extrapolate” to behavioural do-
mains beyond the calibration data can be exploited with a
higher probability if the model realizations match or overes-
timate the highest section of the FDC. Another, rather self-
evident conclusion from the LARSIM result is that a suc-
cessful calibration strategy always has to consider the pecu-
liarities of model behaviour. However, this behaviour is also
largely determined by the parameters which, in the scope of
our study, are considered as constant, among other important
influences such as the input data. Thus, the parameterization
used for the LARSIM model deserves further critical analy-
sis in order to elucidate its behaviour.

The most prominent advantage of the SOM in the context
of model analysis is that it allows to simultaneously evalu-
ating the data from two or more models. Using a SOM in
combination with an appropriate set of “measures” that help
extracting specific information from time series, model re-
alizations that satisfy a given set of criteria can be selected
from among various model structures at a time. As only
similar data items are attributed to the same map unit (see
Sects. 2.3 and 2.5) the distribution in Fig. 19a, on one hand,
highlights the individuality of the different model data sets
with regard to their behaviour which is expressed through
characteristic combinations of index values. On the other
hand, it provides a vivid evidence of the high discriminatory
power of the SOM approach.

The possibility of a direct comparison of model behaviour
properties lends itself for a series of potential applications,
e.g. in a model ensemble framework: The proportion of
“equivalent” model realizations in a data set obtained from
the results of an ensemble simulation, in turn, could serve
as a “proxy” for the independence of model structures. That
way, a set of model realizations or model structures that to-
gether cover a broader range of measured system behaviour
than each individual model (e.g. model realizations that em-
phasize different sections of the FDC) could be determined
and constitute the base of a (multi-)model ensemble applica-
tion (Fenicia et al., 2007).
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