[Communication]

www.whxb.pku.edu.cn

$NiCo_2O_4$ 对 H_2O_2 在碱性溶液中电化学还原反应的催化行为

高胤义 曹殿学* 王贵领 尹翠蕾

(哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001)

摘要: 利用溶胶-凝胶法合成了纳米 NiCo₂O₄,并利用 X 射线衍射和透射电镜分析了其结构和表面形貌.结果 表明 NiCo₂O₄ 具有尖晶石结构,其平均粒径约为 15 nm. 利用电势线性扫描和恒电势法测定了其对 H₂O₂ 在碱性 溶液中电化学还原反应的催化性能.发现 NiCo₂O₄ 对 H₂O₂ 电化学还原具有高的催化活性和稳定性,在 H₂O₂ 浓 度低于 0.6 mol·L⁻¹ 时,其电化学还原反应主要通过直接还原途径进行.以 NiCo₂O₄ 为阴极催化剂的 Al-H₂O₂ 半 燃料电池在室温下的开路电压达 1.6 V;在 1.0 mol·L⁻¹ H₂O₂ 溶液中,峰值功率达 209 mW·cm⁻²,此时电流密度为 220 mA·cm⁻².

关键词: 钴酸镍; 过氧化氢; 电化学还原; 阴极催化剂; 金属半燃料电池 中图分类号: O646.5; O643

Catalytic Behavior of NiCo₂O₄ for H₂O₂ Electroreduction in Alkaline Medium

GAO Yin-Yi CAO Dian-Xue WANG Gui-Ling YIN Cui-Lei

(College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 P. R. China)

Abstract: NiCo₂O₄ nanoparticles were synthesized using a sol-gel method. Their structures and morphologies were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results indicate that NiCo₂O₄ has a spinel structure and an average diameter of around 15 nm. The catalytic behavior of NiCo₂O₄ for H₂O₂ electroreduction in alkaline media was investigated by linear potential sweep and chronoamperometry. NiCo₂O₄ shows considerable activity and stability for the electrocatalytic reduction of H₂O₂. The electroreduction occurs mainly *via* a direct pathway at H₂O₂ concentrations lower than 0.6 mol·L⁻¹. An Al-H₂O₂ semi-fuel cell was constructed using NiCo₂O₄ as the cathode catalyst. The cell displays an open circuit voltage of 1.6 V and a peak power density of 209 mW·cm⁻² at 220 mA·cm⁻² running on 1.0 mol·L⁻¹ H₂O₂ at ambient temperature.

Key Words: Nickel cobaltite; Hydrogen peroxide; Electrochemical reduction; Cathode catalyst; Metal semifuel cell

Fuel cells for use in air-free environments, such as in space or underwater, require liquid or constringent O_2 as cathode oxidant. The bulky tank for carrying O_2 significantly reduces the energy density and safety standard of fuel cell systems. Since high energy density and safety are critical for fuel cells as space or underwater power sources, alternative oxidants other than O_2 have been investigated, such as H_2O_2 . In recent years, several types of fuel cells using H_2O_2 as oxidant have been reported, including direct methanol-hydrogen peroxide fuel cells^[1–3], direct borohydridehydrogen peroxide fuel cells^[4–6], and metal-hydrogen peroxide

Received: September 9, 2009; Revised: October 16, 2009; Published on Web: November 9, 2009.

^{*}Corresponding author. Email: caodianxue@hrbeu.edu.cn; Tel/Fax: +86-451-82589036.

The project was supported by the National Natural Science Foundation of China (20973048), Key Laboratory of Superlight Material and Surface

Technology of Ministry of Education of China, Heilongjiang Postdoc Foundation, China (LBH-Q06091), and Fund of Harbin Engineering University, China (HEUFT07030, HEUFT07051).

国家自然科学基金(20973048),中国教育部超轻材料与表面技术重点实验室开放基金,中国黑龙江省博士后基金(LBH-Q06091)和中国哈尔滨 工程大学基础研究基金(HEUFT07030, HEUFT07051)的资助

semi fuel cells^[7-17].

 H_2O_2 as fuel cell oxidant has many advantages: (1) H_2O_2 is a powerful oxidant and can be converted into hydroxyl radicals with a reactivity second only to fluorine^[5]; (2) the single O-O bond energy of H_2O_2 (51 kJ·mol⁻¹) is much lower than the double O = O bond energy of O_2 (498 kJ·mol⁻¹). The exchange current density of H₂O₂ reduction is around 3-6 order higher than that of O_2 reduction^[18,19], so fuel cells using H_2O_2 as oxidant tend to provide higher performance than that using O_2 as oxidant; (3) H_2O_2 is liquid and its handling, storage, and delivery to a fuel cell are easy, which make the fuel cell system more compact and convenient; (4) the electroreduction reaction of liquid H₂O₂ occurs in a solid/liquid two-phase reaction zone of the cathode, while O₂ electroreduction requires a solid/liquid/gas three-phase region (gas diffusion electrode). The two-phase reaction zone is more readily realizable and easier to maintain during fuel cell operation than the three-phase region.

The performance of H₂O₂ cathode significantly depends on the nature of cathode catalysts. Several types of H_2O_2 electroreduction electrocatalysts have been investigated, including noble metals (Pt, Pd, Ir, Au, Ag, and a combination of these metals)[4-8,1120], macrocycle complexes of transition metals (Fe- and Co-porphyrin, Cu-triazine complexes)^[21-23], and other types such as PbSO₄ and $Co_3O_4^{[17,23]}$. Among these types of electrocatalysts, the most active and stable one is the noble metal type. However, noble metals, besides expensive, also catalyze the chemical decomposition of H₂O₂ to O₂. The evolved O₂, if not further electroreduced, will contribute little usable electrical energy, and therefore robs the system of energy density. Therefore, seeking electrocatalysts with low cost and less active for H₂O₂ decomposition is necessary. Our previous study^[17] demonstrates that Co₃O₄ nanoparticles have good activity and stability for electrocatalytic reduction of H₂O₂ in alkaline solution.

NiCo₂O₄ has been known to be an active and stable bifunctional catalyst for O₂ evolution and reduction in alkaline media^[24–27]. Structure analysis has shown the existence of Ni²⁺, Ni³⁺, Co²⁺, and Co³⁺ in this compound^[2829]. The redox couples of Ni²⁺/Ni³⁺ and Co²⁺/Co³⁺ might be responsible for the catalytic activity of NiCo₂O₄ for oxygen reduction and evolution. H₂O₂ radicals has been proposed to be the intermediate of oxygen electroreduction on NiCo₂O₄^[27], which suggests that NiCo₂O₄ might possess activity for direct electroreduction of H₂O₂.

In this paper, nano-sized NiCo₂O₄ particles were prepared and their electrocatalytic activity and stability for H_2O_2 electroreduction were investigated. The performance of an Al- H_2O_2 semifuel cell using NiCo₂O₄ as cathode catalyst was evaluated. This study opens up a possibility for the development of a low cost H_2O_2 electroreduction catalyst.

1 Experimental

1.1 Synthesis and characterization of NiCo₂O₄

 $NiCo_2O_4$ powder was synthesized by a sol-gel method. $Ni(NO_3)_2 \cdot 6H_2O$ (>99.0%), $Co(NO_3)_2 \cdot 6H_2O$ (>99.0%) and NH_4HCO_3 (NH_4 :

21.0% –22.0%) were used as source materials without further purification. Equal volumes of 1.0 mol·L⁻¹ cobalt nitrate and 0.5 mol·L⁻¹ nickel nitrate aqueous solution were mixed thoroughly. 3.3 mol·L⁻¹ NH₄HCO₃ solution was then added dropwise to the above mixture at room temperature under constant stirring. The molar ratio of Ni(NO₃)₂:Co(NO₃)₂:NH₄HCO₃ was 1:2:6.6. The resulting precipitate was separated from the solution by vacuum filtration, washed thoroughly with ultrapure water, and then dissolved in excess propionic acid (analytical grade, 150 mL per 100 g precipitate). The solution was heated at 140 °C to remove most of the excess water and propionic acid until a violet gel was formed. The gel was further heated at 180 °C in a stove under atmosphere for 24 h. After cooling to room temperature, the dry gel was finely ground and calcined at 300 °C in air for 3 h.

The phases and average particle size of the resulting powder were determined using an X-ray diffractometer (XRD, Rigaku TTR III, Japan) with Cu K_{α} radiation (λ =0.1514178 nm). The diffractograms were obtained in a scan range of 2θ from 10° to 80° with a step width of 0.01° and a scan rate of 5 (°)•min⁻¹. The morphology of the particles was examined using a transmission electron microscope (TEM, FEI Tecnai G2 S-Twin, Philips, Holland) equipped with an energy-dispersive X-ray spectrometer (EDX). Samples were dispersed in anhydrous ethanol and loaded on carbon-coated copper grids.

1.2 Preparation of NiCo₂O₄ electrode

To prepare NiCo₂O₄ electrode, NiCo₂O₄ powder and carbon black (Vulcan XC-72, Cabot Corporation, USA) were dispersed in anhydrous ethanol and sonicated for 15 min to obtain a suspension, to which a PTEF emulsion(40%, Jiangsu Huayuan H-Power Tech. Co., Ltd., China) was added. The mixture was sonicated for another 15 min and then heated at 80 °C in a water bath until a thick paste was formed. The paste was applied to a nickel foam current collector (Changsha Lyrun New Material Co. Ltd., China). The nickel foam containing the paste was then heated at 110 °C for 5 h. The dry weight ratio of NiCo₂O₄:carbon black:PTEF was 7:3:1. The obtained NiCo₂O₄/C/Ni-foam electrodes were used for both tests in the electrochemical cell as the working electrode and in the fuel cell as the cathode.

1.3 Electrochemical measurements

The electrochemical measurements were performed in a standard three-electrode electrochemical cell at room temperature using a 3.0 mol·L⁻¹ NaOH (analytical grade) as the electrolyte solution. A glassy carbon rod behind a D-porosity glass frit was employed as the counter electrode and a saturated Ag/AgCl, KCl electrode served as the reference. The NiCo₂O₄/C/Ni-foam working electrode has a dimension of 10 mm×10 mm×0.5 mm (length×width×thickness) with a NiCo₂O₄ loading of around 15 mg · cm⁻². The cyclic voltammograms and chronoamperometry curves were recorded using a computerized VMP3/Z potentiostat (Princeton Applied Research, USA) controlled by EC-lab software. The reported currents were normalized to the geometrical area of the electrode. All solutions were made with Milli-Q water (18 M · cm). All potentials were referred to the saturated Ag/ AgCl, KCl reference electrode unless specified.

1.4 Al-H₂O₂ semi-fuel cell tests

The performance of NiCo₂O₄ as cathode catalyst of the Al-H₂O₂ semi-fuel cell was examined using a home-made flow through test cell made of Plexiglas. The aluminum alloy anode (LF6, Northeast Light Alloy Co., Ltd.) and the NiCo₂O₄/C/Nifoam cathode possessed the same geometrical area of 4.0 cm² (20 mm×20 mm). Nafion-115 (DuPont, USA) membrane was used to separate the anode and the cathode compartments. The anolyte (3.0 mol · L⁻¹ NaOH) and the catholyte (3.0 mol · L⁻¹ NaOH+ xmol · L⁻¹ H₂O₂) were pumped into the bottom of the anode and the cathode compartments at a flow rate of 100 mL · min⁻¹, respectively, and exited at the top of the compartments. The discharge performance of the Al-H₂O₂ semi-fuel cell was measured at ambient temperature using a computer-controlled E-load system (Arbin, USA).

2 Results and discussion

2.1 Characterization of NiCo₂O₄

A typical XRD profile of the synthesized NiCo₂O₄ powder calcined at 300 °C is shown in Fig.1, in which the standard powder XRD pattern of spinel NiCo₂O₄ from a JCPDS card 000-020-0781 (vertical lines) is included for comparison. Clearly, the pattern of our synthesized sample matches well with the standard XRD pattern of NiCo₂O₄, and only peaks due to the reflections of NiCo2O4 are visible. The cubic cell parameter is calculated to be a=0.812 nm, which corresponds with a=0.811 nm given by the JCPDS 000-020-0781 file. These results demonstrate that the synthesized sample is pure $NiCo_2O_4$ with a spinel structure. The calcination temperature is critical and should be controlled within the range of 250-350 °C. Calcination at temperatures above 400 °C results in the decomposition of NiCo₂O₄ to NiO and Co₃O₄. Samples calcined below 250 °C exhibit an amorphous state. The broad XRD lines indicate the nano-crystalline nature of the material. The crystallite sizes are estimated using Scherrer's relationship^[30], $d = K\lambda/(B\cos\theta)$, where d is the average diameter in nm, K is the shape factor, B is the half width of the [440] peak, λ is the wavelength of X-rays (0.1514178 nm) and θ is Bragg's diffraction angle. The estimated average crystallite size is 15 nm.

Fig.2 TEM image of NiCo₂O₄

TEM image of NiCo₂O₄ powder (Fig.2) confirms that the diameter of the individual NiCo₂O₄ particles is around 10–20 nm. The particles are roughly in spherical shape and agglomerate together. The EDX analysis indicates that the molar ratio of Ni to Co is 9.5:18.8, which agrees well with the stoichiometric ratio of Ni to Co in NiCo₂O₄.

2.2 Electroreduction of hydrogen peroxide on NiCo₂O₄ electrode

Fig.3 shows the current-potential polarization curves for the electroreduction of H₂O₂ with various concentrations on NiCo₂O₄/ C/Ni-foam electrode. The onset potential for H₂O₂ electroreduction is around -0.16 V. Cathodic currents increase with the increase of H₂O₂ concentration. The current density is higher than that obtained on the Co₃O₄ electrode as we reported previously^[17]. For example, a current density of 160 mA \cdot cm⁻² is achieved on the NiCo₂O₄ electrode, but only 120 mA \cdot cm⁻² is obtained on the Co_3O_4 electrode at -0.4 V for 0.6 mol·L⁻¹ H₂O₂. It should be noted that even though high current density can be achieved at high H_2O_2 concentration, the chemical decomposition of H_2O_2 to O_2 becomes more significant at high H₂O₂ concentration. Interest ingly, electrochemical current oscillation during H₂O₂ reduction on the NiCo₂O₄ electrode in 1.2 mol·L⁻¹ H₂O₂ is observed within the potential range from -0.57 to -0.69 V. Similar phenomena have been reported for H₂O₂ reduction on metal (Pt, Au, and Ag) and semiconductor (CuFeS₄, CuInSe₂, and GaAs) electrodes in acidic, neutral, and basic medium[31,32]. We also measured the cur-

0

-60

-120

-180 -240 -300

-360

i / (mA·cm⁻²)

 $c(H_2O_2)/(mol \cdot L^{-1})$

0.4

0.6

-0.7

-0.6

Fig.3 Current density (*i*)-potential (*E*) curves for H₂O₂ electroreduction on NiCo₂O₄ electrode

E / V (vs Ag/AgCl)

-0.5

-0.4

scan rate: 5 mV·s⁻¹ electrolyte: 3.0 mol·L⁻¹ NaOH solution

-0.3

-0.2

-0.1

rent density–potential curve of C/Ni-foam electrode (NiCo₂O₄free) in 3.0 mol·L⁻¹ NaOH containing 0.6 mol·L⁻¹ H₂O₂ and found the cathodic current density is less than about 1.5 mA ·cm⁻², which is remarkably lower than that measured on NiCo₂O₄/C/Nifoam electrode. This confirms the existence of the electrocatalytic activity of NiCo₂O₄ for H₂O₂ reduction.

The H_2O_2 cathode reaction can occur via a direct 2e⁻ pathway or an indirect 4e⁻ pathway. In the indirect mode, H₂O₂ first decomposes to O₂, which was then electro-reduced, so H₂O₂ simply serves as an O₂ carrier. In the direct mode, H₂O₂ is delivered to the cathode and directly reduced electrochemically $(H_2O_2+2e^-)$ 20H⁻). Clearly, the direct pathway is preferable because: (1) the direct electroreduction of H₂O₂ is a 2e⁻ process and hence has a lower activation energy than the electroreduction of O₂ (4e⁻ process); (2) the theoretical potential for the direct reduction of H_2O_2 (0.878 V) is higher than that for O₂ reduction (0.401 V) in a basic medium, so the direct reduction of H₂O₂ produces a larger cell voltage. We indeed noted the occurrence of chemical decomposition of H₂O₂ on NiCo₂O₄, particularly at H₂O₂ concentration higher than 0.6 mol·L⁻¹. Considering NiCo₂O₄ is able to catalyze O2 electroreduction in alkaline medium^[33-35], there is possible that the H₂O₂ electroreduction may go through the indirect pathway. In order to investigate via which pathway H₂O₂ reduction over NiCo₂O₄ proceeds, the cyclic voltammogram of NiCo₂O₄ is first taken in a blank 3.0 mol·L⁻¹ NaOH solution (Fig.4, dot line), and then in an O₂-saturated 3.0 mol·L⁻¹ NaOH solution (Fig.4, solid line). Clearly, an O2 reduction peak is observed with the peak current density of 4.5 mA ·cm⁻² at -0.29 V. This current density, however, is nearly 6.3% of that for H_2O_2 reduction (71 mA \cdot cm⁻² for 0.4 mol·L⁻¹ H₂O₂, Fig.3). So it can be concluded that H₂O₂ reduction on NiCo₂O₄ mainly proceeds through the direct 2e⁻ pathway. The cyclic voltammogram of NiCo₂O₄ recorded in blank NaOH solution displays significant lower cathodic current densities than that taken in H₂O₂-containing NaOH solution. This result confirms that the cathodic currents are from the electroreduction of H₂O₂ and demonstrates the catalytic activity of NiCo₂O₄ for H₂O₂ electroreduction.

Fig.5 shows the current density –time curves for H_2O_2 electroreduction in 3.0 mol·L⁻¹ NaOH+0.6 mol·L⁻¹ H_2O_2 solution over NiCo₂O₄ electrode at various constant potentials. At –0.2 and

Fig.4 Cyclic voltammograms of NiCo₂O₄ electrode

Fig.5 Chronoamperometric curves for H₂O₂ electroreduction at different potentials

-0.3 V, current densitions rapidly reach the steady-state and remain constant within a 30-minute test period, indicating NiCo₂O₄ being stable for H₂O₂ reduction. At -0.4 V, current densities irregularly fluctuate with the maximum amplitude of around 20 mA · cm⁻², but overall display no decrease. This behavior might result from the depletion of H₂O₂ near the NiCo₂O₄ surface and/ or the current oscillation phenomena. The current densities are higher than previously reported on Co₃O₄ electrode^[17], indicating that NiCo₂O₄ is more active than Co₃O₄.

2.3 Al-H₂O₂ semi-fuel cell test

In order to evaluate the performance of NiCo₂O₄ as the cathode catalyst for fuel cells using H₂O₂ as oxidant, an Al-H₂O₂ single semi-fuel cell was constructed to serve as a model fuel cell. Fig.6 shows the plots of cell voltage and power density *versus* current density at ambient temperature with varying concentrations of H₂O₂ solution feeding to the cathode. The cell has an open circuit voltage of 1.6 V. At current density below about 100 mA · cm⁻², the cell voltage decays linearly with the increase of current density and is independent of H₂O₂ concentration. At current densities higher than 100 mA · cm⁻², the cell performance depends on H₂O₂ concentration. A maximum peak power density of 209 mW · cm⁻² at 220 mA · cm⁻² was achieved when the cell operating on 1.0 mol · L⁻¹ H₂O₂. Further increase of H₂O₂ conce-

anolyte: 3.0 mol·L⁻¹ NaOH solution, catholyte: 3.0 mol·L⁻¹ NaOH+H₂O₂ solution

ntration to 1.5 mol·L⁻¹ reduces the cell performance. This is likely due to the severe decomposition of H_2O_2 as indicated by the generation of large numbers of O_2 gas bubbles on the cathode. The formation of O_2 bubbles reduces the effective electrode area for H_2O_2 reduction and affects diffusion of H_2O_2 to the NiCo₂O₄ surface.

It should be pointed out that the Al-H₂O₂ semi-fuel cell presented in this work is only for the demonstration of the feasibility of NiCo₂O₄ as a cathode catalyst for fuel cells using H₂O₂ as oxidant. The cell configuration, cathode structure and operation parameters, such as temperature and flow rate, are not optimized. The cell performance can be enhanced, for example, by reducing *IR* drop and improving cathode structure to allow better mass transport of H₂O₂. Notably, NiCo₂O₄ can also be used in other fuel cells using H₂O₂ as oxidant, such as direct alkaline NaBH₄-H₂O₂ fuel cells.

3 Conclusions

Spinel structure nano-sized NiCo₂O₄ particles are synthesized and tested as electrocatalyst for H₂O₂ reduction in alkaline medium. NiCo₂O₄ exhibits higher electrocatalytic activity than Co₃O₄ and has good stability in alkaline electrolyte. The elec troreduction occurs primarily *via* the direct pathway at low H₂O₂ concentration. Chemical decomposition becomes severe at high H₂O₂ concentration. An Al-H₂O₂ semi-fuel cell constructed using NiCo₂O₄ as cathode catalyst displays an open circuit voltage of 1.6 V and a peak power density of 209 mW · cm⁻² at 220 mA · cm⁻² running in 1.0 mol · L⁻¹ H₂O₂ solution at ambient temperature. This study demonstrates that NiCo₂O₄ is a promising low cost cathode catalyst for fuel cells using H₂O₂ as oxidant.

References

- 1 Prater, D. N.; Rusek, J. J. Appl. Energ., 2003, 74: 135
- Bewer, T.; Beckmann, T.; Dohle, H.; Mergel, J.; Stolten, D.
 J. Power Sources, 2004, 125: 1
- 3 Sung, W.; Choi, J. W. J. Power Sources, 2007, 172: 198
- 4 Gu, L.; Luo, N.; Miley, G. H. J. Power Sources, 2007, 173: 77
- 5 Miley, G. H.; Luo, N.; Mather, J.; Burton, R.; Hawkins, G.; Gu, L.; Byrd, E.; Gimlin, R.; Shrestha, P. J.; Benavides, G.; Laystrom, J.; Carroll, D. J. Power Sources, 2007, 165: 509
- 6 Raman, R. K.; Choudhury, N. A.; Shukla, A. K. Electrochem. Solid-State Lett., 2004, 7: 488
- Yang, W.; Yang, S.; Sun, W.; Sun, G.; Xin, Q. *Electrochim. Acta*, 2006, 52: 9
- 8 Yang, W.; Yang, S.; Sun, W.; Sun, G.; Xin, Q. J. Power Sources,
 2006, 160: 1420
- 9 Medeiros, M. G.; Bessette, R. R.; Deschenes, C. M.; Patrissi, C. J.; Carreiro, L. G.; Tucker, S. P.; Atwater, D. W. J. Power Sources, 2004, 136: 226
- Dow, E. G.; Bessette, R. R.; Seeback, G. L.; Marsh-Orndorff, C.; Meunier, H.; Van Zee, J.; Medeiros, M. G. J. Power Sources, 1997, 65: 207

- Bessette, R. R.; Medeiros, M. G.; Patrissi, C. J.; Deschenes, C. M.; LaFratta, C. N. J. Power Sources, 2001, 96: 240
- 12 Bessette, R. R.; Cichon, J. M.; Dischert, D. W.; Dow, E. G. J. Power Sources, **1999**, **80**: 248
- 13 Brodrecht, D. J.; Rusek, J. J. Appl. Energy, 2003, 74: 113
- 14 Hasvold, O.; Johansen, K. H.; Mollestad, O.; Forseth, S.; Storkersen, N. J. Power Sources, 1999, 80: 254
- 15 Medeiros, M. G.; Dow, E. G. J. Power Sources, 1999, 80: 78
- 16 Hasvold, O.; Storkersen, N. J.; Forseth, S.; Lian, T. J. Power Sources, 2006, 162: 935
- Cao, D.; Chao, J.; Sun, L.; Wang, G. J. Power Sources, 2008, 179: 87
- 18 Cao, D.; Sun, L.; Wang, G.; Lv, Y.; Zhang, M. J. Electroanal. Chem., 2008, 621: 31
- 19 Luo, N.; Miley, G. H.; Shrestha, P. J.; Gimlin, R.; Burton, R.; Hawkins, G.; Mather, J.; Rusek, J.; Holcomb, F. In Proceeding of Eighth International Hydrogen Peroxide Propulsion Conference, Purdue University, Lafayette, IN, USA, 2005, September 18–21, 2005: 87–96
- 20 Medeiros, M. G.; Bessette, R. R.; Deschenes, C. M.; Atwater, D. W. J. Power Sources, 2001, 96: 236
- Liu, H.; Zhang, L.; Zhang, J.; Ghosh, D.; Jung, J.; Downing, B. W.;
 Whittemore, E. J. Power Sources, 2006, 161: 743
- 22 Dias, V. L. N.; Fernandes, E. N.; da Silva, L. M. S.; Marques, E. P.; Zhang, J.; Marques, A. L. B. *J. Power Sources*, **2005**, **142**: 10
- 23 Raman, R. K.; Shukla, A. K. J. Appl. Electrochem., 2005, 35: 1157
- 24 Ravindra, N. S.; Koenig, J. F.; Poillerat, G.; Chartier, P. *J. Electrochem. Soc.*, **1990**, **137**: 1408
- 25 Rashkova, V.; Kitova, S.; Konstantinov, I.; Vitanov, T. Electrochim. Acta, 2002, 47: 1555
- 26 Wu, G.; Li, N.; Zhou, D. R.; Mitsuo, K.; Xu, B. Q. J. Solid State Chem., 2004, 177: 3682
- 27 Singh, R. N.; Koenig, J. F.; Poillerat, G.; Chartier, P. J. Electroanal. Chem., 1991, 314: 241
- 28 Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Rios, E.; Berry, F. J. *J. Solid State Chem.*, **2000**, **153**: 74
- 29 Kim, J. G.; Pugmire, D. L.; Battaglia, D.; Langell, M. A. Appl. Surf. Sci., 2000, 165: 70
- 30 De Faria, L. A.; Prestat, M.; Koenig, J. F.; Chartier, P.; Trasatti, S. Electrochim. Acta, 1998, 44: 1481
- 31 Van Venrooij, T. G. J.; Koper, M. T. M. *Electrochim. Acta*, 1995, 40: 1689
- 32 Matsumoto, F.; Uesugi, S.; Koura, N.; Ohsaka, T. J. Electroanal. Chem., 2003, 549: 71
- Heller-Ling, N.; Prestat, M.; Gautier, J. L.; Koenig, J. F.; Poillerat,
 G.; Chartier, P. *Electrochim. Acta*, **1997**, **42**: 197
- 34 Angelo, A. C. D.; Gonzalez, E. R.; Avaca, L. A. Int. J. Hydrogen Energy, 1991, 16: 1
- 35 Bagotzky, V. S.; Shumilova, N. A.; Khrushcheva, E. I. Electrochim. Acta, 1976, 21: 919