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ABSTRACT

In this paper neural networks have been studied as a tool to realise a single-input single-output

nonlinear dynamic system simulating rainfall-runoff transformation in a urban hydrological basin. The

aim is to test the performance, in simulation and real time forecasting, of these models when

compared to single-input single-output linear dynamic systems with a stochastic process as

forecasting component. For this reason, the impulse unit hydrograph, the transfer function of the

deterministic component of such linear models, and the stochastic process have been calculated by

means of the experimental data (59 events of rainfall-runoff) and, similarly, the identification

procedure of the best nonlinear model was performed. The comparison between linear and

nonlinear models was achieved by computing the estimated mean generalisation error and by

performing statistical tests by means of cross-correlation and auto-correlation functions, using

cross-validation techniques.
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INTRODUCTION

The inflow–outflow transformation phenomenon in urban

basins is an interesting issue in technical hydrology

because it summarises every hydrological and hydraulic

process that affects the discharge in a generic section of

the urban drainage network due to the inflow in the

upstream basin. One category of mathematical models

simulates rainfall-runoff transformation by means of the

Impulse Unit Hydrograph (IUH). These models belong to

the Single-Input Single-Output Linear Time Invariant

(SISO LTI) causal dynamic systems class (Giustolisi 1998).

Using these linear models to simulate physical inflow–

outflow transformation implies the approximation that

physical phenomena in urban basins are linear and time

independent.

This means that a single Unit Hydrograph is able to

describe the hydrological processes during all the possible

events of rainfall, neglecting the instant physical condi-

tions of the urban basin. It is known, however, that such a

physical system is quite complex and the previous

approximations can be introduced only as useful tools to

build a simplified mathematical model of the rainfall-

runoff transformation.

In the last few years various authors (Giustolisi &

Mastrorilli 1994; Hsu et al. 1995; Smith & Eli 1995; Minns

& Hall 1996; Mason et al. 1996; ASCE Task Committee

2000; Minns 2000; Abrahart et al. 1999) modelled hydro-

logical systems by means of neural networks. In the

present paper the author uses Input–Output Dynamic

Neural Networks as a special Single-Input Single-Output

NonLinear Time Invariant (SISO NLTI) dynamic system

(Haykin 1999). For this reason, a special subclass of neural

networks, reported in the scientific literature as ARX

neural networks (NARX) (Billings & Chen 1992; Sjöberg

et al. 1994), was tested using data of rainfall-runoff events

measured in the experimental urban basin of Luzzi in the

South of Italy (Calomino et al. 1993). In building the

model, the choice of the neural network structure is a

critical point since the range of options is wider than for

linear dynamic systems. Additionally, the parameters esti-

mation of neural networks, by means of the error function
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as a goal function, is a rather complex inverse problem

because the surface of the error function always presents

local minima. The selection of the NARX structure was

justified by its linear regressor as input and by the fact that

it is not a recursive structure (the computed output is not

applied as input). These characteristics make the NARX

structure, among all possible architectures of neural net-

works, easier to handle from the mathematical point of

view.

SISO LTI DYNAMIC SYSTEMS

At first, linear dynamic systems with a stochastic forecast-

ing component have been chosen (Ljung 1987; Åström &

Wittenmark 1995; Haykin 1996) to model rainfall-runoff

phenomena in a urban catchment:

In Equations (1), qM(n) and pM(n) are the measured

discharge and rainfall at time step n. The discharge, in the

discrete domain, is calculated as the sum of the two values:

• the first addendum (deterministic framework) is the

convolution sum between h(n), the impulse response

of linear system, then the unit hydrograph (IUH),

and the measured rainfall;

• the second addendum (probabilistic framework for

prediction) is a stochastic process; g(n) is its impulse

response and s(n) is an input sequence of

independent random variables distributed according

to a gaussian probability density function with zero

mean and variance l (white noise).

The disturbance v(n) globally expresses the fraction of

the actual runoff which cannot be modelled by the deter-

ministic framework, also due to the hypothesis of linear

time invariant behaviour (Figure 1).

Parametrised form

Usually the transfer functions IUH(n) and g(n) are

parametrised by means of rational functions and the

general mathematical representation of such a parametric

form is (Ljung 1987)

Equations (2) are written in the z-transform domain,

see the expressions of polynomials, and changing the

number of parameters in the polynomials A, B, C, D, F,

parametrised in O [the vector of parameters: see, for

example, Equation (4)] it is possible to describe different

model structures (Ljung 1987; Giustolisi 1998), see Table 1,

which depend on the dynamic relationship between the

probabilistic and deterministic components [note that

the z transform is consistent with the q backward shift

operator in Box & Jenkins (1989)].

Figure 1 | Linear dynamic system having the stochastic process to forecast v(n).
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The parameter nk represents the delay between input

pM and output qM of the linear models formalised by

Equations (2).

One-step-ahead prediction of SISO LTI models

The general representation of the one-step-ahead predic-

tion of linear black-box models reported in Table 1 is

(Ljung 1987)

The models of Equation (3) (Figure 2) represent a

special case of k-step-ahead prediction (Ljung 1987; Gius-

tolisi 1998) and they are useful in estimating parameters

minimising an error function of e(n,O) which is the differ-

ence between the measured discharge and the one-step-

ahead prediction of discharge q(nzO). These forecasting

performances are generally obtained by improving the

model online, Figure 2, thanks to the measured qM.

ARX is a particularly useful structure of Table 1 for

estimating parameters in an easy way, because the mean

square one-step-ahead error surface is parabolic with no

local minima.

This special structure is a linear regression among

measured data:

q(nzO) = B(z,O)pM(n) + [1 − A(z,O)]qM(n)

f(n) = [ − qM(n − 1) . . . − qM(n − na)

pM(n − nk) . . . pM(n − nb + nk − 1)] (4)

O = [a1 a2 . . . ana b1 b2 . . . bnb]
T

q(nzO) = f(n)O e(n,O) = qM(n) − f(n)O

and for this reason the regressor vector f(n) depends on

known data and not on parametrisation (parameters in O).

SISO NLTI: NEURAL NETWORKS

Looking at Equations (3) and (4), it is possible to write a

general form of the one-step-ahead prediction model

(Ljung 1987):

Table 1 | Some model structures of a linear dynamic system with stochastic forecasting.

FIR (Finite Impulse Response), MA (Moving Average), AR (AutoRegressive), X (eXogeneous

variable or eXtra input).

na nb nc nd nf Model

= 0 > 0 = 0 = 0 = 0 FIR

= 0 = 0 > 0 = 0 = 0 MA

> 0 = 0 = 0 = 0 = 0 AR

> 0 = 0 > 0 = 0 = 0 ARMA

> 0 > 0 = 0 = 0 = 0 ARX

> 0 > 0 > 0 = 0 = 0 ARMAX

= 0 > 0 = 0 = 0 > 0 Output-Error

= 0 > 0 > 0 > 0 > 0 Box–Jenkins
Figure 2 | General linear one-step-ahead prediction model (SISO LTI) which performs

online forecasting by means of discharge qM(n−1) measured up to n−1, and

rainfall pM(n−nk) measured up to n−nk.
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q(nzO) = f(n,O)O = WppM(n) + WqqM(n) (5)

where transfer functions Wp and Wq are selected by the

first of Equations (3), which represents a pseudo-linear

regression because the regressor vector f(n) depends on

the parameters in O. Equation (5) can be fully generalised:

q(nzO) = G{f[pM(n − nk), qM(n), f(O)], O(n)} (6)

Equation (6) is the general nonlinear time varying

formalisation of the one-step-ahead prediction model in

which G depends on the regressor vector f, function of

measured data and the parameters in O, and on the same

vector O which varies in time step n (Sjöberg et al. 1994).

NARX models

Equation (6) can be simplified by choosing, as regressor

vector, the pseudo-linear regressor from linear model

structures of Table 1 and working with time invariant

systems (Billings & Chen 1992; Sjöberg et al. 1994):

q(nzO) = G{f(n, O), O} (7)

The further step is to define the description of G by

means of neural networks.

One possible choice is the structure:

where the third term of Equation (8) is the expansion of G

by means of a mother basis function k( ) dependent on the

regressor vector f, r scale parameters b and r translation

parameters, g, as reported in Figure 3 where, for example,

r = 3.

Moreover, the NARX one-step-ahead prediction

model (Figure 4) has been carried out by means of a neural

network using:

• regressor vector f(n) of ARX structure

[Equations (4), Table 1] as input (nk = 1);

• parameters O as synaptic weights;

• r transfer functions, in the neurons of the hidden

layer, representing the r basis functions which can

be different;

• the prediction q(nzO) as a single linear output.

In this investigation the NARX model was chosen

because, as is evident in Figure 4, this kind of neural

network is not recurrent, the predictor having no feedback

from output to input (future inputs will not depend on

present and future outputs). This makes it easier to esti-

mate parameters, the weights of the neural network,

because the model is more stable during the training phase

and use.

NARX PARAMETERS ESTIMATION

Parameters estimation of NARX models has been per-

formed by minimising the mean square error function of

the one-step-ahead prediction with a Tikhonov regulari-

sation (Tikhonov 1963; Haykin 1999) term given by a

function of the squared distance of the parameters vector

from the origin:

where N is the number of data and a is a parameter which

prevents overtraining due to overparametrisation.

Figure 3 | General nonlinear one-step-ahead prediction model (SISO NLTI) constructed

by a neural network.
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Regularisation has a smoothing effect on the criterion of

Equation (9); in this way, several local minima are often

removed by it. The weights have been computed as

An iterative search of the solution by the Gauss–

Newton-based Levemberg–Marquardt method has been

performed:

The parameter l, in the second of Equations (11),

avoids the Levemberg–Marquardt approximation of the

Hessian, by first order derivative terms, to be singular. The

choice of the l term was adaptively performed (Fletcher

1987; Nørgaard 1996), obtaining:

• the search direction approaching the steepest

descent direction and Vll(Oi) − 1 (step size) decreasing

while increasing l;

• the search direction approaching the Gauss–Newton

direction and Vll(Oi) − 1 (step size) increasing while

decreasing l.

An alternative to the regularisation method to avoid

overtraining was tested. It is known as Early Stopping. It

consists of stopping the iterative parameters searching

before the minimum is reached. This can be achieved by

computing an error function of the validation set, which is

a subset of the measured data that are not used to estimate

parameters.

Details on estimation phase

The training or estimation subset of data has been pre-

sented, coherently with the hypothesis of time invariant

Figure 4 | NARX NLTI one-step-ahead prediction model constructed by a neural network. pM(n) and qM(n) are mea sured sequences and ‘1’ represents a bias which makes the model

more flexible.
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behaviour, lining up sequences of runoff-rainfall events

separated by zeros to avoid changes, due to interference

among sequences of events, of the initial zero conditions

(Giustolisi 1998). Moreover, during the estimation phase,

data were scaled and translated in the range [0:1] and the

weights were re-scaled after training, allowing original

data to be used directly in the neural network.

Bias of the model was not used by zeroing their

weights, because the physical initial conditions of

rainfall-runoff events did not indicate that they were

required.

This estimation of parameters does not guarantee

global minima reaching.

For this reason, the choice of initial weights is very

important. These were assigned randomly in the range

[ − 0.5:0.5] and the neural network was trained twice with

different initial random configurations of weights.

Finally, the parameters estimation of ARX models,

indeed, is not iterative. It was obtained by means of Gauss

normal equations performing the inversion of a square

matrix based on the regressor. In this case the overparam-

etrisation causes ill conditioning of the problem.

IDENTIFICATION AND VALIDATION

The identification of the best ARX and NARX models to

be compared has been performed by means of cross-

validation. The whole set of data was divided into two

subsets: the estimation or training subset, and the valida-

tion or test subset. The cross-validation, as previously said,

allowed us to perform Early Stopping during the iterative

parameter estimation of the NARX model.

Model selection

Among several ARX and NARX models, varying the

number of parameters, the selection of the best ARX

model and the best NARX model was performed by means

of a validation set.

This set has been used to evaluate the mean general-

isation error of the simulated output (as input of the

models substituting measured with computed discharges)

and to execute correlation based validation.

ARX

Parameters were estimated by varying na and nb in the

range of [1:10] and the best model was selected by com-

puting the mean generalisation error of the simulated

output by validation data. Delays between rainfall and

runoff for each event were evaluated selecting the best

Output-Error model (nb = 2, nf = 2, nk = [1:20]). Then,

during computations, the parameter nk was always picked

unitary (both in ARX and NARX models) by translating

each of the measured runoff sequences backward thanks

to the estimated delay.

NARX

The regressor f(n) has been chosen assuming na and nb in

the range of [1:10], and varying hidden neurons in the

range of [1:10]. Then 100 regressors and 1,000 NARX

models were tested. The hyperbolic tangent was the trans-

fer function of the hidden neurons and the output neuron

was linear.

By computing, at each iteration, the mean generalis-

ation error of the simulated output, thanks to the valida-

tion data, estimation of the parameters has been stopped

early.

In fact, the best NARX model was selected by means

of validation data computing generalisation error of the

simulated output and by means of correlation based

validation.

As an alternative to Early Stopping, regularisation has

also been tested without yielding cross-validation.

Correlation-based validation

The correlation-based methods perform validation esti-

mating some particular correlation functions of the

residuals vector e(n,O) and the input vector pM(n). The

idea was to perform statistical tests on the hypothesis that
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such functions belong asymptotically to a normal distribu-

tion N( ) which has its variance to be estimated and zero

mean.

Residuals analysis

The first test regards the auto-correlation sequence of the

one-step-ahead prediction error e(n,O) (residuals) of the

ARX and NARX models. In fact, if the deterministic

component of the model is good, residuals should be

mutually independent if the stochastic component is able

to give a correct description of disturbance v(n). This

means that the auto-correlation function of residuals, Ree,

should be zero for lags t greater than zero, and equal to the

variance l at lag zero. The statistical test was achieved by

estimating the auto-correlation from lag zero to M, see the

first of Equations (12). Then, the auto-correlation function

at lag zero allowed us to estimate the variance of the

normal distribution, see the third of Equations (12).

Finally, the test was performed by controlling that the

auto-correlation of residuals at lags greater than zero

belongs to the confidence interval (1 − a), see the fourth of

Equations (12). This level depends on the significance

level a of the test (the probability of rejecting the hypoth-

esis of independence among residuals) which is the level

of the normal distribution:

Input-residuals analysis

The second test regards the cross-correlation sequence

between residuals e(n,O) of the ARX and NARX models

and input vector pM(n).

In fact, if the deterministic component of the model is

able to reproduce the deterministic fraction of the output,

residuals and input should be independent because other-

wise there would be more in the output that originates

from the input and that the model has not picked up. This

means that the cross-correlation function Rep between

residuals and input vectors should be zero for lags t

greater than zero (delay nk was picked to be unitary by

translating rainfall-runoff events). There is no hypothesis

on whiteness of residuals.

Similarly to the previous statistical test, the cross-

correlation was estimated by the first of Equations (13)

from lag 1 to M.

Then the auto-correlation of residuals and of input

sequences allowed us to estimate the variance of the

normal distribution, see the fifth of Equations (13).

Finally, the test was performed by controlling that the

cross-correlation at lags greater than zero belong to the

confidence interval (1-a), see the sixth of Equations (13).

This level depends on the significance level a of the test

(the probability of rejecting the hypothesis of indepen-

dence between residuals and input sequences) which is

the level of the normal distribution:

RESULTS

The best NARX and ARX models were realised to simulate

inflow–outflow phenomena in the urban basin of Luzzi

in the South of Italy, see Table 2 [for more details see

the book by Calomino et al. (1993)]. For this reason,
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59 measured rainfall-runoff events from that urban catch-

ment area have been used.

Table 3 reports the characteristics of the best ARX and

NARX models and the corresponding mean generalisation

error of the simulated output (k-step-ahead prediction

with k = ∞), computed from the validation subset by

where Nv is the length of the validation subset and qD(n)

represents the sequence that was computed as the simu-

lated output (the deterministic component of Figure 2). It

was calculated by substituting the measured input qM(n)

with the computed q(nzO), see Figure 4.

Tables 3 and 4 show that the mean generalisation

errors of the NARX model are smaller than the ARX

model but simulation of some events of the validation set

is not improved. It is important to underline that many

other NARX models (among the 1,000 estimated) had this

characteristic.

Figures 5 and 6 report the correlation based validation

computed by the validation subset. They show that the

best NARX model is better than the best ARX model also

from this point of view, because residuals are: less auto-

correlated (the prediction component is good); and rather

independent from the rainfall sequence. This means that,

within the level of significance of the tests, the NARX

model is a good model.

In Table 3, moreover, it is reported that the mean

generalisation error of the five-step-ahead prediction

model (Ljung 1987), obtained from Equation (14) by sub-

stituting qD(n) with q(nzn − k = 5, O), the five-step-ahead

prediction of runoff. The choice of k = 5 (sampling interval

of data was 1 minute) was related to the fact that the mean

calculated delay among the events was about 5 minutes.

This generalisation error shows that the NARX model is

also good in online prediction. The same computed for

ARX is high; in fact, it was selected by means of the best

simulated output error because the aim was not to have a

good stochastic component.

Finally, Figure 7 reports the comparison among

measured and computed runoff by the ARX and NARX

Table 2 | Some characteristics of the Luzzi basin. Sr, Si, Sp are the roof, impervious and

pervious parameters. T are statistical parameters about duration.

Area
km2

Sr
%

Si
%

Sp
%

Tmean
min

Tmax
min

Tmin
min

0.02 63 28 9 54 140 8

Table 3 | Global mean generalisation errors k=∞, 5 of the validation set.

na nb nk r SSE∞ SSE5 Model

1 9 1 / 0.1978 0.2372 ARX

3 2 1 5 0.1397 0.1297 NARX

Table 4 | Mean generalisation errors of the 17 rainfall-runoff events of the validation set.

Event 1 2 3 4 5 6 7 8 9

ARX 0.2621 0.2544 0.2570 0.0315 0.0140 0.0486 0.2009 1.6191 0.0611

NARX 0.1831 0.2101 0.1562 0.0153 0.0060 0.0313 0.4031 1.1659 0.1230

Event 10 11 12 13 14 15 16 17

ARX 2.4814 0.2989 0.0899 0.0692 0.0489 0.0326 0.0558 0.0059

NARX 0.3797 0.5293 0.1145 0.0383 0.0345 0.0307 0.0571 0.0045
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models. Four representative events belonging to the

validation subset were chosen. Figure 7 points out the

capacity of the NARX model of simulating the single event

and, particularly, its improved efficiency in predicting

higher values of discharge. From a computational point of

view, it is important to stress that these results were

carried out estimating models by means of Early Stopping

that was performed thanks to the validation subset, as

previously said.

The Early Stopping technique also showed better per-

formance than Tikhonov regularisation because the data

set was large and it was possible to select a large validation

Figure 5 | Auto-correlation of residuals of the best NARX and ARX models. Horizontal lines indicate confidence level assumed at 99%.

Figure 6 | Cross-correlation between residuals, of the best NARX and ARX models, and measured rainfall sequence. Horizontal lines indicate confidence level assumed at 99%.
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subset to efficiently estimate the mean generalisation

error during parameters searching. In fact, the validation

subset was fixed at 30% of the whole data set. Seventeen

rainfall-runoff events were used to calculate the simulated

output for Early Stopping, and then to estimate the

mean generalisation errors and correlation functions for

validation and model selection among NARX systems.

CONCLUSIONS

In conclusion, neural networks have showed good

performance in simulating nonlinear physical phenomena

of a urban catchment area. The comparison between

linear (ARX) and nonlinear (NARX) dynamic models was

important because the second type are more flexible but

also more difficult to estimate and identify. For this

reason, it underlines that the validation phase is very

important in selecting the best NARX structure and the

correlation-based analysis is a powerful tool for this aim.

It is useful to stress that linear modelling, by means of

one single unit hydrograph describing the physical inflow–

outflow phenomena in the hydrological basin, must

always be the first choice and the nonlinear modelling the

second choice to improve model performance when non-

linear effects, such as soil absorption, evapotranspiration,

etc., are very significant. Actually, linear modelling in the

Luzzi basin (Giustolisi 1998) is efficient because the basin

has a large impermeable surface, which was the reason for

choosing this basin to have a powerful test of nonlinear

modelling by neural networks.

It has to be emphasised that in this work only a

particular neural network structure with the ARX

regressor was tested and Table 4 shows the non-

constant simulation capabilities of such models while the

Figure 7 | Simulation of the validation set, NARX (red line), ARX (blue line) and data (black line).
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cross-correlation function of Figure 6 seems to indicate, at

lower lags, that this nonlinear simulation picked better

than linear the deterministic behaviour but it could be

improved. The first choice of NARX structure was done

because it is easy to estimate and more stable than other

more general and flexible structures. In fact, it was verified

(perhaps also thanks to Early Stopping in the estimation

phase), during the estimation and simulation phases, that

NARX models never exhibited unstable behaviour.

Other neural network structures (different regressors

from Table 1 or different types of neural networks) could

be more flexible but more complex to deal with; here we

remark that the NARX model has the same regressor of

Output-Error model (Table 1) when used in simulation.

Moreover, it is to underline that this kind of Input–

Output Dynamic Neural Networks are a flexible math-

ematical tool to realise a compact model useful, for

example, in online prediction for real time control.

However, the author thinks that, before selecting one

specific neural network, it is necessary to study the various

structures from a mathematical point of view, and then

their relationship with physical behaviour. In fact, a com-

mon idea about neural networks of being a ‘magic tool’

that is able to solve every modelling problem without

physical insight is not realistic. Physical insight about the

phenomena to model always remains important in order

to choose the best structure. For this reason the future goal

should be to insert directly physical knowledge into the

structure of neural networks because this will also be an

improvement in parameters estimation and validation

phase.

Finally, the scope is to choose, by means of input–

output dynamic neural networks, among infinite non-

linear dynamics what is the best for the specific physical

phenomenon and this is done through experimental data.

For this reason it is possible to infer that the quality of

these data should play a very important rule in these kinds

of models.
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