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ABSTRACT

Modelling is considered to be an inherent part of the design and operation of a wastewater

treatment system. The models used in practice range from conceptual models and physical design

models (laboratory-scale or pilot-scale reactors) to empirical or mechanistic mathematical models.

These mathematical models can be used during the design, operation and optimisation of a

wastewater treatment system. To do so, a good software tool is indispensable. WEST is a general

modelling and simulation environment and can, together with a model base, be used for this task.

The model base presented here is specific for biological wastewater treatment and is written in

MSL-USER. In this high-level object-oriented language, the dynamics of systems can be represented

along with symbolic information. In WEST’s graphical modelling environment, the physical layout

of the plant can be rebuilt, and each building block can be linked to a specific model from the

model base. The graphical information is then combined with the information in the model

base to produce MSL-EXEC code, which can be compiled with a C+ + compiler. In the

experimentation environment, the user can design different experiments, such as

simulations and optimisations of, for instance, designs, controllers and model fits to

data (calibration).

Key words | biological wastewater treatment, calibration, knowledge base, model specification,

optimisation, simulation

NOTATION

b specific decay rate [T − 1]
Ci concentration of component i [M L − 3]
KS,(i) half-velocity constant (of component i)

[M L − 3]
Mi mass (of component i) [M]
rj process rate for the species j [M L − 3T − 1]
Ri reaction rate of component i [M L − 3T − 1]
Q flow rate [L3 T − 1]
Si concentration of soluble component i

[M L − 3]
V volume [L3]
Xi concentration of particulate component i or

biomass [M L − 3]
Y(i) yield coefficient for growth (on substrate i)

[M M − 1]

m(j) specific growth rate (of biomass species j)

[T − 1]
nij stoichiometric coefficient for the species j with

respect to the substrate i
�i density of component i [M L − 3]
Φia

flux of component i in the flux at terminal a

[M T − 1]

Subscripts

B biomass
A autotrophic bacteria
H heterotrophic bacteria
O oxygen
S biodegradable substance
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MODELLING WASTEWATER TREATMENT:
BENEFITS AND PRACTICAL USE

The problem of modelling and simulation of wastewater

treatment plants (WWTPs) has been found important as a

result of growing environmental awareness. Compared to

the modelling of well-defined (such as electrical and

mechanical) systems, modelling of ill-defined systems

such as WWTPs is more complex. In particular, choosing

the ‘right’ model is a non-trivial task.

Modelling is an inherent part of the design of a waste-

water treatment system. At the fundamental level, a design

model may be merely conceptual. The engineer reduces

the complex system he is dealing with to a conceptual

image of how it functions. That image then determines the

design approach. Often, however, the engineer recognises

that the conceptual model alone does not provide suffi-

cient information for the design and thus he constructs a

physical model, such as a laboratory-scale reactor or pilot

plant, on which various design ideas can be tested. Given

sufficient time for testing, such an approach is entirely

satisfactory. However, the engineer may find that limi-

tations of time and money prevent exploration of all

potentially feasible solutions. Consequently, he often

turns to the use of mathematical models to further explore

the feasible design space. He may devise empirical models,

which incorporate a statistical approach to mimic the end

results obtained by studies on the physical model or, if his

conceptual understanding expands sufficiently, he may

attempt to formulate models based on mechanistic knowl-

edge. These mechanistic models are the more powerful

because they allow extrapolation of the design space to

conditions beyond that experienced in the physical model.

In this way, many potentially feasible solutions may be

evaluated quickly and inexpensively, allowing only the

most promising ones to be selected for actual testing in the

physical model.

To be able to use mathematical — be it empirical or

mechanistic — models, a good software tool to implement

and simulate the models is indispensable. Several tools

are available that can be applied to the modelling and

simulation of wastewater treatment plants. Increasingly,

the ‘system’ modelled also transcends the WWTP and

includes the ‘environment’ (in the engineering sense). The

WWTP model is then integrated in a conceptual model of

the wastewater producing plant, the sewer system and the

river (with its natural water purification properties or

toxicity tolerance) in which the effluent is discharged

(Meirlaen et al. 2001).

Wastewater treatment practice has now progressed to

the point where the removal of organic matter and nutri-

ent removal by biological nitrification and denitrification

and biological phosphorus removal can be accomplished

in a single system. The non-linear dynamics and properties

of these biological processes are still not very well under-

stood. As a consequence, a unique model cannot always be

identified. This contrasts to traditional mechanical and

electrical systems where the model can be uniquely

derived from physical laws. Also, the calibration of waste-

water treatment models is particularly hard: many expen-

sive experiments may be required to accurately determine

model parameters. Yet, even with the limitations and

difficulties stated above, modelling and simulation of

wastewater treatment is considered useful (Henze et al.

2000). Models are excellent tools to summarise and

increase the understanding of complex interactions in

biological systems. More quantitatively, they can be used

to predict the dynamic response of the system to various

disturbances.

Despite the promising properties described above, the

practical use of dynamic modelling of wastewater treat-

ment is rather limited (Morgenroth et al. 2000). In particu-

lar, the labour and cost intensive calibration of WWTP

models is considered hard to accomplish in practical

situations. New methodologies are being developed to

overcome this bottleneck (Petersen et al. 2001). In some

cases, e.g. when modelling biofilm wastewater treatment,

yet another problem arises. Models developed for these

systems should be able to describe the system well enough

to correctly predict system responses. On the other hand,

the models should also have a feasible complexity for

simulation.

However, the application field for good WWTP mod-

els is promising. First of all, models could be used to

predict dynamic responses of the system to influent vari-

ations so as to develop strategies to optimise treatment

plant operation. This can be done either off-line or with

on-line ‘real-time’ simulations that are used for control
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and optimisation. Another possible use of models is to

troubleshoot plant operation. Operators might be inter-

ested to use models in finding answers to practical ques-

tions. Modelling can also be used to integrate multiple

processes. As mentioned above, the removal of organic

matter, nitrogen and phosphorus is accomplished in a

single system nowadays. Models are promising tools to

help create more understanding of the interactions

between these processes. As a last point, modelling and

simulation can be helpful in designing WWTP reactors.

Models can be used to evaluate data from pilot-scale

reactors and to predict performance of full-scale plants.

INTRODUCING THE WEST MODELLING AND
SIMULATION ENVIRONMENT

Several modelling/simulation packages that can be used

for describing wastewater treatment are available.

Typically, four types of simulators can be distinguished.

First of all, it is possible to manually implement code in a

programming language like Fortran or C + + . Secondly,

general-purpose simulators like Matlab/Simulink or

ACSL are available. In the third place, closed dedicated

simulators like Biowin, EFOR and STOAT have been

developed next to, finally, open dedicated simulators

like GPS-X, Simba and WEST. For a comparison of the

different simulators the reader is referred to Copp (2001).

The modelling and simulation package WEST

(Wastewater Treatment Plant Engine for Simulation and

Training) provides the modeller with a user-friendly

platform to use existing models or to implement and test

new models. WEST is a modelling and simulation environ-

ment for any kind of process that can be described as a

structured collection of Differential Algebraic Equations

(DAEs). Currently, however, WEST is mainly applied to

the modelling and simulation of wastewater treatment

plants (Vangheluwe et al. 1998). A dedicated modelling/

simulation package, such as WEST, is preferred over the

general purpose ones, since a general purpose modelling/

simulation package typically gives too many possibilities

in general. On the other hand, some specific problems are

not handled in a dedicated enough manner.

The aims of modelling and simulation of wastewater

treatment are, in a sense, contradictory. On the modelling

side, WEST is especially aimed at facilitating and optimis-

ing the implementation and re-use of knowledge in waste-

water treatment models. This does not, however,

necessarily result in the most efficient declaration of

knowledge from a simulation point of view. Indeed, a

simulator should maximise the simulation speed and accu-

racy of the simulations. Hence, the WEST modelling and

simulation environment makes a strict distinction between

a modelling environment, which aims to enable re-use of

model knowledge, and the experimentation environment,

which aims to maximise accuracy and performance.

Next to these two user environments, the model base

plays a central role in WEST. In this model base, models

are described in MSL-USER (MSL stands for model

specification language), a high level object-oriented

declarative language specifically developed to incorporate

models. The model base is aimed at maximal re-use of

existing knowledge and is therefore structured hierarchi-

cally. All re-usable knowledge — such as mass balances,

physical units, default parameter values and applicable

ranges — is thus defined centrally and can be re-used by an

expert user to build new models. This indicates that WEST

has an open structure in that the user is allowed to change

existing models and define new ones as needed.

As depicted in Figure 1, the model base is loaded and

all relevant information for the modeller is extracted from

it when the modelling environment is started (step 1).

Using the symbolic information in the model base, the

‘atomic’ models available in the model base are linked to a

graphical representation. A hierarchical graphical editor

(HGE) allows for the interactive composition of complex

configurations from these basic graphical building blocks.

Also the input–output structures (terminals) of the models

are extracted from the model base so as to decide whether

or not two models can be linked together in the HGE. For

instance, a model for the activated sludge process cannot

be directly coupled to a river model, since the set of

components used in these models to describe the sub-

strates is not the same. In case such coupling needs to be

done, an explicit component converter needs to be used.

Next, the parameter set of the different models is loaded so

that parameters of different models can be linked. For
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instance, the same yield coefficient can be used for all

activated sludge tanks in a WWTP configuration. Finally,

when a configuration has been built, the HGE starts from

the information extracted from the model base and creates

and outputs a coupled model in MSL-USER (step 2),

which is automatically added to the model base for further

use in new model exercises (step 3).

In a next step (step 4), the model parser generates

low-level (C + + ) MSL-EXEC code, which after C + + com-

pilation (step 5) can be used for execution within the exper-

imentation environment. The parser therefore uses the

coupled model together with the atomic model representa-

tions in the model base. These steps are especially oriented

towards simulation performance and accuracy. Finally, the

solvers within the experimentation environment generate

data, which can be used for plotting, model calibration,

process optimisation, output to file, etc. (step 6).

THE MODEL SPECIFICATION LANGUAGE
MSL-USER

The language MSL-USER, which is used in the WEST

model base, is an object-oriented language, which allows

for the declarative representation of the dynamics of

systems. ‘Declarative’ means that the model (what) is

presented without specifying how to solve it. As

mentioned above, a compiler (MSL-parser) is provided to

transform MSL-USER model representations into a low

level representation (MSL-EXEC based on C + + ).

The MSL-USER parser is written in lex (flex), yacc

(bison) and C + + and makes use of LEDA (Library of

Efficient Data structures and Algorithms). MSL-USER

follows the major principles of object-oriented program-

ming in that it uses TYPES, CLASSES and OBJECTS to

represent the hierarchy of the items in the model base.

The relation between these representations can be visual-

ised like a tree. Types provide a way to describe the

structure of an expression in the sense that it is a tem-

plate to which classes and objects add more information.

Indeed, a class is derived from a type definition, further

defining the properties of the template. That way, classes

provide a way to describe the behaviour of values. For

example, a class in MSL-USER is mostly a type to which

default values have been assigned. It is clear that one

type can have multiple classes derived from it. A class is

a template itself for the derivation of objects that give

final values to the structures defined. An object, however,

Figure 1 | Functional WEST architecture.
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cannot only be derived from a class, but also directly

from a type.

Apart from being object-oriented, MSL-USER is also a

multi-abstraction language. It allows one to represent

abstract models of the behaviour of systems using different

methods of abstraction. This includes the possibility

to make use of ‘abstractions’ such as differential and

algebraic equations, state transition functions, C + +

code, etc. (Vangheluwe 2000).

Other characteristics of MSL-USER are (some

examples are provided in Appendix A which clarify the

explanation below):

• Re-use of models is possible thanks to the

EXTENDS inheritance mechanism. This allows for

the extension of an existing model. Thus, starting

from generic models, a tree of extended models can

be built.

• Classification is made possible through the

SPECIALISES mechanism. Hereby, it is possible to

indicate that a particular type is a sub-type of

another type. This not only allows for classification,

but also for rigorous type checking.

MSL-USER furthermore allows one to express physical

knowledge such as units (m, kg, etc.), quantity type (Mass,

Length, etc.), boundary conditions, etc. The semantics of

these are known by the parser which will check model

consistency and, where appropriate, apply this knowledge

in the translation to MSL-EXEC. Also some other object

attributes are interesting to note here. When the value of a

parameter or the initial condition of a variable depends on

the value of other parameters, it is possible to declare this

parameter or variable as fixed. In this case, the user cannot

change its value in the experimentation environment.

When, in an MSL-USER model, a parameter or variable

object has the annotation hidden this object is not shown

in the experimentation environment.

During the translation from MSL-USER to MSL-

EXEC, the different abstractions used in the models

created by the user will be translated into C + + represen-

tations. Algebraic equations and differential equations

(using the DERIV statement) will be recognised directly

by the parser, since they are available in the MSL-USER

library. Other built-in statements in MSL-USER are, for

example, FOREACH, SUMOVER and IF-THEN-ELSE

structures. Moreover, during the subsequent compilation

of the generated MSL-EXEC code, some standard C

libraries are automatically linked to the generated model.

This way, functions that are not built-in in MSL and that

are not defined in the MSL-USER function libraries

can be used as long as they are available in these standard

libraries. It is even possible to use user defined C + +

functions.

BUILDING THE MODEL BASE

To allow for computer-aided model building and subse-

quent simulation/experimentation, a model base must be

constructed. The models in this model base will be used

for modular construction (i.e. by connecting component

blocks as described above) of complex models describing

the behaviour of WWTPs. The steps listed below form a

general method for constructing a model base for any

application domain:

1. Choose an appropriate level of abstraction.

2. Identify relevant quantities.

3. Identify input–output structures.

4. Build a model class hierarchy starting from general

(conservation and constraint) laws and refining

these for specific cases.

In the following, these steps will be treated in more detail.

Level of abstraction

As is commonly the case, we will choose an appropriate

level of abstraction, upon which Idealised Physical

Models (IPMs) will be built. Idealised Physical Models

(Broenink 1990) represent behaviour at a certain level of

abstraction. This often means using lumped parameter

models (ordinary differential equations or ODEs), even

though the physical system has a spatial distribution

(which would require partial differential equations or
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PDE modelling), when the homogeneity assumption is a

reasonable approximation.

Relevant quantities

Secondly, the quantities of interest must be identified.

These quantities can be subsequently used to describe the

types of entities used in modelling: constants, parameters,

interface variables and state variables.

In MSL-USER, the type of physical quantities is

encoded as a PhysicalQuantityType, a structure as

given below:

TYPE PhysicalQuantityType

‘‘The type of any physical quantity’’

=

RECORD

{

quantity : QuantityType;

unit : UnitType;

interval : RealIntervalType;

value : Real;

causality : CausalityType;

};

For numerical computation purposes it is sufficient to

specify whether an entity is of real, integer, boolean or

string type. When modelling a particular application

domain, however, more expert information is available,

and it would be very helpful to the modeller if it could be

stored (represented) in the model base. For example,

information can be available about upper and lower

bounds of variables and parameters (e.g. stating that

concentration, through the definition of its interval, is

always positive). Also, information about the causality of a

quantity (input or output) can be included, since this

information is of importance when developing acausal

models. As can be seen in the PhysicalQuantityType

structure, this information can easily be integrated in

MSL-USER. Once represented in a model, the model

parser can make use of it to determine the legitimacy of

the model (e.g. checking if the dimensions of parameters

that are coupled match) and to generate efficient code

(e.g. by means of constraint propagation based on lower

and upper bound information). The constraints integrated

in MSL-USER are transferred to the symbolic part of the

MSL-EXEC representation and are used to protect the

user for constraint violations during simulation or user

input.

Basic quantities

Using the methodology introduced earlier, the Physical

QuantityType structure can be specialised as classes

for specific quantities. For example, like the class

‘Concentration’, the physical quantity ‘Area’ can be

defined (see Appendix B for code examples). Definitions

of physical quantity types are used to instantiate objects of

those types. The ISO 1000 standard also defines physical

constants such as the universal gravity constant whose

MSL-USER description is also given in this appendix.

It should be noted here that, in the WEST environ-

ment, the units are not only used for dimensional checking

during model compilation, but are also passed on to the

experimentation environment where the user is presented

with variable names, descriptions and values as well as

their units. This way, a variable or parameter description,

a default value and an interval that have been defined by

the expert developing the model, is available for the user.

In this way, the user is protected against erroneous

parameter values and is warned when a variable evolves

out of its boundaries during a simulation run.

Quantities typical for WWTPs

Simulation of wastewater treatment system behaviour,

incorporating phenomena such as carbon oxidation,

nitrification, denitrification and phosphorus removal,

must necessarily account for a large number of reactions

between a large number of components (Henze et al.

2000). Several Activated Sludge Models (ASM 1, 2, 2d and

3) have been developed by the task group on mathematical

modelling of the International Water Association (IWA).

As will be described in the following, each of the variables

in these models, denoting a component of the wastewater,

indexes a column in the model stoichiometry matrix. In
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MSL-USER, the components of, e.g., ASM1 are easily

described as an enumerated type:

TYPE Components = ENUM {H–2O, S–S, S–O, S–NO,

S–ND, S–NH, S–ALK, X–I, X–S, X–BH, X BA, X–P,

X–ND};

Thus, the modeller refers to the components by their name

while, where necessary, the corresponding integer index is

used. Though WEST’s simulator uses the numerical values

of the Components indexes to address matrix elements,

the experimentation environment presents the symbolic

name of the index to the user. This reverse mapping

is performed by the model compiler when generating

MSL-EXEC code. Note how H2O is explicitly modelled as

a component.

Other quantities typical for WWTP modelling are

stoichiometric and kinetic parameters. Kinetic parameters

characterise the rate of reaction of the conversions in the

model (e.g. maximal specific growth rate, decay rate, etc.);

stoichiometric parameters indicate the stoichiometric

relations between the different components in the model

(e.g. yield coefficient, etc.). In MSL, these parameters can

easily be declared as objects of a certain, more general,

class specification (Appendix C).

Transferred input–output quantities: terminals

The ultimate goal is to build complex models by connect-

ing more primitive sub-models or blocks, possibly built up

of coupled models themselves. In the case of WWTP

models, the sub-model types mostly correspond in a one-

to-one relationship to physical entities such as aeration

tanks, clarifiers, pumps, splitters and mixing tanks. This

ensures structural validity of the assembled models. Note

how the building blocks need not match physical objects

directly but may rather correspond to abstract concepts

such as processes.

To connect sub-models, these sub-models require con-

nection ports or terminals. This implies that interaction

between the sub-models is assumed to only occur through

the connections made between their terminals. When

parsing a coupled model, the connections are replaced by

appropriate algebraic equalities.

In our WWTP models, different terminal types are

used. DataTerminals represent information to be used in

sensor and controller blocks. However, the main terminal

type is the WWTPTerminal. In the basic model base dis-

cussed here, only the flux of biochemical material is con-

sidered. Heat flow, for example, is not considered. This

is one of the modelling assumptions mentioned in the

discussion of the ASM1 model and is obvious from the

WWTPTerminal definition.

The WWTPTerminal is a vector of mass fluxes for each

of the components taken into consideration in the model.

The size of the vector is given by the number of identifiers

(the cardinality) in the enumerated type ‘Components’

and hence depends entirely on how many components the

user includes in this type. Note how the actual Component

declaration may be given after all other declarations.

MSL-USER interprets the equations and declarations in a

model as a set rather than as a sequence of statements.

Basically, this means the order in which the declarations

or equations are included in the model base is of no

importance. This evidently facilitates model base develop-

ment and may enhance clarity.

OBJ NrOfComponents

‘‘

The number of biological components considered

in the WWTP models

’’

: Integer := Cardinality(Components);

CLASS WWTPTerminal

‘‘

The variables which are passed between WWTP

model building blocks

’’

=MassFlux[NrOfComponents;];

While many connections are allowed to/from a terminal,

the graphical modelling environment will already perform

a check during interactive modelling. Normally the same

terminals for biochemical transport are used everywhere

in a configuration. If other terminals need to be used (e.g.

for modelling a river system), explicit conversion blocks

converting the elements of the different component

vectors need to be foreseen. Direct coupling of a river
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compartment model, using another set of components, to

a wastewater treatment model is not possible.

Building a model class hierarchy starting from general

laws

Introduction to the general mass conservation law

The choice to transfer mass fluxes via the terminals instead

of the mostly used concentrations and flow rates has

different reasons. In processes where next to water or a

water suspension gasses and carrier materials may also be

transferred from one unit to another, only the concen-

tration in the water phase is measured in reality. Denoting

the concentration in units of M L − 3, the factor L − 3

indicates only the water or the suspension and not the

entire transferred volume (including gas and carrier

material). This can easily be the source of errors during the

model development. Also the easy formulation of mass

conservation when masses rather than concentrations are

used is an advantage of this choice. The mass conservation

law can easily be formulated as dM/dt. This conservation

can be calculated for the different components i of the

WWTPTerminal, so that elemental balances for carbon

and nitrogen are easily derived. The user should, however,

still have the possibility to interact with the model through

output variables like concentration and flow rather

than mass fluxes. For example, a mass balance of an

ideally stirred tank reactor (CSTR) with volume V (L3),

components i and terminals a, can be written as:

(1)Ci =
V

Mi

(2)=∑Φia + RiV
adt

dMi

(3).∑Φia
a

=∑
idt

dV

ρi

1& /
In the case of an aeration tank with components dissolved

at a low concentration in the water phase, the following

simplifying assumption can be made:

∀i≠H2O:�i = ∞ (4)

stating that it is assumed that only water occupies a finite

space. In case the density of the suspensions is different

from 1 kg/l or 106 g/m3 ( = �H2
O), this assumption will no

longer suffice. In that case the density of the individual

components needs to be known.

In case heat transport should be modelled, the same

assumptions will be used, i.e. heat flux will be transferred

at the terminals.

Modelling biochemical conversion: the Petersen matrix

Introduction. Crucial in modelling the biochemical con-

versions in a wastewater treatment plant is to realistically

model the inter-component biochemical reactions. These

reactions must be representative of the most important

fundamental processes occurring within the system.

Furthermore, the model should quantify both the kinetics

(rate–concentration dependence) and the stoichiometry

(relationship that one component has to another in a

reaction) of each process. Identification of the major

processes and selection of the appropriate kinetic and

stoichiometric expressions for each are the major

conceptual tasks during development of a mathematical

conversion model.

The IWA task group mentioned above (Henze et al.

1987) chose the matrix format introduced by Petersen

(1965) for the presentation of its models. The first step in

setting up this matrix is to identify the components of

relevance in the model. The second step in developing the

matrix is to identify the biological processes occurring in

the system, i.e. the conversions or transformations that

affect the components listed.

A simple example. Consider the situation in which hetero-

trophic bacteria are growing in an aerobic environment by

utilising a soluble substrate for carbon and energy. In one

simple conceptualisation of this situation, two fundamen-

tal processes occur: the biomass increases by cell growth

and decreases by decay. Other activities, such as oxygen

utilisation and substrate removal, also occur, but these are

not considered to be fundamental because they are the

result of biomass growth and decay and are coupled to

34 Henk Vanhooren et al. | WEST: modelling biological wastewater treatment Journal of Hydroinformatics | 05.1 | 2003



them through the system stoichiometry. The simplest

model of this situation must consider the concentrations

of three components: biomass, substrate and dissolved

oxygen. The matrix incorporating the fate of these three

components in the two fundamental processes is shown

in Table 1.

As mentioned in the introduction, the first step in

setting up the matrix is to identify the components of

relevance in the model. In this scenario these are biomass,

substrate and dissolved oxygen, which are listed, with

units, as columns in Table 1. In conformity with IWA

nomenclature (Grau et al. 1982), particulate constituents

are given the symbol X and the soluble components S.

Subscripts are used to specify individual components:

B for biomass, S for substrate and O for oxygen.

The second step in developing the matrix is to identify

the biological processes occurring in the system, i.e. the

conversions or transformations that affect the components

listed. Only two processes are included in this example:

aerobic growth of biomass and its loss by decay. These

processes are listed in the leftmost column of the table.

The kinetic expressions or rate equations for each process

are recorded in the rightmost column of the table in the

appropriate row. Process rates are denoted by rj where j

corresponds to the process index.

If we were to use the simple Monod–Herbert model

for this situation, the rate expressions would be those in

Table 1. The Monod equation, r1, states that growth of

biomass is proportional to biomass concentration in a

first order manner and to substrate concentration in

a mixed order manner. The expression r2 states that

biomass decay is first order with respect to biomass

concentration.

The elements within the table comprise the

stoichiometric coefficients, nij, which set out the mass

relationships between the components in the individual

processes. For example, growth of biomass ( + 1) occurs at

the expense of soluble substrate (1/Y, where Y is the yield

parameter); oxygen is utilized in the metabolic process

( − (1 − Y)/Y). The coefficients nij can easily be deduced by

working in consistent units. In this case, all organic con-

stituents have been expressed as equivalent amounts of

chemical oxygen demand (COD); likewise, oxygen is

expressed as negative oxygen demand. The sign conven-

tion used in the table is negative for consumption and

positive for production.

In matrix form, we obtain a stoichiometry matrix

n =
—1     0           —1

1   —1/Y —(1—Y)/Y& /
and a kinetics vector

XB

bXB

.KS + SS

mSS

& /r =

Table 1 | Process stoichiometry and kinetics for heterotrophic growth in an aerobic environment

Process j

Component i

Process rate rj (ML−3T−1)
1. Biomass
XB

2. Substrate
SS

3. Oxygen
SO

1. Growth 1 − 1/Y − (1 − Y)/Y
XB

KS + SS

mSS

2. Decay − 1 − 1 bXB

Stoichiometric
parameters:
growth yield Y

M(COD).L − 3 M(COD).L − 3 M( − COD).L − 3 Kinetic parameters:
maximum specific growth rate m,
half-velocity constant KS,
specific decay rate b
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Within a system, the concentration of a single component

may be affected by a number of different processes. An

important benefit of the matrix representation is that it

allows rapid and easy recognition of the fate of each

component, which aids in the preparation of mass balance

equations. This may be seen by moving down the column

representing a component.

As mentioned before, the basic equation for a mass

balance within any defined system boundary is Equation

(2). The flux terms are transport terms and depend upon

the physical characteristics of the system being modelled.

The system reaction term, Ri, is obtained by summing the

products of the stoichiometric coefficients nij and the

process rate expression rj for the component i being con-

sidered in the mass balance (i.e. the sum over a column):

(5)Ri =
i

∑ nijrj.

For example, the rate of reaction, R, for oxygen, SO, at a

point in the system would be:

XB — bXB .
KS + SS

mSS
RSO =

Y

1— Y
(6)

To create the mass balance for each component within a

given system boundary (e.g. an ideally mixed reactor), the

conversion rate would be combined with the appropriate

transport terms for the particular system. For instance, in

an ideally mixed tank reactor with one input, a constant

volume V and an influent flow rate Q, the following mass

balance would emerge for SO:

dt

dSO
V (7)= =∑ΦSO,a + VRSO =QSO,in —QSO +VRSO .

adt

dMSO

Another benefit of the Petersen matrix is that continuity

may be checked per process by horizontally moving across

the matrix. This can only be done provided consistent

units have been used, because then the sum of the

stoichiometric coefficients must be zero. This can be

demonstrated by considering the decay process. Recalling

that oxygen is negative COD so that its coefficient must be

multiplied by − 1, all COD lost from the biomass through

decay must be balanced by oxygen utilisation. Similarly,

for the growth process, the substrate COD lost from

solution due to growth minus the amount converted into

new cells must equal the oxygen used for cell synthesis.

Inheritance hierarchy

Using the general mass conservation law introduced

above, models must be constructed for each type of build-

ing block. This is achieved in the form of a class inherit-

ance hierarchy. Hereby, maximum re-use and clarity is

achieved. Clarity is a direct result of the relationship

between the inheritance hierarchy on the one hand and

the different levels of specificity of the models on the other

hand. In the generic model base, GenericModelType is

defined:

TYPE GenericModelType

=

RECORD

{

comments : String;

interface : SET–OF

(InterfaceDeclarationType);

parameters : SET–OF

(ParameterDeclarationType);

};

It shows how any model has a description (comments)

part, an interface set and a parameter set. The interface set

describes which terminals serve as an input to the model

and which variables are transferred to a subsequent model

via an output terminal. The parameters of the model are

a set of invariant values that are given a value at the

beginning of a simulation.

For basic models in the DAE formalism, Physical

DAEModelType prescribes the structure:

TYPE PhysicalDAEModelType

EXTENDS GenericModelType WITH

RECORD

{

indepen-

dent

: SET–OF (ObjectDeclarationType);

state : SET–OF (PhysicalQuantityType);
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initial : SET–OF (EquationType);

equations : SET–OF (EquationType);

terminal : SET–OF (EquationType);

};

Time is mostly used as the independent variable. In the

case of PDE modelling, multiple independent variables

can be defined. Dependent (both algebraic and derived)

state variables are defined in the state section. The initial

section contains algebraic equations that will be solved

only once during simulation. The result of these initial

calculations can, for example, be used to define the initial

values of derived state variables used in the equations

section. This section contains the algebraic equations and

ODEs that define the model. Equations in the terminal

section are only calculated once at the end of the simu-

lation run. The GenericModelType can also be extended

to describe the essence of coupled models:

TYPE CoupledModelType

EXTENDS GenericModelType WITH

RECORD

{

sub models : SET–OF (ModelDeclarationType);

coupling : SET–OF (CouplingStatementType);

};

In a coupled model, the sub–models section enumerates

the set of models to be coupled. In the coupling section,

statements are included that describe how to couple these

models. This can be done using two statements. The con-

nect statement is used to connect the interface variables

of the coupled model to the interface of one of the

sub-models or to connect the interfaces of two

sub-models. The control statement is to indicate that a

parameter of a sub-model is controlled by an interface

variable of a second model. It is important to note that the

MSL-USER parser will then automatically transform

the controlled parameter into a new interface vari-

able, since this model component will no longer be time-

invariant and therefore, by definition, becomes a variable.

Both CoupledModelType and PhysicalDAEModel

Type are extensions of GenericModelType, which means

they inherit its structure (and add to it). The resulting

top-level inheritance hierarchy is given in Figure 2.

In the WWTP model base hierarchy, some of the

model classes are derived directly from PhysicalDAE-

ModelType (Figure 3). The ones listed directly below are

models of the settler. The Takács model, for instance, is a

discretised (10-layer) model of the settling process. It

should be noted that the dedicated WEST-PDE parser is

able to automatically discretise a class of PDE models of,

for instance, the settling process using orthogonal collo-

cation (Indrani & Vangheluwe 1998). Once discretised,

these models are of the ordinary PhysicalDAEModelType

and fit in the hierarchy of Figure 3.

Sensor, controller, data filter and transformer models

are also derived from PhysicalDAEModelType (Figure 4).

These models do not describe physical processes involving

(transport of) matter and energy and hence do not adhere

to physical laws. Though not subject to physical con-

straints, they do deal with the values of physical variables.

As mentioned before, WEST is not only used to model

wastewater treatment processes but also parts of the

environment, in particular the river in which the treated

effluent is discharged.

Now we will look into the development of WWTP

AtomicModel, derived using the mass conservation law,

from which many other model types are derived. This will

illustrate the powerful re-use capabilities of the developed

system. First of all, note that the matrix of the simple

example could be implemented in MSL-USER in the

following easy way:

TYPE Components = ENUM {H–2O, S–S, S–O, X–B};

TYPE Reactions = ENUM {Growth, Decay};

parameters <—

{

OBJ Y ‘‘Yield’’ : Yield :=

{:value <— 0.67:};

OBJ mu ‘‘Maximum Specific Growth Rate’’ :

GrowthRate := {:value <— 4.00:};

OBJ K–S ‘‘SaturationCoeff’’ :

SaturationCoefficient :=

{:value <— 20.00:};
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OBJ b ‘‘Decay Rate’’ : DecayRate :=

{:value <— 0.40:};

};

initial <—

{

parameters.Stoichiometry[Growth][X–B] :=

1;

parameters.Stoichiometry[Growth][S–S] :=

−1/(parameters.Y);

parameters.Stoichiometry[Growth][S–O] :=

−(1−parameters.Y)/parameters.Y;

parameters.Stoichiometry[Decay][X–BH] :=−1;

parameters.Stoichiometry[Decay][S–O] := −1;

};

equations <—

{

state.Kinetics[Growth] := parameters.mu *

(state.C[S–S]/(parameters.K–S+

state.C[S–S])) * state.C[X–B];

state.Kinetics[DecayOfHetero] :=

parameters.b*state.C[X–B];

};

Figure 3 | Settler models directly derived from PhysicalDAEModelType.

Figure 4 | Models not describing physical processes directly derived from PhysicalDAEModelType.

Figure 2 | Top level inheritance hierarchy in the WEST model base.
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The basic mass balance Equation (2) for each of the

components can also be rewritten in MSL format.

First, the flux for each component i is calculated as

∑Φia ,
a

where the outfluxes are by default negative values.

{FOREACH Comp–Index IN {1 .. NrOfComponents:

state.FluxPerComponent[Comp–Index] =

(SUMOVER In–Terminal IN {SelectByType

(interface,InWWTPTerminal)}:

In–Terminal[Comp–Index])+

(SUMOVER Out–Terminal IN {SelectByType

(interface,OutWWTPTerminal)}:

Out–Terminal[Comp–Index]);};

Next, the reaction (conversion) RiV = V ∑nijru
i

is encoded

in a straightforward manner as:

{FOREACH Comp–Index IN {1 .. NrOfComponents}:

state.ConversionTermPerComponent

[Comp–Index]=

(SUMOVER Reaction–Index IN

{1 .. NrOfReactions}:

(parameters.Stoichiometry

[Reaction–Index][Comp–Index]

*state.Kinetics[Reaction–Index])

*state.V;};

Finally, the complete mass balance dMi/dt =∑Φia 
+ RiV

a

is

written for each component:

{FOREACH Comp–Index IN {1 .. NrOf Components}:

DERIV(state.M[Comp–Index],[independent.t])=

state.FluxPerComponent[Comp–Index]

+state.ConversionTermPerComponent

[Comp–Index];};

The rate of change of a component’s mass thus consists

of the net result of incoming and outgoing mass flux

augmented with a reaction term due to biochemical inter-

actions between different components. The MSL-USER

compiler will expand the above few lines into the

appropriate equations based on the matrix given. These

equations will subsequently be manipulated to generate

correct and efficient simulation code. Note that com-

ponents which are transported but do not react (i.e. only

hydraulics, no physicochemical nor biological processes)

have a column of zeros in the stoichiometry matrix. In

MSL-USER, by default, when a variable or a parameter is

not given a value, the initial value is 0. Thus, if assignments

to elements of the stoichiometry matrix are not made, it is

a matrix of zeroes, which means no biochemical reactions

take place.

Note how the use of this matrix representation is not

limited to this simple example or even to the ASM1 model.

Also the models ASM2, ASM2d, ASM3 and RWQM1

developed by IWA task groups in the mean time have been

implemented (Henze et al. 2000; Reichert et al. 2001). The

user can also easily implement mass balance models

himself using this general approach. Only the component

vector, the reaction vector and the stoichiometric and

kinetic coefficients need to be specified.

Logically, the next level (below WWTPAtomicModel)

of classification would be to distinguish between models

without volume (point-model abstractions where no mass

is accumulated and hence no reactions occur) and models

with volume. For models with volume, the distinction

must be made between models where volume is con-

sidered constant and those where volume may vary. This

class hierarchy is depicted in Figure 5.

THE MODELLING ENVIRONMENT: BUILDING A
GRAPHICAL CONFIGURATION AND A COUPLED
MODEL

As mentioned above, the WEST modelling environment

allows for graphical component-based modelling. A hier-

archical graphical editor (HGE) was especially designed

for the interactive building of complex configurations

from basic building blocks. The user can entirely rebuild

the physical configuration of the wastewater treatment

plant in the HGE (Figure 6). Each of the components

(aeration basins, clarifiers, etc.) are symbolically repre-

sented by an icon with one or more input and outputs

(terminals). The program uses two types of terminals: data

terminals and physical terminals. Physical terminals rep-

resent a physical connection between two components in
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the configuration. Data terminals on the contrary, repre-

sent a dataflow in the system. This can be a measurement

signal from a sensor to a control system, or a calculated

control action from the control system to the manipulated

variable in the configuration.

At this point, only a graphical representation has been

made of the wastewater treatment plant to be modelled.

Nothing has been specified on its behaviour. Once the

configuration has been built graphically, each component

of this configuration should be linked to a model from the

model base. Each of these models is a structured collec-

tion of DAEs, representing the time-dependent behaviour

of the components in question. The complete set of models

together with the parameter values chosen by the users

then specifies the dynamic behaviour of the model. A

model base may contain multiple reasonable candidate

models based on model features and user requirements.

WEST leaves the final choice to the user, so model selec-

tion is mostly done manually. However, ongoing research

tries to find and validate methodologies to accomplish

automatic model selection based on measurements per-

formed on the real process (Vanrolleghem & Van Daele

1994; Cooney & McDonalds 1995; Takors et al. 1997;

Dochain & Vanrolleghem 2001).

Now from this graphical specification, together with

the models chosen from the model base, a coupled model

Figure 5 | Class hierarchy of models without and with volume derived from WWTPAtomicModel.
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is produced. Some of the MSL-USER code corresponding

to the coupled model represented in Figure 5 is given in

Appendix D.

The graphical editor and the coupled model introduce

a second level of hierarchy in WEST. Indeed, next to the

hierarchical structure of the model base, aimed at maximal

re-use of knowledge, coupled models and their graphical

representations can also be re-used. All coupled model

have an interface like the sub-models from which they are

composed. Consequently, the user can decide to add a

coupled model to the model base and re-use it in yet

another coupled model. This way, a model can be struc-

tured as a tree of coupled models and atomic models from

the original model base. Again a maximal level of

re-usability and transfer of knowledge is obtained here.

When coupling the models of the sewer system, treatment

plant and receiving water, one can build and test the

models separately. Afterwards, they can easily be linked in

the graphical editor by re-using the models created before

(Figure 7). When creating large models, it is useful to first

test the sub-models and only afterwards connect them to

create the integrated large model.

PARSING FROM MSL-USER TO MSL-EXEC

After constructing a coupled model in the HGE, the parser

generates MSL-EXEC from this model for use in the

experimentation environment of WEST. It therefore uses

the coupled model itself along with the models stored in

the model base.

Figure 6 | Representation of a WWTP model in the HGE (Hierarchical Graphical Editor).
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During this (parsing) process, the syntax and the

semantics of the MSL-USER representation are checked

automatically as well as the compatibility of the nature

(the units) of the variables passed on between the different

sub-models. This way, some model coding errors may be

detected here and not only when simulating the model.

MSL-EXEC contains both code to describe dynamics

and code to represent the symbolic information (‘knowl-

edge’). The different built-in statements are recognised by

the parser and translated into their equivalent C + + for-

mulations. The model dynamics are specified as a set of

ordinary differential equations (ODEs) and algebraic

equations. As the order of the equations is of no impor-

tance in MSL-USER, the correct sorting of the differential

and algebraic equation has to be done by the parser.

Indeed, a set of algebraic equations needs to be sorted

before it can be implemented in a language with sequential

semantics like C + + . In order to sort the equations,

dependency graphs are constructed. During the execution

of the sorting algorithm, algebraic loops are detected,

since these cannot be sorted. This way, implicit sets of n

equations in n unknowns may be found and can be either

non-linear or linear. In case the set is non-linear, it can be

solved using a symbolic solution with Gröbner bases

(Davenport et al. 1993). In WEST, a numerical solution

using Broyden’s method is implemented (Press et al. 1992).

In case of a linear set, an analytical solution using

Cramer’s rule is possible, or a numerical solution should

be performed in case the analytical solution grows too

large.

The symbolic information is used to display the model

information in the WEST experimentation environment.

For example, based on the annotations hidden and fixed, a

variable or parameter will not be shown in the experimen-

tation environment or the user will not be able to change

its value. As mentioned before, a controlled parameter will

automatically be transformed from a parameter to an

input variable by the MLS-USER parser and will therefore

no longer be visible in the parameter listing. Also the

constraints on variables as integrated in the MSL-USER

Figure 7 | Representation of the re-use of models in the graphical editor of WEST.
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model base are transferred to the symbolic part of the

MSL-EXEC representation and are used to protect the

user from constraint violations during simulation or user

input. Furthermore default values, units and descriptions

are visible in the experimentation environment.

Before the MSL-EXEC code can be used in the exper-

imentation environment, an extra compilation step has to

be performed. In this compilation step, a library file

(executable code) is generated that can be loaded into the

experimentation environment. This compilation step

guarantees code that is optimised for simulation perform-

ance and accuracy. During this compilation, standard C

libraries are linked to the generated model, enabling the

user to include all functions available in these libraries

in the MSL-USER models. Even user-defined C + +

functions can be used and linked during parsing.

During parsing symbolic manipulation can also be

performed. Symbolic manipulation is concerned with

finding symbolic or exact solutions to mathematical prob-

lems. This avoids rounding errors and the need for an

error analysis. Exact or symbolic computation has the

disadvantage of being more computer-intensive than

numerical calculation. However, as symbolic manipu-

lation is performed only once as opposed to numerical

code, which gets executed time and again during simu-

lation, the one-time intensive symbolic computation cost

at parse time is largely compensated by the performance

gain at simulation time.

When the equations to be solved are large and

complex, one has to deal with some issues about how to

reach the solution in the most efficient way. Several

problems can be tackled both in a numerical and a sym-

bolic way. Getting the solution using one method rather

than the other has advantages and disadvantages. The

advantages of symbolic manipulation in the case of WEST

are:

• Performance; if you know a quantity analytically,

you can avoid some computations and decrease the

computation time.

• More accurate numerical results, because by

pre-processing data with symbolic manipulations,

more advanced numerical techniques can be

exploited.

On the other hand, analytical solution methods do not

exist for a number of problems. However, symbolic

methods can still be used to derive expressions necessary

for performing numerical computations—such as gradients

and Jacobian and Hessian matrices. Thus, the traditional

roles of numerical and symbolic computations are not

distinct and many benefits arise from merging the two.

WORKING WITH THE MODEL: THE
EXPERIMENTATION ENVIRONMENT

The experimentation environment depicted in Figure 8

enables the user to perform experiments on compiled

models. As such, it is the interface between the user and

the ‘simulator’. During simulation, the solver com-

municates efficiently with the model dynamics part of the

MSL-EXEC model. The simulator as a whole can be asked

to perform a numerical simulation. In that case the solver

is used to generate a state trajectory for the MSL-EXEC

model. Different numerical solvers can be chosen inter-

actively. Since the type of system defined in wastewater

treatment is normally considered to be a stiff dynamic

system, i.e. the time constants for the different processes

involved vary significantly, stiff solvers seem preferable.

However, during the development of the COST simulation

benchmark for activated sludge systems, it was shown that

the numerical integrator to be preferred for simulating

wastewater treatment is the WEST default fourth-order

Runge-Kutta with variable time step size (RK4ASC) (Copp

2001). In many cases, although the major part of a waste-

water treatment plant is mostly described as a traditional

continuous system, the modelling of sensors and control-

lers often turns it into a hybrid system, i.e. a combination

of continuous and discrete systems. Stiff solvers, like

methods based on a modified Rosenbrock formula or

based on Gear’s method, work very poorly for hybrid

systems.

The experimentation environment also queries the

simulator for symbolic information. This information will

be retrieved from the symbolic information part of the

MSL-EXEC model. Examples of such symbolic infor-

mation are the model structure and the parameter listing
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in Figure 8. In this listing, the unit, a description and

a default value of the parameter can be found together

with its lower and upper bounds.

The following distinguishes between different exper-

iment types as implemented in the WEST environment.

The user thinks in terms of different virtual experiments

with the model of a system. The following experiment

types are currently implemented in WEST:

1. Simulation experiment.

Currently, there are two types of simulation

experiments:

• Initial value problem: state variable values are given

at time tini. The simulator calculates the trajectory

over [tini,tfin]. This is implemented using a set of

forward integrators the user can select among.

• Terminal value, end value or shooting problems:

state variable values are given at tfin. The simulator

calculates the trajectory over [tini,tfin]. Solving

the shooting problem is implemented in WEST

using an optimisation algorithm whereby the

varied entities are the unknown initial conditions

and the goal function is the sum of absolute

or squared values of differences between

simulated end-value and known/specified

end value.

Sometimes it is necessary to ‘synchronise’ with

external data. This is the case, for example, when the

input u(t) is given as a table of measurements, for

instance the influent composition or a pump

schedule. The integrator can determine its own

integration times and, when an input value is

Figure 8 | The WEST experimentation environment, showing a plot and a parameter listing.
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needed, interpolation is used. When the input is

given as a continuous function (via an generator

model), no interpolation is required.

2. Trajectory optimisation experiment.

Certain model parameters are varied by a number of

search algorithms the user can select from to

minimise the distance between a simulated

trajectory and a given (measured or desired)

trajectory. This is mostly done for (constrained)

parameter estimation (model calibration), but it can

also be used for controller tuning and process design

optimisation. The distance measure is typically a

sum of squares of differences between measured and

simulated values, though absolute values can also be

used. The difference between measured and

simulated values can be calculated at different points

in time: as described above, the simulator can be

forced to synchronise with external data or

interpolation can be used. In general, the differences

can be weighted to account for measurement

accuracy and possible differences in the order of

magnitude of the different values in the objective

function. Dochain & Vanrolleghem (2001) give an

overview of optimisation methods that can be used.

Two methods are implemented in WEST. The

method developed by Nelder & Mead (1964) (the

simplex method) and the Brent method (Brent 1973;

Praxis) are implemented which are both rather

robust to local minima. Genetic algorithms and the

Shuffled Complex Evolution (SCE) (Duan et al.

1992) are currently under implementation. The

Hessian is calculated as indicated by Brent (1973),

but does not always give good results. Therefore, the

covariance matrix (confidence information) is also

calculated as in the Simplex method when the Brent

method is used for the optimisation. The confidence

information can then be used, for instance, to draw

confidence ellipses or give parameter confidence

bounds.

3. End value optimisation experiment.

Here the optimiser is used to vary where some

parameters (possibly constrained) to extremise a

goal function that only evaluates variable at tfin, for

instance total economic cost.

4. Sensitivity analysis experiment.

The sensitivity of the model with respect to model

parameter variations can be investigated. The

calculation of sensitivity functions is based on the

finite difference method. This method calculates the

difference between two experiments, a reference

experiment and a perturbation experiment. The

perturbation experiment is performed by

perturbating a model parameter by a small factor

(the perturbation factor). Dividing the difference in

model outputs between these experiments by the

parameter change results in the sensitivity function.

To make sure the sensitivity functions are calculated

properly, a third experiment is performed: the

control experiment. For this experiment the

parameter perturbation factor is doubled. If the

resulting sensitivity function is within an allowed

error band it can be assumed that the nonlinearity of

the model did not influence the calculations. The

error between both sensitivity functions is calculated

with different criteria such as the sum of squared

errors, the largest absolute difference, etc.

Sensitivity functions form the basis of optimal

experimental design because they indicate where the

measurements are most sensitive to the parameters.

Moreover, the Fisher information matrix, which is

an important cornerstone of experimental design, is

calculated using sensitivity functions. This matrix

is a measure for the information content of the

simulated experiment.

5. Monte Carlo experiment.

The uncertainty of the model output due to input

(parameter and variable) uncertainty can be

calculated in a Monte Carlo experiment. For each

model input that is considered to be a random

variable, a probability distribution is specified out of

a range of possible distributions (normal,

log-normal, uniform, triangular, etc.). Random

samples are taken for each of the input distributions

and the set of samples (‘shot’) is entered into the

deterministic model. The model is then solved as it

would be for any deterministic analysis. The model

results are stored and the process is repeated until

the specified number of model iterations is
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completed (Cullen & Frey 1999). From all stored

model results, statistical properties (mean and

standard deviation) and histograms are produced.

These can subsequently be used in decision-making,

e.g. risk analysis (Rousseau et al. 2001)

The experimentation environment can also be controlled

via scripting languages (Tcl scripting, Visual Basic script-

ing). Scripting enables the user to perform several

scenarios in an automated way. It is possible to automati-

cally perform a series of experiments using a predefined

set of parameter values. Output and integrator options can

be controlled interactively. Among others, the Monte

Carlo simulation engine has been constructed using such

relatively simple scripts.

CONCLUSIONS

The mathematical modelling of biological wastewater

treatment plants can be used during the design and opti-

misation phase. WEST is a general modelling and simu-

lation environment and can, together with the developed

model base, be used for this task. The model base is written

in MSL-USER in which symbolic information can be

included in the code. In the graphical modelling environ-

ment, the physical layout of the plant can be rebuilt, and

each building block can be linked to a specific model from

the model base. The graphical information is then com-

bined with the information in the model base to produce

MSL-EXEC code, which can be compiled with a C + +

compiler to generate fast, executable code. In the exper-

imentation environment, the user can design different

experiments like simulations or optimisations. The main

advantages of the use of this software are the following.

First, the modelling and simulation environment are

strictly separated since these have different objectives (i.e.

flexibility and model re-use vs. accuracy and perform-

ance). The MSL-USER language is a high level language

which is easy to learn and to use, while information about

boundaries and units of parameters and variables can be

implemented. Furthermore, an extensive model base for

the modelling of WWTPs is available. The parser uses

symbolic manipulation to create numerically efficient

code. Finally, the experimentation environment can be

easily used to perform different types of experiments with

the models. The user can extend these experiments by

scripting.
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APPENDIX A

The following examples clarify the re-use of models

through to the EXTENDS and SPECIALISES inheritance

mechanisms. The EXTENDS mechanism allows for the

extension of an existing model. Classification is made

possible through the SPECIALISES mechanism. Hereby,

it is possible to indicate that a particular type is a sub-type

of another type.

The basic types found in MSL-USER are integer, real,

string, char and boolean. Based on these basic types, a

number of extended type structures were built. Some

type structures are the Record type, the Vector type, the

Enumerated type, etc. For example a Vector type is used

to specify vectors and matrices. A matrix can be specified

as a vector of vectors. A column vector is declared as

follows:

TYPE type–name=type[dimension ;];

An enumerated type is a type structure consisting of a set

of unique identifiers called enumerators, and is declared

as:

TYPE type–name=ENUM {id–1, id–2, . . .,id–n};

These basic types and structure types can now be used to

create user-defined types, such as UnitType, Quantity

Type and RealIntervalType. The first two are defined as

strings while RealIntervalType is defined as a record of

two real values and two booleans, describing if the bounds

are included in the interval.

TYPE UnitType

‘‘The type of physical units’’

=String;

TYPE QuantityType

‘‘The different physical quantities’’

=String;

TYPE RealIntervalType

‘‘Real Interval’’

=RECORD

{

lowerBound: Real;

upperBound: Real;

lowerIncluded: Boolean;

upperIncluded: Boolean;

};
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Furthermore, existing types can be extended. For example,

the Record type can be extended with extra fields. In the

following example, the ExtendedType is a type extended

from BasicType:

TYPE BasicType ‘‘Basic type’’

=

RECORD

{

value: Real;

};

TYPE ExtendedType ‘‘Extended type’’

EXTENDS BasicType WITH

RECORD

{

unit: UnitType;

quantity: QuantityType;

interval: RealIntervalType;

};

CLASS Concentration ‘‘A class for concen-

tration’’ SPECIALISES ExtendedType :=

{:

quantity <— ‘‘Concentration’’;

unit <— ‘‘g/m× 3’’;

interval <— {: lowerBound <— 0; upperBound

<— PLUS–INF :};

:};

The mechanism of specialisation is somewhat different. A

class that is specialised from another class or type has the

same signature, but the objects in the class are assigned

(replaced). For example: a class such as Concentration

can further be instantiated as an object, where a value is

assigned to one of the elements of the vector:

OBJ S–O–Sat ‘‘Oxygen saturation

concentration’’

: Concentration := {:value <— 8:};

APPENDIX B

The PhysicalQuantityType structure given below can

be specialised as classes for specific quantities. As an

example, the physical quantity ‘Area’ is defined here. The

ISO 1000 standard also defines physical constants such as

the universal gravity constant whose MSL-USER descrip-

tion is also given here.

TYPE PhysicalQuantityType

‘‘The type of any physical quantity’’

=

RECORD

{

quantity : QuantityType;

unit : UnitType;

interval : RealIntervalType;

value : Real;

causality : CausalityType;
};

CLASS Area

‘‘A class for area’’

SPECIALISES PhysicalQuantityType :=

{:

quantity <— ‘‘Area’’;

unit <— ‘‘m× 2’’;

interval <— {: lowerBound <— 0; upperBound

<— PLUS–INF:};

:};

OBJ UniversalGravityConstant

‘‘Universal gravity constant’’ :

PhysicalQuantityType :=

{:

quantity <— ‘‘G’’;

unit <— ‘‘m× 3/(g*s× 2)’’;

value <— 6.67259E-11;

:};

APPENDIX C

Stoichiometric and kinetic parameters are quantities typi-

cal for WWTP modelling. In MSL, these parameters can

easily be declared as objects of a certain, more general,

class specification:

CLASS Yield

‘‘A class for Yield’’

SPECIALISES PhysicalQuantityType :=

{:
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quantity <— ‘‘Yield’’;

unit <— ‘‘—’’;

interval <— {: lowerBound <— 0; upperBound

<— 1:};

:};

CLASS GrowthRate

‘‘GrowthRate’’

SPECIALISES PhysicalQuantityType :=

{:

quantity <— ‘‘GrowthRate’’;

unit <— ‘‘1/d’’;

interval <— {: lowerBound <— 0; upperBound

<— 20:};

:};

CLASS SaturationCoefficient

‘‘Saturation coefficient’’

SPECIALISES PhysicalQuantityType :=

{:

quantity <— ‘‘K’’;

unit <— ‘‘—’’;

interval <— {: lowerBound <— 0; upperBound

<— 100:};

:};

OBJ Y ‘‘Yield For Heterotrophic Biomass’’

: Yield := {:value <— 0.67:};

OBJ mu ‘‘Maximum Specific Growth Rate For

Heterotrophic Biomass’’

: GrowthRate := {:value <— 4.00:};

OBJ K–S ‘‘Half-velocity Constant For

Hetero trophic Biomass’’

: SaturationCoefficient :=

{:value <— 20.00:};

APPENDIX D

From the graphical specification in Figure 6, together with

the models chosen from the model base, a coupled model

is produced. Some of the MSL-USER code corresponding

to the coupled model represented is given below:

CLASS SuspendedCarrierWWTPClass SPECIALISES

CoupledModelType :=

{:

interface <—

{

OBJ In–1 (* terminal=‘‘In1’’ *) ‘‘Influent

Conc’’ : InWWTPConcTerminal := {:causality<—

CIN:},

OBJ Out–1 (* terminal=‘‘Out1’’ *)

‘‘EffluentConc’’ : OutWWTPConcTerminal :=

{:causality <— COUT:},

};

parameters <—

{

OBJ Y–A ‘‘Autotrophic Yield’’ : YieldFor

AutotrophicBiomass := {: value <— 0.24 :},

OBJ Y–H ‘‘Heterotrophic Yield’’ : YieldFor

HeterotrophicBiomass := {: value <— 0.67

:},

. . .

};

sub–models <—

{

OBJ CF–Conv : CtoF,

OBJ comb1 : TwoCombiner,

OBJ anox1 : SuspendedCarrierASU,

. . .

OBJ aerobic : FixVolumeASU,

OBJ DO1 : DO,

OBJ DO–con1 : SaturationPI,

. . .

};

coupling <—

{

// parameter coupling

. . .

sub–models.anox1.parameters.Y–A.value :=

parameters.Y–A.value,

sub–models.anox1.parameters.Y–H.value :=

parameters.Y–H.value,

. . .

sub–models.aerobic.parameters.Y–A.value

:= parameters.Y–A.value,

sub–models.aerobic.parameters.Y–H.value

:= parameters.Y–H.value,

. . .

// sub-model coupling
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connect(interface.In–1, sub–models.

CF–Conv.interface.Inflow),

connect(sub–models.

CF–Conv.interface.Outflow, sub–models.comb1.

interface.Inflow1),

. . .

// control statements

control(sub–models.DO–con1.interface.u,

sub–models.aerobic.parameters.Kla),

. . .

};

:};

OBJ SuspendedCarrier ‘‘’’:

SuspendedCarrierWWTPClass;

Each icon put on the canvas results in the instantiation of

an MSL-USER object of the appropriate class in the

coupled models sub–models section. If the user decides to

define parameters of the coupled model in the HGE, they

are stated in the parameters section. In the coupling

section, statements are included that describe how the

sub-models are connected to each other. First, the re-

lations between the parameters of the sub-models and the

user-defined parameters of the coupled model are indi-

cated. Following this, the connect and control statements

are listed. The connect statement is used to connect the

interface variables of the coupled model to the interface of

one of the sub-models or to connect the interfaces of two

sub-models. The control statement is used to indicate that

a parameter of a sub-model is controlled by an interface

variable of a second model. However, parameters are

invariant values to be declared at the beginning of a

simulation run. In case a controller is used, the parameter

serves as a manipulated variable. Therefore, it will auto-

matically be transformed from a parameter to an input

variable by the MLS-USER parser.
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