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Numerical development: current issues and future perspectives 
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Abstract

The goal of this article is to give an overview about current issues and future perspec-
tives in numerical development. First, we shortly discuss the evidence for an innate number 
sense. As one core representation of a supposed innate number sense is pre(non)verbal quan-
tity representation, we discuss contrasting models of such a pre(non)verbal quantity repre-
sentation. We then introduce calculation and transcoding models and discuss – particularly 
for the first – whether and when we need developmental calculation models that are distinct 
from adult calculation models. After discussing the influence of other cognitive abilities on 
number processing, we review the evidence for the postulated functional-anatomical link 
between parietal regions and numerical development. In the final part about future perspec-
tive, we elaborate how dyscalculia patient studies and intervention studies might enhance our 
understanding of numerical development. Based on this review of quite heterogeneous and 
parallel literatures about different topics, we conclude that a stronger integration of these 
different approaches and models is needed for the future. 
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Introduction

Children master numerical core concepts such as magnitude, counting and number con-
servation already before they are exposed to explicit school mathematics (e.g., Fuson, 1988; 
Gallistel & Gelman, 1992; Ginsburg, 1977; Resnick, 1982; Siegler & Shrager, 1984). Like-
wise, even illiterate children demonstrate rather advanced levels of arithmetic computation 
skills without ever being explicitly trained in mathematics (Nunes, 1993). Hence, during the 
past two decades, there has been increasing interest in studying preverbal children (some 
examples of infant habituation studies: Bijeljac-Babic, Bertoncini, & Mehler, 1993; Carey & 
Xu, 2001; Köchlin, Dehaene, & Mehler, 1998; Wynn, 1996; Xu & Spelke, 2000) and even 
neonates (Antell & Keating, 1983). Overall, there is converging evidence that even a few 
months old infants are capable of discriminating small sets of objects, even after controlling 
for confounding variables such as physical stimulus properties like contour length, density, 
luminosity etc. (however, for contrasting views, see Clearfield & Mix, 1999; Feigenson, 
Carey, & Spelke, 2002; Mix, Huttenlocher, & Levine, 2002; Tan & Bryant, 2000). More-
over, maybe even more surprisingly, infants as young as 5 months old do have additive and 
subtractive expectations (Simon, Hespos, & Rochat, 1995; Wynn, 1992) and according to 
Brannon (2002), 11-months-old infants do demonstrate ordinal numerical knowledge 
(whereas 9-months-olds do not master these greater than/less than numerical relationships). 
While earlier respective studies focused on children’s manipulation abilities within the so-
called subitizing range (that is small item sets up to 3 or 4 objects), Xu & Spelke (2000) 
were able to show that infants are able to discriminate sets far beyond the subitizing range, 
provided the ratio is large enough (i.e., infants in their study were able to discriminate 8 from 
16, but not 8 from 12 items). 

Consequently, some researchers believe that numerical abilities are genetically deter-
mined, and terms such as ‘number sense’ (Dehaene, 1992) or ‘number module’ (Butterworth, 
1999) came into play (see also Geary, 1993; Kosc, 1974; Spelke, 1996). The assumption of 
an inherited, language independent basis of core numerical knowledge has been further 
corroborated by non-human primate studies (Boysen, & Berntson, 1989; Brannon & Terrace, 
1998, 2000; Hauser, Carey, & Hauser, 2000; Matsuzawa, 1985; Nieder, Freedman, & Miller, 
2002; Nieder & Miller, 2003). Recently, Nieder and colleagues found number-specific neu-
rons in primates (‘numerons’) which were selectively activated by specific numerosities in 
the range from 1 to 5. While some researchers interpreted this finding as strong evidence for 
a biological predisposition of numerosity (Dehaene, Piazza, Pinel, & Cohen, 2003), others 
claim that numerosity-specific neuronal firing patterns can also be learnt via simple learning 
mechanisms in very few trials (Verguts, Fias, & Stevens, 2003; Verguts & Fias, 2004). Thus, 
although most researchers tend to favour the idea of strong biological determination of the 
numerical competence found, the issue is not fully resolved yet. 

In line with the biological determination account, some researchers claim that arithmetic 
ability/aptitude constitutes a specific cognitive domain (Rossor, Warrington, & Cipolotti, 
1995) that dissociates – among others - from linguistic ability (e.g., Dehaene, 1992; 
Dehaene, Dehaene-Lambertz, & Cohen, 1998). Likewise, it has been claimed that arithmetic 
knowledge does not necessarily correlate with reading skills (e.g., Geary & Hoard, 2001; 
Hanich, Jordan, Kaplan, & Dick, 2001; Rourke & Strang, 1983; Shalev, Manor, Amir, & 
Gross-Tsur, 1993). Nevertheless, there is converging evidence for the fact that some aspects 
of arithmetic are associated with specific language skills. For instance, solving of simple 
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mental calculation is initially facilitated by verbal counting strategies (Barouillet & Fayol, 
1998; Geary, 1994) and furthermore, it is supposed to be acquired in a language-specific 
format (e.g., Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Geary, 1993). Additionally, 
Butterworth (1999) stresses the importance of finger counting strategies for understanding 
numbers and simple calculation. Likewise, the decoding and understanding of text problems 
crucially depend on intact receptive language abilities (e.g., Hanich et al., 2001). In sum, the 
available evidence suggests that numerical cognition is a cognitive domain of its own right 
that is neither strongly determined by other cognitive capabilities nor fully independent of 
them. 

Another crucial finding reported in the literature is that arithmetic abilities are composed 
of different, quite dissociable knowledge domains, both at a functional (e.g., Baroody & 
Ginsburg, 1986; Geary, 1993; Shalev et al., 1993; Temple, 1989, 1991) and neuro-
anatomical level (adult neuropsychological studies: Cipolotti & Butterworth, 1995; Dehaene 
& Cohen, 1997; Delazer & Benke, 1997; Hittmair-Delazer, Sailer, & Benke, 1995; 
McCloskey, Caramazza, & Basili, 1985; Pesenti, Seron, & Van der Linden, 1994; Warring-
ton, 1982; see also Domahs & Delazer, this issue; brain imaging studies of adults: Dehaene 
et al., 1999; Gruber, Indefrey, Steinmetz, & Kleinschmidt, 2001; Pesenti, Thioux, Seron, & 
De Volder, 2000; Rickard, Romero, Basso, Wharton, Flitman, & Grafman, 2000; Zago, 
Pesenti, Mellet, Crivello, Mazoyer, & Tzourio-Mazoyer, 2001). To further complicate the 
matter, one has to keep in mind that average arithmetic development does not pursue a 
straight, fully predictable course of acquisition, but rather can be characterised by quite 
impressive individual differences (e.g., Dowker, 1998; Geary & Widaman, 1987; Lemaire & 
Siegler, 1995; Siegler, 1987; Siegler & Jenkins, 1989). 

In the following sections, we will outline a) contrasting models of pre(non)verbal quan-
tity representations; b) developmental calculation models and discuss reasons why they 
should be distinct from adult calculation models; c) transcoding models. Finally, we discuss 
how evidence from various fields (such as numeracy intervention studies, dyscalculia re-
search, math anxiety research, brain imaging studies) might enhance our understanding of 
numerical development in the future. 

Models of pre(non)verbal quantity representation 

Strictly hierarchical accounts 

Up to date, there is still a controversy about the order of acquisition of numeri-
cal/arithmetic abilities. Traditionally, according to Piaget (1952) and post-Piagetian re-
searchers, arithmetic development follows a strict hierarchical sequence of acquisition (such 
as proposed by the stage model of Ginsburg, 1977; see also Siegel, 1982; Siegler & Robin-
son, 1982). In other words, it has been argued that specific numerical skills need to be mas-
tered before other – maybe more difficult – skills can be acquired. This view is the basis of 
almost all traditional developmental models. Consequently, a developmental disability or 
learning difficulty would imply a failure to acquaint a further step in the learning sequence, 
whereas the previously acquired skills should still be mastered. However, this strict view has 
been largely discarded because it does not provide a sound explanatory framework of the 
developmental behavioural data reported so far. For instance, Temple’s research (1989, 
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1991) has shown that – similar to acquired calculation disorders - also in developmental 
dyscalculias double dissociations can be found, a finding which renders the classical devel-
opmental (stage) models implausible. Another nice piece of evidence against traditional 
hierarchical accounts is provided by Censabella and Noël (this issue). They tested the hy-
pothesis that acquisition of multiplication facts interferes with previously learned mastery of 
addition problems. Indeed, the addition performance deteriorated after multiplication knowl-
edge was established. Hence, the authors concluded that the acquisition of a new skill is not 
based on the mastery of an earlier stage, but rather it interferes with capabilities learned 
earlier in life. Thus, clearly, a strictly hierarchical sequence account is not compatible with 
the data obtained recently. 

Weakly hierarchical accounts and preverbal counting models 

A weaker version of the hierarchical account has been put forward by those researchers 
concerned with the development of counting skills. Specifically, it has been claimed that 
core numerical skills, namely pre(non)verbal quantity representations, need to be established 
before conventional, language dependent verbal counting skills can be assimilated (e.g., 
Fuson, 1988; Gallistel & Gelman, 1992; Resnick, 1983)2. With respect to arithmetic fact 
(like 4+3, 4x3) and procedural knowledge (correct execution of complex arithmetic opera-
tions such as multi-digit written problems), some authors argue that the two components are 
partly independent of each other and thus their order of acquaintance does not need to follow 
a strict hierarchical sequence, but rather should be regarded as a continuous interplay (e.g., 
Baroody, 2003; Rittle-Johnson, Siegler, & Alibali, 2001). Regarding counting skills, Fuson’s 
work (1988) implies a rather hierarchical fashion of learning: the most immature counting 
strategy being mastered first (such as counting all), that is followed by more mature counting 
strategies that reflect some knowledge about cardinality (such as counting on or counting on 
from the larger). Similarly, it has been proposed that preverbal counting/computational 
knowledge precedes verbal counting/computational skills (preverbal/implicit skills: Gallistel 
& Gelman, 1992; protoquantitative knowledge: Resnick, 1992). In the following, we will 
briefly describe various models of pre(non)verbal models of quantity representation. 

In their influential work, Gallistel & Gelman (1992) explicate a preverbal counting 
model by adopting the so-called accumulator model that was initially proposed by Meck and 
Church (1983) to account for the timing and counting behaviour of rats. Meck, Church, and 
Gibbon (1985) were able to train rats to discriminate two sets of numerosities (2 versus 8 
events). Moreover, they demonstrated that rats trained on duration discrimination only spon-
taneously generalised their discrimination behaviour to non-trained numerical differences. 
They concluded that in animals, both aspects of magnitude (durational and numerical) are 
likely to be represented by the same mental magnitude representations. According to the 
accumulator model (Meck & Church, 1983), a given set of objects - a specific numerosity - 
is transformed (mapped)- to their respective mental magnitude representation. This is sup-
posed to be achieved by a stage-wise processing, in which a burst of impulses needs to pass a 

                                                                                                                        
2 However, it has to be noted that there is disagreement with respect to the direction of causality: some be-

lieve that principles come first (e.g., Gallistel & Gelman, 1992), while others propose that knowledge about 
counting principles develops after the mastery of rote verbal counting routines (e.g., Fuson, 1988). 
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gate in order to enter and subsequently to increment the current state of the accumulator. 
Moreover, the pairing between the states of the accumulator and the objects (impulses) to be 
counted presumably occurs on a one-to-one basis. Hence, it reflects the isomorphism be-
tween the ordering of magnitudes and numbers. Finally, Gallistel and Gelman (1992; Gel-
man & Gallistel, 1978) claimed that ‘the operation of this mechanism conforms to the prin-
ciples that define counting processes’ (p. 51) and proposed a bidirectional mapping hypothe-
sis: arithmetic tasks requiring the manipulation of Arabic digits - i.e., upon attempting to 
count and/or compute sums - need to be mapped to their corresponding preverbal representa-
tions of numerosity (magnitudes) and vice versa (for a similar view, see Wynn, 1995).3

However, the accumulator model is not the only candidate for a plausible explanation of 
pre(non)verbal quantity representations and it has been criticised that it can not account for 
the successful discrimination/enumeration behaviour of simultaneously presented visual 
object sets as found in nonverbal animals and/or preverbal infants (Mix et al., 2002). Alter-
native views are the subitizing account (e.g., Starkey & Cooper, 1980; Trick & Pylyshyn, 
1994), the object representation account (Simon, 1997; Uller, Carey, Huntley-Fenner, & 
Klatt, 1999; for a review, see Carey & Xu, 2001) and mental models (Huttenlocher, Jordan, 
& Levine, 1994). Nevertheless, we will come back to the accumulator model later, discuss-
ing it’s potential usefulness in comparative studies of number-related research areas. 

The mental model 

According to Mix et al. (2002), the models that fit best to a wide range of empirical data 
seem to be the mental model (Huttenlocher, Jordan, & Levine, 1994) and the object repre-
sentation account (object files: Kahneman, Treisman, & Gibbs, 1992; FINST [Fingers of 
Instantiation, see below for an explanation]: Trick & Pylyshyn, 1994). Although Mix et al. 
(2002) admit that their view is quite speculative, they excel in providing an in-depth and 
critical review of the existing respective literature by questioning the conclusiveness of most 
of the popular findings. Based on the findings of their own as well as other laboratories 
(Feigenson et al., 2002; Simon, 1997; Tan & Bryant, 2000; for a review, see Mix et al., 
2002), the authors stress the importance to distinguish between perception of continuous 
amount on the one hand and discrete number on the other hand (i.e., mass versus number). A 
key assumption of Mix et al. (2002) is that many studies claiming that infants can discrimi-
nate small numerosities (and maybe larger ones, too, if the ratio is large enough; Xu & 
Spelke, 2000), did confound numerosity (i.e., discrete amount) with physical properties of 
the relevant stimuli such as length, density, luminosity etc. (i.e., continuous amount). Hence, 
Mix et al. (2002) argue that infants should be less or not at all sensitive to discrete number if 
continuous stimulus variables have been controlled for. And indeed, that was what they 

                                                                                                                        
3 In contrast to Dehaene’s assumption of the logarithmic compressive mapping of number words (digits) onto 

the mental number line (Dehaene, 1992), the preverbal magnitude representations purported by Gallistel & 
Gelman (1992) are assumed to be characterised by a linear mapping from number words to the mental num-
ber line (so-called ‘scalar variability’ account; Dehaene, 2001; Seron & Pesenti, 2001; for that controversy 
in the special issue of Mind and Language). The latter distinction becomes important with respect to the 
subjective difference between two equally well discriminable numbers: it is a constant in the logarithmic 
mapping model, while it increases linearly with a fixed scalar parameter with the mean numerical value in 
the scalar variability mapping model. 
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found (e.g., Clearfield & Mix, 1999; Gao, Levine, & Huttenlocher, 2000; Simon, 1997; Tan 
& Bryant, 2000). As Tan and Bryant (2000) point out, continuous amount frequently is 
associated with number in real life, too (consider the overall amount of two pieces of cake 
versus one piece or three pieces) and thus, estimates of overall amount would generally 
suffice to make a ‘quasi-numerical’ judgement. Moreover, it can be assumed that a learning 
process (that presumably requires higher level cognitive skills such as feature decomposition 
of visual displays, abstracting the relevant stimulus dimension) must be mastered that en-
ables the child to separate these two dimensions of number processing. 

The mental model account originally has been developed to provide an explanatory 
framework for nonverbal quantity transformation knowledge exhibited already by three year-
old children that are otherwise not able to solve the same tasks presented verbally, either in 
word or story format (Levine, Jordan, & Huttenlocher, 1992). In classical transformation 
studies, children are required to mentally perform additive and/or subtractive transformations 
on previously hidden object sets. The assumptions of the mental model are the following: 
upon trying to solve such transformation tasks, children seem to “construct” a mental image 
of the hidden display. Likewise, they seem to perform mentally - and hence without drawing 
on linguistic competencies such as verbal counting strategies - all crucial and salient arithme-
tic transformations which lead them to the problem’s numerical solution. Importantly, it has 
been suggested that the mental images formed to represent the (hidden) objects - including 
featural object characteristics - can be assigned sequentially. Moreover, they can be manipu-
lated according to the transformations performed on the (hidden) set (like adding/subtracting 
objects). According to Huttenlocher and colleagues (1994), the latter ability to symbolically 
construct and/or mentally manipulate/update a visual display of discrete items, seems to 
occur simultaneously with mental imagery abilities in other functional domains such as 
language, symbolic play etc. 

Finally, the subitizing account draws upon well established behavioural data: both adults 
and young children employ differential counting/enumeration mechanisms that depend on 
the numerosity of the set (adults: e.g., Jensen, Reese, & Reese, 1950; Mandler & Shebo, 
1982; 5-year old children: Chi & Klahr, 1975; however, for a contrasting view, see 
Balakrishnan & Ashby, 1992). Specifically, small sets (up to three or four items) seem to be 
recognised quickly (as displayed by rather flat response latency curves), whereas sets larger 
than four generally require more time to be counted (as reflected by a linear increase in 
response latencies). Hence, it has been proposed that the quick enumeration of small sets 
(coined as ‘subitizing’) operates at a preattentive processing stage (Trick & Pylyshyn, 1994). 
Subsequently, subitizing has been considered as a plausible explanation for the quantity 
discrimination performance of pre(non)verbal infants and animals (see also Starkey & Coo-
per, 1980). Moreover, by stressing that subitizing reflects a preattentive - and hence obliga-
tory - activation (‘individuation’) of a visually perceived scene Trick and Pylyshyn (1994) 
proposed a somewhat different conceptualisation of subitizing: the so-called FINST (Finger 
of Instantiation) is a metaphor for the assignment process that maps a reference token to each 
visually perceived feature of the scene. The FINST is thought to mediate object individua-
tion and spatial tracking, the latter being limited capacity operations. 

Another influential proposal is the so-called pattern recognition view purported by 
Mandler and Shebo (1982) claiming that enumerating small sets is quicker relative to large 
sets because the former can be simultaneously processed as they are easily recognised as 
patterns. However, as response latencies are not completely flat - as should be the case for 
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simultaneous processing of set sizes within the subitizing range (but generally exhibit a slope 
of 20 ms per item; for a review, see Mix et al., 2002) - the pattern recognition view has been 
criticized as well. Another important distinction has been drawn between item and event 
subitizing. While item subitizing implies that a visual object set is presented simultaneously, 
the latter should be able to account for sequentially presented stimulus/object sets (such as 
sounds; Davis & Perusse, 1988). 

To conclude, the models outlined above might be more or less suited to exemplify 
pre(non)verbal quantity knowledge. However, they neither attempt to provide an explanatory 
framework for the many remaining building blocks that constitute arithmetic knowledge (and 
even less so for the cognitive components that are involved in higher mathematical reasoning 
such as geometry, algebra etc.) nor do they attempt to link the diverse components of nu-
merical and arithmetic thinking. Instead, most of these models do only account for few or 
even only one elementary numerical task which - in our view- is not entirely satisfying. 

In the next sections, we will try to sketch the most influential adult calculation models 
and reason why we believe that developmental models should be designed ‘out from the 
scratch’. 

Calculation models: Can adult models be recruited to
test developmental data? 

The most influential adult calculation models are those of McCloskey and collaborateurs 
(1985; McCloskey, 1992; see also Cipolotti & Butterworth, 1995, for a modification) and 
Dehaene and Cohen (1995, 1997; Dehaene, 1992; see also Dehaene et al., 2003, for a recent 
specification). Both models depict the modular architecture of number processing and calcu-
lation by claiming that specific arithmetic skills can be dissociated from each other. The 
McCloskey model proposes systems for number comprehension and number production as 
well as a calculation system that mediates fact and procedural knowledge. The comprehen-
sion and production systems are thought to be format specific for Arabic digits and spo-
ken/written number words. Likewise, Dehaene’s ‘triple-code’ model proposes the interplay 
of three distinct modules: visual Arabic representations (parity judgements, multi-digit calcu-
lations), phonological/verbal word frame (counting, number fact retrieval) and analogue 
magnitude representations (approximate numerical abilities, magnitude comparisons). How-
ever, one disagreement among the models is the one regarding the nature of the mental mag-
nitude representations: whereas the McCloskey model posits that every numerical input has 
to be converted into an internal semantic representation before it can be further processed, 
Dehaene’s triple-code model suggests that the three kinds of representations are directly 
interlinked, and thus number processing and calculation do not need to pass through a se-
mantic route. In McCloskey’s model, it is assumed that magnitude is organized according to 
the base-10 power system of Arabic numerals. So 307 would be 3EXP{2} + 7EXP{0}. In 
contrast, in Dehaene’s model, magnitude is assumed to be represented holistically on an 
analog mental number line. While earlier data were more compatible with Dehaene’s model 
(Dehaene, 1992, 1997; Dehaene & Changeux, 1993; see also Brysbaert, 1995), more recent 
evidence suggests that the base-10 structure of Arabic digits also affects their magnitude 
representation (adult data: Nuerk, Weger, & Willmes, 2001; Nuerk, Geppert, van Herten, & 
Willmes, 2002; Ratinckx, Brysbaert, & Fias, submitted; developmental literature: Nuerk, 
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Kaufmann, Zoppoth, & Willmes, 2004). This led Nuerk and colleagues to suggest a hybrid 
view that magnitude of multi-digits numbers is represented analog as well as decomposed for 
their constituent digits (see Nuerk & Willmes, this issue for details). 

Importantly, both adult models do not incorporate components such as arithmetic reason-
ing, although the latter ability has been long emphasised in the respective developmental 
literature (also termed conceptual or teleological knowledge, Resnick, 1982; van Lehn, 
1990). In the adult literature, Delazer was the first to empirically demonstrate that conceptual 
knowledge can be selectively disturbed/spared, and hence conceptual knowledge seems to be 
separable from other calculation skills such as fact retrieval in acquired acalculia, too (De-
lazer & Benke, 1997; Hittmair-Delazer et al., 1995; for a review, see Delazer, 2003). By 
demonstrating a double dissociation between approximate and exact calculation abilities in 
patients with acquired calculation disorders, Dehaene & Cohen (1997) suggest that the ana-
logue magnitude representation mediates approximation skills (for a review, see Dehaene et 
al., 2003).4

Moreover, estimation skills have not been considered explicitly in adult models. How-
ever, it has to be noted, that (non-arithmetic) estimation abilities might be quite distinct from 
approximation skills. The former term generally denotes the enumeration of very large object 
sets and/or continuous quantities, and might be referred to when task difficulty is enhanced 
by limiting exposure time. Thus, estimation could be thought of as a specific enumeration 
process that is distinct from both subitizing and counting (Trick & Pylyshyn, 1994; for a 
review, see Mix et al., 2002). 

Approximation, as used by Dehaene and Cohen (1991) probably refers to arithme-
tic/computational estimation (that is quite distinct from non-arithmetic forms of estimation 
such as numerosity judgement, magnitude comparison). The authors contrasted the patient’s 
verification performance on exact and approximate calculation by using identical items (i.e., 
one-digit problems: which in itself is an elegant way to ensure that performance differences 
can surely be attributed to the relevant research question – in this case the different task 
requirements – rather than being due to stimulus differences across tasks). However, one has 
to note that Dehaene’s approximate calculations (requiring the individual to judge which of 
two presented – however incorrect – answers is numerically closer to the problem at hand) 
easily can be solved by exact calculation, because many individuals automatically will re-
trieve the respective number fact from long-term-memory (supporting the latter notion, Le-
Fevre and Kulak [1994] provide evidence for the obligatory and task-irrelevant activation of 
fact knowledge). If they indeed do, then the so-called approximation task turns into a fact 
production/retrieval task that needs to be accompanied by a comparison process (with the 
suggested answers) and a subsequent response decision. In contrast, the exact task turns in a 
delayed match-to-sample task in which the retrieved fact has to be matched with one or two 
response numbers. 

Regarding the developmental literature on arithmetic estimation, Dowker (1997) points 
out that previous research on this matter is hardly comparable as the definitions of estimation 
have been quite heterogeneous, ranging from ‘...certain specific approximate calculation 
                                                                                                                        
4 It is important to note that approximate calculation skills are not identical and/or interchangeable with 

pre(non)verbal quantity representations as outlined above. Rather, the term approximate calculation has 
been used in various contexts and one needs to specify what is meant when referring to that term. Hence, 
there has been no attempt to link and/or integrate pre(non)verbal numerical abilities to those calculation 
components already being specified in adult models. 
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strategies to any guess as to a numerical quantity.’ (p. 142). Therefore it is not surprising that 
with respect to the age range when estimation generally can be applied and it’s relation to 
conventional calculation skills, the findings are quite ambiguous, too. It has been proposed 
that estimation proficiency in children can not be expected until around 10 years of age 
(Case & Sowder, 1990; for a contradicting view, see Dehaene & Cohen, 1991). Interestingly, 
while mathematics educators have put forward a hierarchical (stage model) view by claiming 
that the ability to perform computational estimations depends on mental calculation skills 
(e.g., Reys, 1984), the findings of double dissociations between exact and approximate cal-
culation in the adult literature of acquired calculation disorders do not corroborate the stage 
model view but rather imply that the two components are separable from each other (e.g., 
Dehaene & Cohen, 1991; Warrington, 1982). 

Finally, it has to be mentioned, that approximation is not the only method to roughly es-
timate computational results. Alternatively, the correct answer retrieval can be facilitated by 
(mostly implicit) knowledge about it’s parity status, too (e.g., Berch, Foley, Hill, & 
McDonough, 1999; Krueger, 1986; Krueger & Hallford, 1984; Lemaire & Fayol, 1995; 
Lochy, Seron, Delazer, & Butterworth, 2000). 

Problems with translating adult models to the children data 

In the last decade, there have been efforts to demonstrate that behavioural data of chil-
dren diagnosed with dyscalculia fit the adult models. Temple (1991) has been the first to 
show a double dissociation between fact and procedural knowledge in developmental dys-
calculia (see also Kaufmann, 2002), and moreover, has described a child exhibiting specific 
difficulties in processing Arabic digits (Temple, 1989). 

However, in our view, there are several reasons why one should defer from utilising 
adult (calculation) models in order to obtain an explanatory framework for the observed data 
set.  

No reliable premorbid functional levels. Firstly, perhaps the most obvious reason is that 
in adults, one could get rather reliable estimates of premorbid functional levels to which the 
acquired deficit profile can be compared. To the contrary, by interpreting developmental 
data, one has to deal with many unknown facts (both regarding numerical/arithmetic skill 
development as well as with those cognitive domains that might subserve the understanding 
and manipulation of numbers; such as general symbolic abilities, linguistic abilities, visual-
spatial abilities etc.). 

Intra- and interindividual differences. Secondly, an important reason to stress the need 
for newly emerging, specifically developmental calculation models, is the fact that inter- and 
intraindividual differences regarding numerical/arithmetic abilities (e.g., Dowker, 1998) are 
likely to be accompanied by inter- and intraindividual differences regarding other cognitive 
domains as well. Thus, developmental models need to incorporate many links to cognitive 
abilities that are likely to modulate and/or exert an influence upon both or either the ac-
quaintance of numerical/arithmetic skills as well as their availability/ease of access and 
manipulation. For example, it has been repeatedly shown that working memory plays a cru-
cial role not only in complex mental calculation (e.g., Fuerst & Hitch, 2000), but also in 
number fact retrieval (Kaufmann, 2002; for a review, see Ashcraft, 1995). Furthermore, it 
has been repeatedly emphasised that visual-spatial skills are correlated to specific aspects of 



Numerical development: current issues and future perspectives 151

arithmetic (and even more so to geometry; Casey, Pezaris, & Nuttall, 1992; Geary, 1993, 
1996; Rourke & Strang, 1983). Likewise, a kind of spatial attention (‘attentional orienta-
tion’) has been thought to mediate/facilitate the utilisation of the mental number line 
(Dehaene et al., 2003; Zorzi, Priftis, & Umiltà, 2002. With respect to the neuro-anatomical 
correlates of the latter ability, Dehaene et al. claim bilateral posterior superior parietal sys-
tems as crucial cerebral areas. Another – in adult calculation models crucially neglected 
function – is linguistic ability (but see MARC-effect, Nuerk, Iversen, & Willmes, 2004, for 
linguistic influences on elementary number processing): despite having been generally ac-
knowledged as being important for specific arithmetic abilities like counting, fact retrieval, 
solving of word problems, there has been no attempt to explicitly define and characterise the 
interplay between linguistic and numerical abilities. We believe that developmental models 
should be designed that incorporate the differential effects of clearly defined linguistic abili-
ties on various components of number processing and calculation (going beyond the well-
established literature on preverbal/verbal counting). 

Here, we also wish to draw the readers attention to strategy use: despite the well-known 
findings of LeFevre’s group (e.g., LeFevre & Kulak, 1994; LeFevre, Bisanz, Daley, Buf-
fone, Greenham, & Sadesky, 1996; LeFevre, Sadesky, & Bisanz, 1996) demonstrating that 
even adults seem to apply a wide range of strategies upon solving simple calculations (that 
are not restricted to retrieval strategies but also include various procedural strategies), it 
seems logical to conclude that this might be even more so true for children (see Siegler, 
1987, 1988; Siegler & Jenkins, 1989). It is important to note, that individual variability re-
garding strategy use is likely to be even more pronounced in children with developmental 
(calculation) disorders. In the latter, a specific disability or cognitive dysfunction might 
result in the application of compensatory strategies. Further below, we will discuss in more 
detail the potential usefulness of explicitly incorporating non-numerical cognitive domains 
(such as working memory and spatial ability) in research concerned with developmental 
aspects of numerical cognition.

No defined neuroanatomical neurophysiological substrates. Thirdly, while the observed 
performance patterns of patients with acquired calculation disorders can be associated to 
quite specific neuroanatomical lesions (mostly affecting parietal brain areas in case of quan-
tity processing deficits and perisylvian lesions in case of linguistically mediated calculation 
skills such as number fact retrieval, for a review, see Dehaene et al., 2003), children’s calcu-
lation difficulties generally can not be linked to circumscribed lesions.5 Additionally, devel-
opmental dyscalculia has been attributed to different aetiologies, among which one could 
find rather unspecific cerebral dysfunction such as the right hemisphere, white matter dys-
function hypothesis (dyscalculia being a key symptom of the so-called ‘non-verbal learning 
disability’; Rourke & Strang 1983; see also Weintraub and Mesulam’s [1983] concept of 
developmental right hemisphere disorder), periventricular leucomalacias (as often described 
in very-low-birth-weight children; Isaacs, Edmonds, Lucas, Gadian, 2001), accompanying 
symptoms of – anatomically largely unspecificed – metabolic diseases such as phenylketonu-
ria or neuropsychiatric disorders such as attention-deficit hyperactivity-disorder (e.g., Zen-
tall, Smith, Yung-bin, & Wieczorek, 1994) as well as a common functional deficit of genetic 
                                                                                                                        
5 However, a recent brain imaging study correlating behavioral data with voxel-based morphometry was able 

to demonstrate decreased gray matter density in parietal areas of formerly premature children that exhibited 
dyscalculia relative to a very well matched control group of premature children with average calculation 
skills (Isaacs, Edmonds, Lucas, & Gadian, 2001). 
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diseases such as Turner’s Disease (e.g., Bruandet, Molko, Cohen, & Dehaene, 2004; Maz-
zocco, 1998; Rovet, Szekely, & Hockenberry, 1994; which lead some to conclude that de-
velopmental dyscalculia might have a genetic predisposition; Geary, 1993; Shalev, Manor, 
Kerem, Ayali, Badichi, Friedlander, & Gross-Tsur, 2001). Moreover, dyscalculia has been 
reported to be frequently associated with dyslexia (e.g., Landerl, Bevan, & Butterworth, 
2004; Lewis, Hitch, & Walker, 1994). However, there have been attempts to link behav-
ioural performance patterns in the arithmetic domain to specific neuroanatomical sites of 
dysfunction. 

The latter becomes plausible upon considering that developmental dyscalculia can be 
quite heterogeneous (e.g., Geary, 1994; Temple, 1991, 1994; von Aster, 2000) and typically 
is characterised by large interindividual differences (e.g., Dowker, 1998; Siegler, 1987). 
Consequently, Geary (1994) suggested that specific difficulties in retrieving number facts 
(‘memory subtype’, frequently associated with dyslexia/poor reading skills) as well as diffi-
culties to execute arithmetic procedures (‘procedural subtype’, probably reflecting an insuf-
ficient/lacking understanding of arithmetic concepts) can be associated to left-hemisphere 
dysfunction, whereas difficulties with visual-spatial aspects of number processing such as 
understanding of place value (‘visuo-spatial subtype’) are associated with right hemisphere 
dysfunction. Similar subtyping approaches of developmental dyscalculia relying on behav-
ioural data – i.e., double dissociations between specific components of the calculation system 
– have been adopted by other authors (Badian, 1983; Kosc, 1974; Temple, 1991; von Aster, 
2000). However, up to date a theoretically derived and empirically validated developmental 
calculation model is still lacking. 

Transcoding models 

Finally, another class of models are transcoding models (e.g., Power & Dal Martello, 
1990, 1997 for more detailed reviews and discussion see also Lochy, Delazer, Domahs, 
Zoppoth, & Seron, unpublished manuscript; Noël & Turconi, 1999; Seron & Fayol, 1994). 
Based on a first extensive analysis of children’s number transcoding errors, Power and Dal 
Martello proposed an algorithm how children transform verbal numbers to an Arabic code. 
When they are asked to write down a number like “four hundred and seventy six” they build 
up a semantic representation in a first comprehension process where the above number is 
represented as <C4 x C100> + <C7 x C10> + <C6> where Cn is the semantic representation 
of the respective quantity n (n being a natural number). It can be seen that the semantic rep-
resentation is already thought to be linked to the Arabic number system which is a base-10 
system without any subpower (as indicated by the multipliers C10 and C100 in the model; 
for different number systems, see Zhang & Norman, 1995). Two rules or operators are then 
used to transform the above semantic representation to an Arabic number. First, the concate-
nation operator concatenates the products: From C4 * C100 to 4 & 00 to 400 and in the same 
way for the decades. When this operator is not used properly “two hundred” might be 
transcoded into 2100. The other operator is the overwriting operator which operates the zeros 
of the semantic representation. Suppose the concatenation operator would be successfully 
applied. The remaining representation would be < 400> + <70> +<6> in the above example. 
The overwriting operator or rule overwrites the zeros so that < 400> + <70> +<6> is trans-
formed into < 400> # <70> # <6> (with # being the overwriting operator) and then to 476. 
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Errors that result from an incorrect application of the overwriting operator have been fre-
quently observed when a zero has to be inserted. When “hundred and six” has to be written 
down, children often fail to overwrite one zero and instead write down “1006”. They just 
write the numbers behind each other instead of overwriting the zero at the place of the unit 
position.

However, a recent transcultural study questions the general validity of the model. Lochy 
(2003) studied transcoding performance in German and French speaking children. In Ger-
man (and in Dutch) two-letter words are inverted; the verbal representation of 21 is “ein-
undzwanzig” (one-and-twenty). Lochy found that the transcoding errors in Belgium (French 
speaking) and Austrian (German speaking) children differed considerably with regard to the 
inversion property in the language. When Austrian first graders committed errors in decade-
unit trials, they committed inversion errors (“twenty-one”  “12” in 77% of all errors while 
for Belgium children only 1,8 % of all errors were inversion errors. What is even more re-
markable is that the inversion property was wrongly generalized to other stimuli. Most inter-
estingly were the transcoding differences in the UH structures (“five hundred”): While 19 of 
32 errors consisted of an inversion instead of concatenation (i.e., 105 instead of 500), almost 
no such errors occurred for Belgium children. Lochy suggests the application of a third op-
erator “§” which helps to invert the verbal number representation in the transcoding process. 
Without such an operator, these transcultural results cannot be explained by the model of 
Power and Dal Martello (1990). 

Transcoding models might be considered as sub-models to other models. For instance, 
with regard to Dehaene and Cohen’s (1995; 1997, see also Dehaene, 1992) triple-code 
model, transcoding models might describe the relation between the verbal number represen-
tation and the other representations. However, transcoding models also demonstrate a clear 
lack of model building so far in children’s work. Too many models explain just one task or 
phenomenon (e.g., subitizing, transcoding) and are not task-overlapping. In contrast, when 
models are task-overlapping and more general, often they do not make very specific predic-
tions. While transcoding errors are not generally incompatible with general model frame-
works like that of McCloskey or Dehaene, these models do not yet specify the specific quali-
tative types (and not at all the quantity) of errors that should be observed at a certain point of 
numerical development. 

Other cognitive abilities influencing math performance 

There might be several other cognitive and non-cognitive abilities that should be consid-
ered to be influencing numerical/arithmetic performance. Among the latter, emotional factors 
such as math anxiety or attitude towards math, have been reported to be associated with math 
performance (e.g., Ashcraft & Kirk, 2001; Faust, Ashcraft, & Fleck, 1996; Hopko, Ashcraft, 
Gute, Ruggiero, & Lewis, 1998). Specifically, Hopko et al. (1998) suggest that poor per-
formance of high math anxious individuals is a consequence of their inability to divert atten-
tion away from the worry and not attributable to experiences of worry per se. 

It has been repeatedly stressed that a negative attitude towards mathematics and/or math 
anxiety seems to negatively affect actual math performance, both in the developmental 
(Gregory, Snell, & Dowker, 1999; Holt, 1966) and in the experimental literature (e.g., 
Ashcraft & Kirk, 2001; Faust et al., 1996; Hopko et al., 1998). Importantly, the negative 
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effects of math anxiety are not confined to highly advanced and difficult mathematics, but 
have also been reported for highly familiar and simple arithmetic problems (Faust et al., 
1996; Hembree, 1990). According to our own findings, math anxiety can be found even in 
primary school teachers (22 out of 49 teachers rated themselves as being moderately to 
highly math anxious; Dowker, Delazer, Nuerk, & Kaufmann, submitted). Further, we found 
moderate and high levels of math anxiety in school teachers to be associated with low per-
formance levels on simple and complex multiplications as well as math reasoning (the over-
all error rate being quite high, namely 26.3 %). Finally, in a data subset that is part of a large 
scale study that aims at collecting data for the German standardization of a mathematical 
aptitude test for 4 to 8 year-old children we also found a correlation between math anxiety 
and math performance, third graders reporting higher levels of math anxiety than first grad-
ers. Thus, it seems that – even in normally achieving children – increasing exposure to for-
mal school mathematics is likely to result in higher levels of math anxiety that are accompa-
nied by decreasing performance levels. Most interestingly, in all three grades, females 
yielded higher scores on the math anxiety questionnaire (thus indicating higher levels of 
math anxiety). However, it remains an open question whether girls are really more anxious 
than boys or whether the gender differences in math anxiety scores arise because girls tend 
to report math anxiety more readily. 

Current issues on the role of parietal brain areas in quantity processing

How specific is the relation between parietal cortex and number processing? 

It is widely acknowledged that quantity processing is preferentially subserved by parietal 
brain regions. In particular, the intraparietal sulcus (IPS) seems to support the manipulation 
of abstract representations of numerical magnitudes (e.g., Dehaene et al., 1999; Fias, Lam-
mertyn, Reynvoet, Dupont, & Orban, 2003; Pesenti et al., 2000; Kaufmann, Koppelstaetter, 
Delazer, et al., 2005; Pinel, Dehaene, Riviere, & LeBihan, 2001). Dehaene and colleagues 
(2003) proposed that number processing is mediated by three parietal circuits, namely a) the 
horizontal segment of the intraparietal sulcus (HIPS; mediating numerical quantity process-
ing in itself), b) the left angular gyrus (as well as adjacent perisylvian structures; being acti-
vated upon language-based number processing such as in verbal counting, verbal retrieval of 
number facts) and c) the bilateral posterior superior parietal system (PSPS, subserving atten-
tional and spatial orientation on the mental number line). 

There are several studies outside the domain of mathematical cognition that reported 
cerebral activations in and around the IPS. Such as, the IPS has been found to be activated 
also during attentional processing (Gruber et al., 2001). Most interestingly, upon training 
monkeys in time discrimination tasks, Onoe, Komori, Onoe, Takechi, Tsukada, and Wata-
nabe (2001) found increased blood flow in inferior parietal regions (as well as in dorsolateral 
prefrontal cortex [DLPC]; see also Leon & Shadlen, 2003). Thus, parietal regions seem to 
play a key role in both time and magnitude perception. 

On the contrary, magnitude processing does not seem to be an exclusive domain of parie-
tal cortex. Interestingly, number selective neurons (‘numerons’) have been demonstrated in 
primate’s prefrontal brain areas (time: Onoe et al., 2001; number: Nieder et al., 2002; Nieder 
& Miller, 2003). In addition, there is evidence supporting the assumption that also the cere-
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bellum and the basal ganglia might be involved in magnitude processing (for a review, see 
Walsh, 2003a, 2003b). Considering the close link between time and magnitude perception 
(as purported by Walsh, 2003a, 2003b; see also the animal studies of Meck & Church, 
1983)6, and the repeatedly reported key role of the cerebellum in temporal cognition (e.g., 
Ivry & Keele, 1989; Ivry, 1996), the absence of studies that systematically investigate its 
role in numerical cognition is rather surprising. It is thus not implausible to speculate a pos-
sible link between the timing function of the cerebellum – as it pertains to motor, sensory, 
and cognitive tasks – and the development of numerical cognition. In the following, we will 
try to further outline the potential relational nature between the cerebellum and mental mag-
nitude representations. 

As Butterworth (1999) correctly states, the acquisition of the counting sequence (learning 
the verbal counting sequence, learning to associate this verbal sequence to quantity represen-
tations and finally learning to map these count words onto the mental number line) has been 
found to strongly depend on the use of finger counting, and children seem to readily rely on 
their fingers upon performing counting and computations, even if they already master the 
verbal counting sequence. However, we are skeptical regarding the conclusion drawn by 
Butterworth (‘Neither do we know whether it’s the feel of the hand shape or the look of it 
that is critical in calculation’; p 234, Butterworth, 1999). Alternatively, we suggest that fin-
ger counting, which requires motor coordination as well as the coordination of verbal output 
(namely the counting sequence) and motor action (adjusting the number of fingers to the 
increment or decrement of counted words/items), is likely to be critically supported by cere-
bral networks that include cerebellar areas as well (the latter idea has been elaborated by a 
personal communication between X. Seron and L.K. some time ago).  

It is further interesting to note, that the cerebellum has extensive connections to prefron-
tal brain areas (especially the dorsolateral prefrontal cortex), as evidenced by both brain-
imaging and behavioral studies (Diamond, 2000). In particular, the cerebellum seems to be 
most active when the task is novel or when conditions change, while the cerebellar participa-
tion decreases with increasing task familiarity. Patients with cerebellar lesions have been 
found to perform poorly on cognitive tasks mediated by prefrontal cortical network such as 
verbal fluency, set-shifting and working memory tasks (Fiez, Petersen, Cheney, & Raichle, 
1992; Schmahman & Sherman, 1998; for a review, see Diamond, 2000). Considering the 
recent literature that proposes a key role of prefrontal brain areas in magnitude processing 
(as demonstrated by the identification of neurons that are sensitive to symbolic magnitude 
[numerical quantity; Nieder et al., 2002, Nieder & Miller, 2003] as well as non-symbolic 
magnitude [time duration; Onoe et al., 2001], the latter notion of a close interlink – both at a 
functional and anatomical level – between cerebellar and prefrontal networks clearly de-
serves a systematic investigation of researchers concerned with numerical cognition. 

Accordingly, Fias, Dupont, Reynvoet, and Orban (2002; see also Walsh, 2003a, 2003b) 
argue that the anatomo-functional link between parietal regions and number processing is 
less specific than previously assumed. By reviewing experimental human and non-human 
                                                                                                                        
6 Meck and Church (1983) were able to train rats to discriminate two sets of numerosities (2 versus 8 events), 

and moreover, were able to show that rats that were trained on duration discrimination only, spontaneously 
generalised their discrimination behaviour to non-trained numerical differences (Meck, Church, & Gibbon, 
1985). This lead them to conclude that in animals, both aspects of magnitude (durational and numerical) are 
likely to be represented by the same mental magnitudes (metaphor of the so-called “accumulator model”; 
see also Gallistel & Gelman, 2000). 
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primate studies, Walsh (2003a, 2003b) provides us with an excellent and critical overview of 
the existing respective literature. The latter author argues that concepts such as time, space 
and quantity – all of which require magnitude processing - share a common parietal cerebral 
network that largely overlaps. Specifically, regions in the lateral inferior parietal cortex 
(LIP) seem to contain neurons that are selectively responsive to both spatial (numerical) and 
temporal information. 

Temple and Posner (1998) have been among the first to investigate directly the neural 
networks mediating quantity processing in young children by employing an ERP (event-
related potentials) design. The latter authors asked their participants to decide whether a 
given magnitude (either one-digit Arabic numeral or respective dot patterns) was smaller or 
larger than a standard of 5. According to their results, both 5-year old children and adults 
exhibit a distance effect for both notations (increasing response latency with decreasing 
numerical distance) as regards reaction times. Moreover, Temple and Posner (1998) partly 
replicated the results of Dehaene et al. (1998, 2003) by identifying the inferior parietal cor-
tex as being crucial for quantity processing (independent of notation: Arabic digits vs. dot 
patterns). Importantly, these brain regions have been found to be activated in both 5-year 
olds and adults, the only difference being that the former displayed slightly delayed waves 
(while the components of the waveform affected by distance were found to be comparable in 
5-year-olds and adults). Similarly, by correlating behavioral data with voxel-based mor-
phometry, a recent study found that formerly very low birth weight (VLBW) children with 
dyscalculia exhibited a significant decrease in gray matter density in parietal brain areas 
relative to VLBW children without dyscalculia (Isaacs et al., 2001). 

Likewise, a recent meta-analysis that aimed at comparing infant and animal studies re-
garding number processing abilities stressed that in both human infants and primates parietal 
cortical networks seem to be crucially involved in quantity processing (Brannon & Roitman, 
2003). Interestingly, the latter authors report that time perception seems to be supported by 
the same parietal regions as well. Thus, Brannon and Roitman (2003) conclude that number 
and time perception might share a common cerebral network that seems to subserve a variety 
of magnitude-related tasks. Hence, the latter view corroborates the notion put forward by 
Gallistel and Gelman (2000) who propose that so-called mental magnitudes are the common 
underlying representational system for countable and uncountable quantities (such as nu-
merosity and amount, duration, etc.). In line with this hypothesis is the argument that the 
division between time, space and quantity in every-day life (such as action planning) is an 
artificial one and in the course of development, an individual has to learn to process these 
dimensions separately (Bryant & Squire, 2001; Droit-Volet, Clément, & Fayol, 2003; see 
also Walsh, 2003a, 2003b). In particular, Bryant and Squires (2001) claim that in cognitive 
psychology, the possible relation between spatial and mathematical understanding (i.e., 
symbolic quantity processing) has been rather neglected. Similarly, Droit-Volet et al. (2003) 
found that 5-year olds were not able to process numerical and durational information sepa-
rately, but also stated that in young children ‘...numerical sensitivity is greater than temporal 
sensitivity...’ (p. 74). The latter authors suggest that this difference is due to the fact that 
number resembles a ‘discrete’ information while duration is a ‘continuous’ information (as 
proposed by Gallistel & Gelman, 2000) and hence, the application of verbal counting leads 
to improved duration judgements. 
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Future perspectives 

(A) About potential links between working memory, spatial and numerical 
cognition with special reference to developmental issues 

Working memory and the acquisition of numerical/arithmetic knowledge 

There is converging evidence that the negative effects of poor working memory re-
sources are not confined to complex arithmetic skills but are also likely to hamper fact re-
trieval (Ashcraft, 1995; Kaufmann, 2002; Lemaire, Hervé, & Fayol, 1996). Kaufmann 
(2002) suggested that working memory resources (particularly the central executive compo-
nent) might play a critical role in fact retrieval abilities as displayed by a boy suffering from 
developmental dyscalculia. Moreover, efficient fact retrieval depends on the interplay be-
tween intact working memory resources, long-term memory and inhibition mechanisms 
(Kaufmann, 2002; see Figure 1, p. 303). Even in tasks as simple as transcoding of two-digit 
numbers, working memory demands might affect performance. In languages with verbal 
inversion (“one-and-twenty”) like German and Dutch, many children and some adults write 
two-digit numbers from right-to-left, i.e., in the order of verbal comprehension. Lochy 
(2003) hypothesizes that this might be a compensation strategy for low working memory 
resources which might later (for multi-digit numbers) hinder efficient processing of verbal 
number representation. 

Spatial cognition and numerical/arithmetic skills or: is the male advantage in math-
related tasks attributable to a spatial superiority 

Interestingly, the link between spatial and math-related skills has been stressed by the so-
called ‘spatial cognition hypothesis’ that has been formulated to provide an explanatory 
framework for the frequently observed male superiority in math-related tasks such as math 
reasoning (word problems) and geometry (Casey et al., 1992; Geary, 1996). According to the 
spatial cognition hypothesis, the cognitive factor that most likely contributes to these ob-
served gender differences is a male advantage in (three-dimensional) spatial skills. 

Specifically, Casey et al. (1992) argue that good spatial abilities should have a beneficial 
effect on many types of math problems because the latter generally can be solved by using 
algorithms that depend on analytical or pictorial approaches. Their findings showed that 
spatial abilities measured in high school students were highly predictive of later performance 
on a math aptitude test as senior students, which lead them to conclude that spatial cognition 
and math test performance are correlated. Likewise, Geary (1996) notes that the male superi-
ority in math test performance seems to be due to men’s superior spatial skills that are plau-
sibly explained by sexual selection (and probably its differential hormonal environments) 
that lead men to develop better spatial navigation systems. Consequently, men are more 
likely than women to draw upon their superior spatial skills in novel situations, such as word 
problems and geometry (however, for a contrary view, see Dowker, 1996; Friedman, 1995; 
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Lubinski & Humphreys, 1990).7 Likewise, females seem to display larger performance in-
creases relative to males after being explicitly trained to represent mathematical relationships 
spatially (Johnson, 1984). Thus, it has been suggested that gender differences favoring men 
in spatial skills are likely to result in gender differences in strategic approaches that in turn 
are reflected in male advantages in math reasoning (word problem-solving) and other math-
related tasks (for a review, see Geary, 1996). 

Interestingly, while some authors found that spatial ability has a higher predictive power 
of mathematical performance in males than in females (e.g., Casey et al., 1992), others found 
the opposite pattern to be true (Friedman, 1995). Hence, the evidence to date regarding the 
relationship between spatial ability and mathematical ability remains rather controversial. 

Interestingly, disturbances in the mental number line representation of adult neglect pa-
tients were reported by Zorzi et al. (2002) who found that neglect patients were unable to 
perform a number bisection task. Upon being requested to indicate the numerical middle of 
two Arabic numerals, they tended to make right-shifted errors (a result which was interpreted 
by the authors as reflecting the patient’s lack or distortion of left-hemifield perception, pre-
sumably including the left side of the mental number line). 

(B) Study of patient groups that are at risk for developing dyscalculia 

Over the last decade, there has been an increasing interest in studying children and adult 
patient groups that are known to have a high risk of developing arithmetic difficulties. Risk 
groups are mostly determined with respect to phenomenological characteristics and thus 
incorporate a variety of developmental disorders, some of which are of genetic origin. 
Hence, risk group studies could aid in identifying causal relationships between specific ge-
netic conditions or neurophysiological features (like in VLBW children) and the cognitive 
domain of interest. A detailed review of the respective literature is beyond the scope of this 
article. Nonetheless, we will mention some influential studies that were able to contribute 
significantly to the current state of the art in the field of numerical cognition by studying risk 
groups such as VLBW children, suffering from genetic disorders like Turner syndrome or 
fragile X syndrome.  

As mentioned already above, Isaacs et al. (2001) were the first to show that in a group of 
formerly VLBW children – at the time of the assessment they were about 15 years old – 
without major neurological complications, dyscalculia was associated with structural brain 
abnormalities. In particular, the latter authors report decreased gray matter density in parietal 
brain areas of VLBW children with dyscalculia relative to a well-matched group of VLBW 
children without calculation difficulties. 

With respect to genetic disorders, it has been frequently reported that individuals suffer-
ing from Turner syndrome often exhibit mathematics difficulties (Mazzocco, 1998; Rovet et 
al., 1994). Recently, it has been found that young adults diagnosed with Turner syndrome 
not only were impaired in computational skills and cognitive estimation (e.g., “What is the 
length of a bus?”) but also displayed difficulties in quantity processing such as subitizing 
(quick enumeration of small object sets; Bruandet et al., 2004). Furthermore, the latter au-

                                                                                                                        
7 The latter authors propose that the relationship between spatial abilities and performance on mathematical 

achievement tests is a correlational one. 
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thor’s interpretation is not confined to implications regarding a possible genetic contribution 
to dyscalculia/number-specific modulations of parietal neural networks. Moreover, by re-
viewing previous findings of beneficial effects of estrogen replacement therapy on specific 
cognitive functions like working memory (menopausal women) and visual-spatial memory 
(ovariectomized rhesus monkeys and rats), Bruandet and colleagues (2004) claim that “the 
results suggest that parietal impairment may be partially, but not totally compensated by 
estrogen replacement therapy, perhaps pointing to an early effect of estrogen on parietal lobe 
organization.”

Another genetic condition that is frequently associated with dyscalculia is fragile X syn-
drome. Interestingly, the cognitive profiles differ somewhat in males and females. Males 
with the full mutation usually display mental retardation, while this is not true for full muta-
tion females (Cornish, Munir, & Cross, 1998). Moreover, it has been reported that females 
often display poor spatial abilities, non-verbal performance, short-term memory and atten-
tional skills (Cornish, Munir, & Cross, 2001), while the cognitive deficiencies of males seem 
to be rather task-specific than global (Munir, Cornish, & Wilding, 2000). Regarding arithme-
tic performance, Mazzocco (1998) found that fragile X females had lower math than reading 
cluster scores in the Woodcock Johnson-Revised achievement test. Moreover, the latter 
author reports that arithmetic performance levels of fragile X and Turner females were quali-
tatively different.8 Interestingly, upon performing a correlational analysis between math 
achievement and neuropsychological test scores, Mazzocco (1998) found that for fragile X 
females, the strongest predictor of math performance was the perceptual/organizational fac-
tor score of the WISC-R (Wechsler Intelligence Scale for Children-Revised), whereas for the 
Turner females, the strongest predictor was performance on the jugdement of line orienta-
tion.

Finally, individuals with Prader-Willi syndrome (a chromosomal defect concerning pair 
15) seem to have specific math difficulties, too (Bertella, Marchi, Molinari, Grugni, & Se-
menza, 2001) which led the authors to propose a key role of chromosome pair 15 in the 
genetic transmission of mathematical abilities. 

Overall, prospective studies of risk groups (e.g., individuals suffering from Turner syn-
drome, fragile-X syndrome, Prader-Willi, VLBW), could be beneficial as regards the track-
ing of arithmetical abilities and disabilities in individuals with specific neuroanatomical, 
neurophysiological and/or functional characteristics. Such as, risk groups allow us to study 
the developmental course of specific cognitive abilities under certain conditions (e.g., ab-
normal X chromosome in Turner syndrome and fragile X syndrome) and thus could facilitate 
the identification of potentially contributing factors (either facilitating or interfering ones) to 
arithmetical development and/or performance. 

However, it has to be kept in mind, that risk groups very rarely are homogeneous groups 
of well-matched individuals. This is because even in genetic diseases the phenotype might 
vary substantially with the genotype and mosaicity. Thus, the high probability of consider-
able group heterogeneity in genetic disease – as regards neurophysiological and neuropsy-
chological characteristics – requires the careful matching of individuals and/or controlling of 
confounding variables. In our view more desirable are approaches that focus on single-case 

                                                                                                                        
8 For instance, females diagnosed with fragile X syndrome committed less operation and alignment errors in 

complex calculation, but – relative to Turner females – about equal table, (close-miss) calculation, proce-
dural and other errors. 
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studies because only by employing the latter, one is able to avoid averaging data over (sup-
posedly quite heterogeneous) groups (Siegler, 1987). Hence, the most favorable study design 
is a longitudinal prospective investigation that would enable us to compare performance 
changes within and between individuals and moreover, to study interactions between cogni-
tive performance and therapeutic interventions (pharmaceutical, hormon replacement ther-
apy, cognitive-behavioral therapy etc.). 

(C) Intervention studies 

Intervention studies can provide a better understanding of the interplay between compo-
nents of number processing and arithmetic as well as between numerical and non-numerical 
cognitive domains by analysing student’s learning process and the likelihood of the acquisi-
tion of compensatory strategies. Furthermore, the thorough and componential investigation 
of students’ educational progress should enable us to shed some light on facilitat-
ing/inhibiting effects of specific learning strategies and/or remaining cognitive resources 
(including abilities and disabilities). Such as, Censabella and Noel (this issue) found that 
previously learnt information might negatively affect the acquisition of new information 
(i.e., addition knowledge interfered with the learning of multiplication skills).  

Intervention studies with large samples are needed in order to draw firm conclusions 
about the extent and nature of the effects of early training on specific components on subse-
quent performance on the same and other components. Some forms of procedural training 
can lead to better conceptual understanding; and conceptual training can lead to more accu-
rate and efficient use of procedures (Baroody, 2003). There is converging evidence indicat-
ing that fact retrieval and automatization of procedures are important in arithmetic, not so 
much for their own sake, as because they free up time and cognitive resources for deeper-
level reflection and reasoning about arithmetical relationships (Geary, Hamson & Hoard, 
2000; Ostad, 1998; Siegler, 1988; Royer, Tronsky, Chan, Jackson, & Marchant, 1999). In 
addition, conceptually based learning can lead to greater procedural efficiency as well as 
conceptual understanding (Baroody, 2003; Brownell, 1938; Hiebert & LeFevre, 1986; De-
lazer, 2003). 

Interestingly, the results of Kaufmann, Handl, & Thony (2003) indicate that knowledge 
of counting sequences and mental calculations (advanced computational strategies such as 
problem decomposition as well as direct fact retrieval) facilitates the application and integra-
tion of other components of numerical/arithmetical knowledge (see also Kaufmann, Pohl, 
Delazer, Semenza, & Dator, in press). According to Kaufmann et al. (2003, in press), sig-
nificant training effects can be obtained after a relatively short training period of about 5 
month, which is in line with other studies (Dowker, 2001; Wright, Martland & Stafford, 
2000). Importantly, these positive learning effects can be obtained in preschool children who 
have had little formal arithmetical training, and thus may be useful in preventing numerical 
difficulties from arising later on. 

A potentially important consequence of early positive experiences with numbers may be 
in developing a positive attitude toward mathematics (Gregory et al., 1999) and in prevent-
ing the development of mathematics anxiety, which in its turn appears to have a negative 
impact on arithmetical performance in children and adults alike (Holt, 1966; Hembree, 1990; 
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Ashcraft & Kirk, 2001). Perhaps enjoyable and successful preschool experiences with arith-
metic may help to encourage a positive attitude to later school arithmetic. 

Concluding remarks 

One problem this review might well have illustrated is that research about numerical de-
velopment comes from very different research communities that sometimes seem to study 
numerical development in parallel universes. Only in the last 5 years or so, more researchers 
started to link adult research and children’s research. This can also be illustrated in the goal 
to understand numerical disabilities and disorders. Rarely, the endeavour to understand de-
velopmental dyscalculia and the endeavour to understand acquired dyscalculia have been 
well integrated although everybody believes that we are looking at the same – though more 
or less developed number representations. However, even within the research of numerical 
development, there exist quite separate literatures and models about calculation, elementary 
number processing, disturbed number processing and intervention studies. The reason for 
these separate literatures is that we are concerned with separate age groups and that numeri-
cal development is yet again a field in which researchers from many different domains (de-
velopmental psychology, pedagogics, pediatry, child and adolescent psychiatry, and applied 
cognitive neuroscience) meet. 

The needs for the future are then straightforward. We may not need more models about 
number development, but we may need more general models: we may need more horizontal 
generality in that models account for more than one task for a given age group as well as 
more vertical generality in that models account for more than one developmental age, be-
cause we may not understand numerical processing development as an integrated develop-
ment of different numerical representations and processes well with a subitizing model for 
infants, a transcoding model for early school years and a calculation model for somewhat 
later school years etc. etc.  

To sum up, in the last years, we have teased apart the development of numerical repre-
sentations and shown that there are quite many distinct representations to develop. The task 
of the next years may be to bring them together again. There may be numerous ways to 
represent and manipulate a given number, but in the end – if they function correctly – they 
all converge again to represent one number. 
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