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Abstract 

Logistic regression (LR) and Prediction Configural Frequency Analysis (PCFA) are compared. 
First, the underlying statistical models are presented. Second, sample design matrices are created. 
Third, data are analyzed using both methods. Two data examples are analyzed. The first is artificial, the 
second uses data from a project on domestic violence. Fourth, the goals of LR, a variable-oriented 
approach, and PCFA, a person-oriented approach are discussed. One conclusion of the comparisons is 
that, for researchers who wish to enrich results by employing both methods, the standard model of LR 
needs to be extended so that it becomes parallel to the base model of PCFA. 
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This article presents a comparison of logistic regression analysis (LR) and prediction 
configural frequency analysis (PCFA). The comparison has three components. The first 
focuses on the statistical models of LR and PCFA. The second focuses on the goals of analy-
sis. The third involves a comparative application of LR and PCFA to the same data. The 
main message is that a complete comparison of the two methods cannot resort exclusively to 
either the underlying models or to the different goals of analysis alone because both differ. 
Researchers who intend to employ both methods because they hope to enrich person- and 
variable-oriented results with each other will have to extend the standard model of LR so 
that it becomes parallel to the base model of PCFA. 

The article begins with a description of the statistical models of LR and PCFA, and with 
an example of the extended LR model, in Section 1. In Section 2, sample design matrices are 
used to illustrate similarities and differences between the two methods. Section 3 presents 
data examples. 

 
 

1. The statistical models of logistic regression and prediction CFA 
 
Logistic regression is a variant of regression analysis. In its simplest form, it has one or 

more predictor variables and one dichotomous dependent or criterion variable. The statistical 
model of logistic regression (LR) can be expressed in at least three ways. One uses the logits 
of the criterion variable (cf. Agresti, 2002; Lawal, 2003). This approach first performs the 
logistic transformation, also called logit, of a proportion, p,  that is, 

 

ln plogit(p) =   ,
1 - p

 

 
where p is the probability that the dependent variable assumes the value of 1. The logit func-
tion is a sigmoid curve that is symmetric about 0.5. As p approximates 0, the function ap-
proximates -∞, and as p approximates 1, the function approximates +∞. Using logits, the 
logistic regression equation can be given as 

 
1 q0 1 qlogit(p) =  +  + ... + ,x xβ β β  

 
where the xi are the predictor variables with i = 1, ..., q, and the β are the regression parame-
ters. A second notation, often used in the context of logistic regression, follows below, in 
Table 1. 

The third way to express LR involves using the terms of hierarchical log-linear modeling 
(cf. Agresti, 2002). In this article, we use the log-linear representation because PCFA can 
also be expressed using the hierarchical log-linear model notation (von Eye, 2002). Consider 
the three variables, X, Y, and Z, with Y being the dependent variable that is predicted from X 
and Z. For these three variables, Table 1 presents the five possible following logit models 
and their log-linear equivalents (from Agresti, 2002, p. 332). In general, every logistic re-
gression model can be equivalently expressed in terms of a log-linear model. The inverse is 
not true.  
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Table 1:   
Logit and log-linear models for the predictors, X and Z, and the criterion variable, Y 

 
log-linear notation logit model logit symbol 
[Y, XZ] α  (-) 
[XY, XZ] X

i+α λ  (X) 
[YZ, XZ] Z

k+α λ  (Z) 
[XY, YZ, XZ] X Z

i k+ +α λ λ  (X + Z) 
[XYZ] X Z XZ

i k ik+  + +α λ λ λ  (X*Z) 
 
 

The first of these five models is the null model. It proposes independence of the predic-
tor and the criterion variables, and takes into account the association of the two predictor 
variables. The second of these models relates the criterion, Y, to one of the predictors, X, but 
not to the other, Z, and the predictors to each other. The third model relates the criterion to 
predictor Z, but not to X, and X and Z to each other. The fourth model relates the criterion, Y, 
to both predictors, and the two predictor variables to each other. This is the standard logistic 
regression model. The fifth model includes the interaction between the triplet of variables, X, 
Y, and Z above and beyond the terms included in the fourth model. This model is saturated. 

Based on the generalized log-linear model, log m = Xλ, where m is the column vector of 
expected cell frequencies, and λ is a column vector of model parameters, we can formulate 
the following log-linear logistic regression model for the criterion variable Y and I binary 
predictor variables Xi, for i = 1, ..., I, 

 
log i ji i ...X XY X YX

i i, j,...k ki
i ki i, j,...

 m =  +  + +  + ∑ ∑ ∑λ λ λ λ λ  

 
for i ≠ j and i, j ∈ I, and where m indicates the cell frequencies. 

Note that the logistic regression model makes no assumptions concerning the relations 
among predictors. Therefore, the model is saturated in the predictors. Note also that higher 
order predictor-criterion relationships are not part of the standard LR model. They can, how-
ever, be considered. This issue will be taken up again later, in the comparison of LR and 
PCFA. 

This last characteristic constitutes an important difference between standard, continuous 
variable regression models and logistic regression. In standard regression, predictors are 
assumed to be independent. 

In general, the model of LR contains (1) the terms for those predictor-criterion relation-
ships that are of interest to the researcher, and (2) the interactions among the predictor vari-
ables. The model is thus saturated in the predictor variables. The goal of application of LR is 
parallel to the goal of application of standard regression. Researchers attempt to identify the 
degree to which dependent measures can be predicted from independent measures. This 
degree can be expressed (1) using R2 or its equivalents, (2) the portion of variance accounted 
for by individual predictors, (3) goodness-of-fit tests, and (4) the results of significance tests. 
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1.1 The log-linear base model of prediction configural frequency analysis (PCFA) 
 
The goal of analysis with PCFA differs from the goals of analysis with LR in a fashion 

parallel to the differences between log-linear modeling and CFA in general. Using PCFA, 
researchers attempt to establish the relationships between predictors and criteria at the level 
of individual category patterns, that is, configurations (Havránek, Kohnen, & Lienert, 1986; 
Heilmann, Lienert, & Maly, 1979; Lienert & Krauth, 1973; see also von Eye, 2002). Results 
are stated in terms of configurations rather than in terms of variable relationships. The goal 
of PCFA is thus the rejection of local null hypotheses instead of model fitting. If, for indi-
vidual predictor-criterion configurations, the local null hypothesis is rejected, prediction 
types or antitypes result that are interpreted as carrying the predictor-criterion relationship. 
The base model will not be modified because, locally, null hypotheses are rejected. Instead, 
prediction types and antitypes will be interpreted with respect to the base model of PCFA. 

In contrast to the LR model, the base model of PCFA contains only the terms that are 
NOT of interest to the researcher. 

Specifically, the PCFA base model has the following three characteristics: 
a) it makes no assumptions concerning relationships among predictors; thus, it is saturated 

in the predictors 

ij... ij...
ij...

 + X∑λ λ  

b) it makes no assumptions concerning relationships among criterion variables; thus, it is 
saturated in the criterion variables, and 

c) all terms that relate predictors to criterion variables are set to zero; this includes the 
higher order predictor-criterion interaction terms (examples follow). 
 
The base model of PCFA can thus be violated, and results in types and antitypes only if 

predictor-criterion relationships exist, that is, if at least one of the terms that the base model 
sets to zero is different than zero. This, however, is studied at the level of individual predic-
tor-criterion configurations instead of the level of variable associations. 

 
 

1.2 Sample design matrices 
 
This section compares LR and PCFA at the level of sample models. The models will be 

expressed using log-linear model equations. In addition, for each of the sample models, the 
design matrix will be given. 

Consider the criterion variable, Y, and the three predictor variables X1, X2, and X3. 
The standard logistic regression model for these variables is 
 

log 1 2 3

1 2 3

1 2 1 3 2 3 1 2 3

Y X X X

YX YX YX

X X X X X X X X X

 m =  +  +  +  + 
+  +  + 

+  +  +  + .

λ λ λ λ λ
λ λ λ

λ λ λ λ
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Parameters set to zero are 1 2 1 3 2 3 1 2 3Y, , Y, , Y, , Y, , , X X X X X X X X X,  ,  ,  and λ λ λ λ . 
 
The PCFA base model for these variables is 
 

log 1 2 3

1 2 1 3 2 3 1 2 3

Y X X X

X X X X X X X X X

 m =  +  +  +  + 
+  +  +  + .

λ λ λ λ λ
λ λ λ λ

 

 
Parameters set to zero are 1 2 3YX YX YX, , λ λ λ , 1 2 1 3 2 3Y, , Y, , Y, , X X X X X X,  ,  ,λ λ λ and 1 2 3Y, , , X X Xλ , 

that is, all parameters for that part of the model in which predictors and criteria are related to 
each other. 

The comparison of these two model equations shows that the PCFA base model is more 
restrictive than the LR model. The number of parameters set to zero is greater in the PCFA 
base model. Now, PCFA types and antitypes result from deviations from the base model. 
Any violation of the base model can lead to the emergence of types and antitypes. In the 
present comparison, we note that the number of parameters set to zero in PCFA is greater 
than the number of parameters included in the standard model of LR. Thus, the number of 
possibilities to violate the PCFA model is greater than LR. Therefore, the results of PCFA 
and LR are comparable only if (1) the violations that lead to the emergence of types and 
antitypes can be traced back only to those predictor relationships that are modeled by PCFA, 
or (2) the model of LR is extended such that it also accommodates the terms that are set to 
zero in the base model of PCFA but are not part of the standard model of LR. This topic  
will be taken up again in more detail later. At this point, we just present the extended LR 
model that makes the results of PCFA and LR comparable, for the present example. This 
model is 

 
log 1 2 3

1 2 3

1 2 1 3 2 3 1 2 3

1 2 1 3 2 3 1 2 3

Y X X X

YX YX YX

Y, , Y, , Y, , Y, , , X X X X X X X X X

X X X X X X X X X

 m =  +  +  +  + 
+  +  + 

+  +  +  + 
+  +  +  + .

λ λ λ λ λ
λ λ λ

λ λ λ λ
λ λ λ λ

 

 
This model is extreme in the sense that it contains all possible predictor-criterion rela-

tionships. It allows the researcher to test hypotheses concerning the magnitude of each pa-
rameter that relates predictors and criteria. In other words, this model is sensitive to every 
possible predictor-criterion relationship and is therefore comparable to the PCFA base 
model. However, in contrast to the PCFA base model, this model is saturated. Researchers 
therefore tend to prefer more parsimonious models when they perform LR. 

In the following paragraphs, we present design matrices for the standard model of LR 
and the base model of PCFA. For these two design matrices, let Y, X1, X2, and X3 be di-
chotomous. Crossed, they form a 2 x 2 x 2 x 2 contingency table. The design matrix for the 
standard LR model appears in Table 2. 
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Table 2: 
Design matrix for a logistic regression of the dichotomous variable Y  onto the dichotomous 

variables X1, X2, and X3 
 

λ main effects YX interactions interactions among X 

1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 -1 1 1 -1 1 -1 -1 -1 
1 1 1 -1 1 1 -1 1 -1 1 -1 -1 
1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 
1 1 -1 1 1 -1 1 1 -1 -1 1 -1 
1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 
1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 
1 -1 1 1 1 -1 -1 -1 1 1 1 1 
1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 
1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 
1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 
1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 
1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 
1 -1 -1 -1 -1 1 1 1 1 1 1 -1 

 
 
This LR model has df = 2 x 2 x 2 x 2 - 1 - 4 - 3 - 3 - 1 = 4. The remaining degrees of 

freedom result because four parameters were set to zero. Table 3 presents the design matrix 
for the PCFA base model. 
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Table 3: 
Design matrix for PCFA base model 

 
λ main effects interactions among X 

1 1 1 1 1 1 1 1 1 
1 1 1 1 -1 1 -1 -1 -1 
1 1 1 -1 1 -1 1 -1 -1 
1 1 1 -1 -1 -1 -1 1 1 
1 1 -1 1 1 -1 -1 1 -1 
1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 1 
1 1 -1 -1 -1 1 1 1 -1 
1 -1 1 1 1 1 1 1 1 
1 -1 1 1 -1 1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 
1 -1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 1 -1 -1 1 -1 
1 -1 -1 1 -1 -1 1 -1 1 
1 -1 -1 -1 1 1 -1 -1 1 
1 -1 -1 -1 -1 1 1 1 -1 
 
 
This model has df = 2 x 2 x 2 x 2 - 1 - 4 - 3 - 1 = 7 because seven parameters were set to 

zero. 
 
 

2. Sample data structures 
 
This section presents data examples. We begin with artificial data examples that were 

constructed to illustrate the comparative characteristics of LR and PCFA. Examples using 
empirical data follow. 

 
 

2.1 An artificial example 
 
The following artificial data example involves the four variables Y, X1, X2, and X3. Y is 

the criterion variable. The output protocol was created using SPSS 10.0. It displays the ob-
served and the expected cell frequencies, estimated using the LR model given in section 1.2 
and below. 
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                       Observed              Expected 
Factor  Value          Count       %         Count       % 
Y       1.00 
 X1      1.00 
  X2      1.00 
   X3      1.00         7.00 (   .07)         7.26 (   .07) 
   X3      2.00        22.00 (   .22)        22.17 (   .22) 
  X2      2.00 
   X3      1.00        22.00 (   .22)        22.17 (   .22) 
   X3      2.00       122.00 (  1.20)       121.40 (  1.20) 
 X1      2.00 
  X2      1.00 
   X3      1.00        22.00 (   .22)        22.17 (   .22) 
   X3      2.00       122.00 (  1.20)       121.40 (  1.20) 
  X2      2.00 
   X3      1.00       122.00 (  1.20)       121.40 (  1.20) 
   X3      2.00      1808.00 ( 17.80)      1809.02 ( 17.81) 
Y       2.00 
 X1      1.00 
  X2      1.00 
   X3      1.00        15.00 (   .15)        14.74 (   .15) 
   X3      2.00        55.00 (   .54)        54.83 (   .54) 
  X2      2.00 
   X3      1.00        55.00 (   .54)        54.83 (   .54) 
   X3      2.00       365.00 (  3.59)       365.60 (  3.60) 
 X1      2.00 
  X2      1.00 
   X3      1.00        55.00 (   .54)        54.83 (   .54) 
   X3      2.00       365.00 (  3.59)       365.60 (  3.60) 
  X2      2.00 
   X3      1.00       365.00 (  3.59)       365.60 (  3.60) 
   X3      2.00      6634.00 ( 65.32)      6632.98 ( 65.31) 
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These data were constructed to conform with a logistic regression such that Y is close to 
perfectly predictable from X1, X2, and X2. The estimated log-linear model is thus 

 
log 1 2 3

1 2 3

1 2 1 3 2 3 1 2 3

Y X X X

YX YX YX

X X X X X X X X X

 m =  +  +  +  + 
+  +  + 

+  +  +  + .

λ λ λ λ λ
λ λ λ

λ λ λ λ

 

 
This model is the same as the first logistic regression model in Section 1.2. For the over-

all model fit, one obtains the Likelihood Ratio X2 = 0.0316 with df = 4 and p = 0.9999, and 
the Pearson X2 = 0.0315 with df = 4 and p = 0.9999, which is rather acceptable. For the indi-
vidual model parameters, one obtains 
Asymptotic 95% CI 
 
Parameter Estimate SE Z-value Lower Upper Effect 
 
 2 -2.8983 .0519 -55.80 -3.00 -2.80  Y 
 4 -2.8983 .0519 -55.80 -3.00 -2.80 X1 
 6 -2.8983 .0519 -55.80 -3.00 -2.80 X2 
 8 -1.2993 .0262 -49.61 -1.35 -1.25 X3 
 10 1.0010 .1313 7.62 .74 1.26 X1 x X2 
 14 1.0010 .1313 7.62 .74 1.26 X1 x X3 
 18 .1969 .0927 2.12 .02 .38 Y x X1 
 22 1.0010 .1313 7.62 .74 1.26 X2 x X3 
 26 .1969 .0927 2.12 .02 .38 Y x X2 
 30 .1969 .0927 2.12 .02 .38 Y x X3 
 34 -.4172 .3011 -1.39 -1.01 .17 X1 x X2 x X3 

 
 
With the exception of the X1 x X2 x X3 effect, all effects are significant. The residuals are 

all very small. Thus, Y is nicely predictable from X1, X2, and X3. 
We now ask whether PCFA can detect types and antitypes in a data set constructed to re-

flect the characteristics of LR. The PCFA base model for the present data is 
 

log 1 2 3

1 2 1 3 2 3 1 2 3

Y X X X

X X X X X X X X X

 m =  +  +  +  + 
+  +  +  + .

λ λ λ λ λ
λ λ λ λ

 

 
As for the LR run, this is the same base model as given for the example in Section 1.2. In 

other words, the X - Y relationships are not part of the model. If these relationships exist, 
they can surface in the form of types and antitypes. We obtain, again using SPSS 10.0: 
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                     Observed              Expected 
Factor  Value          Count       %         Count       % 
 
Y       1.00 
 X1      1.00 
  X2      1.00 
   X3      1.00         7.00 (   .07)         4.87 (   .05) 
   X3      2.00        22.00 (   .22)        17.04 (   .17) 
  X2      2.00 
   X3      1.00        22.00 (   .22)        17.04 (   .17) 
   X3      2.00       122.00 (  1.20)       107.75 (  1.06) 
 X1      2.00 
  X2      1.00 
   X3      1.00        22.00 (   .22)        17.04 (   .17) 
   X3      2.00       122.00 (  1.20)       107.75 (  1.06) 
  X2      2.00 
   X3      1.00       122.00 (  1.20)       107.75 (  1.06) 
   X3      2.00      1808.00 ( 17.80)      1867.78 ( 18.39) 
 
Y       2.00 
 X1      1.00 
  X2      1.00 
   X3      1.00        15.00 (   .15)        17.13 (   .17) 
   X3      2.00        55.00 (   .54)        59.96 (   .59) 
  X2      2.00 
   X3      1.00        55.00 (   .54)        59.96 (   .59) 
   X3      2.00       365.00 (  3.59)       379.25 (  3.73) 
 X1      2.00 
  X2      1.00 
   X3      1.00        55.00 (   .54)        59.96 (   .59) 
   X3      2.00       365.00 (  3.59)       379.25 (  3.73) 
  X2      2.00 
   X3      1.00       365.00 (  3.59)       379.25 (  3.73) 
   X3      2.00      6634.00 ( 65.32)      6574.22 ( 64.73) 

 
 

and the overall goodness-of-fit Likelihood Ratio X2 = 15.86 with df = 7 and p = 0.026, and 
the Pearson X2 = 16.49 with df = 7 and p = 0.021. The PCFA base model is thus rejected, and 
we can expect types and antitypes to surface. We inspect the residuals, given in the next 
output protocol, 
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                                  Adj.     Dev. 
Factor  Value           Resid.   Resid.   Resid. 
 
Y       1.00 
 X1      1.00 
  X2      1.00 
   X3      1.00          2.13     1.10     2.26 
   X3      2.00          4.96     1.37     3.35 
  X2      2.00 
   X3      1.00          4.96     1.37     3.35 
   X3      2.00         14.25     1.59     5.51 
 X1      2.00 
  X2      1.00 
   X3      1.00          4.96     1.37     3.35 
   X3      2.00         14.25     1.59     5.51 
  X2      2.00 
   X3      1.00         14.25     1.59     5.51 
   X3      2.00        -59.78    -3.82   -10.85 Antitype 
 
Y       2.00 
 X1      1.00 
  X2      1.00 
   X3      1.00         -2.13    -1.10    -2.00 
   X3      2.00         -4.96    -1.37    -3.08 
  X2      2.00 
   X3      1.00         -4.96    -1.37    -3.08 
   X3      2.00        -14.25    -1.59    -5.29 
 X1      2.00 
  X2      1.00 
   X3      1.00         -4.96    -1.37    -3.08 
   X3      2.00        -14.25    -1.59    -5.29 
  X2      2.00 
   X3      1.00        -14.25    -1.59    -5.29 
   X3      2.00         59.78     3.82    10.96 Type 

 
 
One type and one antitype result. We thus conclude that LR and PCFA are sensitive to 

the same data characteristics. However, we also know from the discussion in Section 1.2 that 
PCFA is capable of responding to data characteristics that would be covered in terms that are 
typically set to zero in standard applications of LR. In the next section, we discuss an exam-
ple with empirical data. 
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2.2 An empirical data example 
 
The following example re-analyzes data published by Bogat, Levendosky, Davidson, 

DeJonghe, and von Eye (2005). In a study on domestic violence, the degree of depression of 
207 women was assessed on three occasions, one during and two after a pregnancy, one and 
two years following the birth of the child2. 54 of these women had never experienced domes-
tic violence, and 153 had been victimized at one or more occasions. Depression was assessed 
using the Beck’s depression inventory (BDI; Beck, Ward, Mendelson, Mock, & Erbaugh, 
1961). For the following analyses, the raw depression scores were dichotomized at the me-
dian. A score of 1 suggests below average depression relative to the total sample, and a score 
of 2 suggests above average depression. Domestic violence was scored as 1 = no experience 
of violence ever, and 2 = victimized at least once. 

For analysis, the four dichotomous variables were crossed. The resulting 2 (depression 
during pregnancy; D1) x 2 (depression 1 year post partum; D2) x 2 (depression 2 years post 
partum; D3) x 2 (domestic violence status; DV) cross-classification is now analyzed using 
three models. The first is the standard LR model, in which the three measures of depression 
serve as predictors of DV. This model is 

 
log D1 D2 D3 DV

D1, D2 D1, D3 D2, D3 D1, DV D2, DV D3, DV

D1, D2, D3

 m =  +  +  +  + 
+  +  +  +  +  + 

+ .

λ λ λ λ λ
λ λ λ λ λ λ

λ

 

 
This approach is analogous to a discriminant analysis of the two DV groups based on the 

three measures of depression. The second analysis is a PCFA in which DV status is pre-
dicted. The third analysis involves estimating a saturated model. Table 4 displays the pa-
rameter estimates for the log-linear logistic regression model of the data (the raw frequencies 
are displayed in the context of the configural analysis, in Table 5). These results were ob-
tained using SYSTAT 10.2. 

The overall goodness-of-fit for the logistic regression model is LR-X2 = 0.796 (df = 4; 
p = 0.958; Pearson X2 = 0.641; df = 4; p = 0.939), which indicates excellent fit. We thus 
conclude that the model reflects data characteristics very well. The parameters in Table 4 
indicate that two of the three predictors are significantly related to the criterion, DV status 
(parameter estimates and test statistics for these effects are printed in bold face in Table 4). 
Specifically, we find that depression during pregnancy and depression at one year post par-
tum are significantly associated with DV status. The relationships are as expected. DV status 
as victim is predicted from above average depression. 

 

                                                                                                                         
2 Notice the sample size difference to the data published in the article by Bogat et al. (2004). The explanation 

for this difference is that, for the present analyses, the missing data were estimated for all woman who began 
the study. 
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Table 4:  
Parameter estimates for logistic regression of DV status on depression scores 

   
     Parameter   se(Param)   Param/se  Effect 

       0.471       0.126       3.728   D1 

      -0.231       0.117      -1.974   D2 

       0.235       0.120       1.963   D3 

      -0.687       0.105      -6.551   DV 

       0.514       0.108       4.773   D2 *D1 

      -0.034       0.109      -0.316   D3 *D1 

       0.412       0.109       3.782   DV *D1 

       0.660       0.106       6.213   D3 *D2 

      -0.041       0.107      -0.383   DV *D2 

       0.316       0.105       3.015   DV *D3 

      -0.162       0.104      -1.556   D3 *D2 *D1 

       1.897       0.130      14.555   CONSTANT 

 
 
The second analysis involves a PCFA of the four variables of the DV study. The base 

model of this PCFA is 
 

log D1 D2 D3 DV

D1, D2 D1, D3 D2, D3 D1, D2, D3

 m =  +  +  +  + 
+  +  +  + .

λ λ λ λ λ
λ λ λ λ

 

 
Table 5 displays the results of PCFA. These results were obtained using the CFA 2000 

program (von Eye, 2001). The results were calculated using Lehmacher’s test with Küchen-
hoff’s continuity correction, under the Bonferroni-adjusted α* = 0.003125. 

The overall goodness-of-fit for the PCFA base model is poor. We obtain a LR-X2 = 
39.853 (df = 7; p < 0.01; Pearson X2 = 37.553; df = 7; p < 0.01), and therefore anticipate that 
types and antitypes emerge. Table 5 indicates that two types and two antitypes exist. The 
first type is constituted by Configuration 1111. These are women who never suffered from 
above average depression and were never victims of DV. Based on the PCFA model, fewer 
than 15 women had been expected to show this pattern, but 29 were found. The second type 
is constituted by Configuration 2222. This configuration describes the 60 women who were 
victims of DV at one or more points in time. Only 47 had been expected to show this pattern. 

Because the outcome variable for this PCFA is dichotomous, the antitypes complement 
the types (and exist, thus, by default). The first antitype, constituted by Configuration 1112, 
indicates that it is less likely than expected by chance that women who experienced domestic 
violence never report above average depression. The second antitype, constituted by Con-
figuration 2221, indicates that it is less likely than predicted by the base model that women 
who never experienced DV report above average depression at all three points in time. 
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Table 5: 
 PCFA of DV status on three depression scores 

 
Configuration      fo       fe     statistic     p 

      1111         29    14.870      4.818   .00000073 Type 

      1112         28    42.130     -4.818   .00000073 Antitype 

      1121          4     4.435       .038   .48503995 

      1122         13    12.565      -.038   .48503995 

      1211          6     3.130      1.601   .05467590 

      1212          6     8.870     -1.601   .05467590 

      1221          6     6.522      -.011   .49579754 

      1222         19    18.478       .011   .49579754 

      2111          2     4.174      -.990   .16115260 

      2112         14    11.826       .990   .16115260 

      2121          0      .783      -.373   .35442647 

      2122          3     2.217       .373   .35442647 

      2211          3     3.391       .071   .47179993 

      2212         10     9.609      -.071   .47179993 

      2221          4    16.696     -4.167   .00001545 Antitype 

      2222         60    47.304      4.167   .00001545 Type 

 
 
We thus note that the relationships between the three depression scores and DV status are 

carried mostly by the frequency distributions at the extremes. Women who suffered DV 
report consistent above average depression but not consistent below average depression. 
Accordingly, women who never experienced DV report consistent below average depression 
but not consistent above average depression. None of the other configurations comes even 
close to constituting a type or an antitype. 

In the third analysis, we would have reported the results from the saturated log-linear 
model. This model contains all parameters that can be estimated for the present data. The 
difference between this model and the model reported above is that the second and third 
order associations between the depression scores and DV status are also included in the 
model. For the present data, we can expect the parameters that were set to zero for the stan-
dard LR model to be of minor impact. The reason for this expectation is that the goodness-
of-fit of the above LR model is so good that there is practically no room for improvement. 
Unfortunately, both SPSS and SYSTAT had problems fitting the saturated model without 
invoking the ∆ option. Therefore, we decided to omit the interaction among all four vari-
ables. The estimated model parameters for this model appear in Table 6. 
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Table 6: 
 Extended LR model for the DV data in Table 5 

    
    Parameter   se(Param)    Param/se  Effect 

       0.519       0.152       3.410    D1 

      -0.300       0.159      -1.887    D2 

       0.274       0.146       1.879    D3 

      -0.743       0.147      -5.058    DV 

       0.589       0.147       3.997    D2 *D1 

      -0.074       0.143      -0.516    D3 *D1 

       0.452       0.129       3.505    DV *D1 

       0.675       0.129       5.218    D3 *D2 

      -0.110       0.149      -0.742    DV *D2 

       0.350       0.126       2.766    DV *D3 

      -0.184       0.113      -1.635    D3 *D2 *D1 

       0.110       0.142       0.774    DV *D2 *D1 

      -0.055       0.134      -0.413    DV *D3 *D1 

       0.016       0.118       0.138    DV *D3 *D2 

       1.851       0.155      11.930    CONSTANT 

 
 
As expected, the extended LR model describes the data even better than the standard LR 

model (LR-X2 = 0.152; df = 1; p = 0.697; Pearson X2 = 0.086; df = 1; p = 0.769). However, 
this improvement cannot be significant because the standard LR model was already ex-
tremely good. The parameters in Table 6 are very close to the ones in Table 4. Those pa-
rameters that are significant in the standard LR model, are also significant in the extended 
model. None of the parameters that was non-significant in Table 4 is significant in Table 6. 
In addition, none of the parameters for the second and third order associations among the 
depression scores and DV status turned out significant. We thus conclude that (1) the results 
from the standard LR model can be retained, and (2) the types and antitypes result from the 
significant variable interactions indicated in Table 4. 

 
 

3. Discussion 
 
From the above analyses and the artificial and the empirical data examples, we conclude 

1) Although LR and PCFA focus on the same data characteristics, specifically, on the rela-
tions among the X and the Y variables standard models of LR and PCFA differ. There-
fore, results from LR and results from PCFA cannot be compared or interpreted as com-
plementing each other without further analysis. This analysis has to demonstrate that the 
terms not considered in the standard model of LR are non-significant. If they are signifi-
cant, the LR model must be extended by these terms to make results comparable. 
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2) If these terms are included (or omitted) in standard LR, they may surface in the form of 
significant effect parameters (LR) and/or in the form of types and antitypes (PCFA). 

3) The differences between LR and PCFA lie also in the goals of application. LR is applied 
to examine variable relationships from an aggregate level or variable-oriented perspec-
tive. In contrast, PCFA is applied with the goal of identifying those patterns of predictor-
criterion categories that specifically contradict the assumption of independence of predic-
tors and criteria. More specifically, the differences between LR and PCFA are parallel to 
those between log-linear modeling and CFA in general: 
- LR expresses results in the form of variable relationships that are assumed to be valid 

across the entire range of admissible variable scores 
- PCFA expresses results in the form of types and antitypes, that is, in the form of local 

deviations from the base model 
- PCFA is sensitive to higher order interactions among predictors and criteria. In stan-

dard LR, these terms are set to zero. 
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