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Abstract 

Developmental trajectories are defined as curves of repeated observations. Individuals 
may differ in the starting point, the degree of acceleration or deceleration, the timing of 
acceleration or deceleration, overall shape, elevation, and scatter of curves. This article dis-
cusses methods for typifying developmental trajectories. Two groups of methods are consid-
ered. The first group involves assigning individuals to a priori existing trajectories and count-
ing the number of individuals that reflect natural groupings of trajectories based on categori-
cal classifications, using Configural Frequency Analysis (CFA). The second method involves 
employing methods of cluster analysis. When selecting a method of cluster analysis, the 
following ten cluster characteristics need to be considered: (1) disjoint vs. overlapping clus-
ters; (2) hierarchical vs. non-hierarchical clustering; (3) agglomerative vs. divisive cluster-
ing; (4) exhaustive vs. selective classification; (5) stochastic vs. deterministic clustering; (6) 
clustering based on correlation vs. distance measure; (7) convex vs. non convex clusters; (8) 
clustering based on symmetric vs. asymmetric measure; (9) monothetic vs. polythetic classi-
fication, and (10) manifest versus latent variable clustering. A review of clustering methods 
is presented using examples to demonstrate the pros and cons of each method. Discriminant 
analysis and logistic regression are discussed as methods for subsequent analysis of group-
ings. Examples are presented using artificial data and empirical data on the development of 
cigarette smoking in male adolescents. 
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Typifying Developmental Trajectories - A Decision Making Perspective 
 
Longitudinal developmental research faces the problem that the number of possible de-

velopmental trajectories can be very large. Consider a time series of seven occasions. At each 
of these occasions, a variable is observed that can assume five scores. The number of possi-
ble trajectories on this single variable is 57 = 78,125. Suppose that researchers observe three 
variables. This modest multivariate design increases the number of possible trajectories to  
573

 = 4.768371582031e+14. Or, suppose there are six heterogeneous groups based on quad-
ratic trend-trajectories of one variable over seven measurements. If these trend parameters 
are dichotomized, a total of 236

 = 262144 possible combinations exist. These numbers of 
possible trajectories are large enough to make one wonder what can be done to depict the 
structure of development in a simple yet valid way. Two options will be considered in this 
article. The first involves a priori specifying typical or important trajectories. This specifica-
tion may be based on prior knowledge or theory. The second option involves employing 
grouping procedures. We consider methods of cluster analysis. 

 
 

1. The Plethora of Developmental Trajectories: A Person-Oriented Perspective 
 
To begin the discussion of depicting the structure of large amounts of information, con-

sider the following example. The variable Physical Aggression Against Peers (PAAP) of a 
sample of N = 106 students was observed at three occasions in 1983, 1985, and 1987 (Finkel-
stein, von Eye, & Preece, 1994). The observed raw score profiles appear in Figure 1. 

Figure 1 shows that each of the 56 students with complete data displays his or her own, 
unique trajectory of physical aggression over time. No two trajectories are the same. For the 
data in Figure 1, we can calculate the descriptors given in Table 1. From the means, we con-
clude that, physical aggression appears to recede over time. 

 

 
 

Figure 1:  
Longitudinal profila of aggression 
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Table 1:  
Descriptive statistics for data on development of Aggression 

 
  PAAP83 PAAP85 PAAP87 
N of cases 106 77 70 
Minimum 8.000 7.000 8.000 
Maximum 44.000 57.000 31.000 
Mean 21.283 19.221 17.029 
Standard Dev 8.415 7.212 5.685 

 
 
The approach pursued when calculating and interpreting sample statistics is known as the 

nomothetic approach. It is the goal of the nomothetic approach to create statements that 
apply to the entire population. Accordingly, significance testing attempts to generalize sam-
ple results to this population. When parameters are significant, researchers conclude that 
effects exist in this population. 

The comparison of the means and standard deviations in Table 1 with the parallel coordi-
nate plot in Figure 1, however, suggests that the data carry far more information than can be 
meaningfully depicted by descriptors for the entire sample. Lack of strong and homogeneous 
trends often results in parameters that fail to reach significance. Based on non-significant 
parameters, researchers tend to conclude either that the effects do not exist or that there was 
not enough power, given the sample size, the effect size, and the reliability of the measures. 

The Person-Oriented Approach (Bergman & Magnusson, 1997; Cairns, Bergman, & Ka-
gan, 1998; Magnusson, 1998; von Eye & Bergman, 2003) offers a third interpretation for the 
lack of significant results at the aggregate level. This approach questions the assumption that 
the sample was drawn from just one population (for statistical examples see von Eye & 
deShon, 1998). The Person-Oriented Approach proposes that “the relevant aspect is the 
profile of scores” (Bergman & Magnusson, 1997, p. 293). In addition, each individual is 
viewed as a whole entity that functions via the interactions of the elements involved. As a 
result, individuals can be different from each other, and treating them as members of the 
same parent population without focusing on their differences may lead to a loss of important 
information. 

If researchers consider the concept of interpretable inter-individual differences of pro-
files, they face the question whether it is possible to identify groups of individuals that can be 
described using measures of central tendency without loss of important information. In this 
article, we consider two such methods. The first involves asking how many individuals be-
long to a priori specified groups. The second involves determining such groups using meth-
ods of cluster analysis (cf. Gutiérrez-Peña’s distinction between supervised and unsupervised 
classification in this issue). 

 
 

2. Specifying A Priori Groups 
 
In this section, we describe two approaches of specifying a priori groups. The first ap-

proach uses a priori existing knowledge. The second approach involves cross-tabulating 
categorical variables. 
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2.1 Using Existing Knowledge for Group Specification 
 
In many instances, researchers possess a priori knowledge that allows them to a priori 

expect certain groupings. For instance, in traffic psychology, some researchers entertain the 
concept of the individual that is accident-prone; in the cartoons, there is the Born Loser; in 
law psychology, there is the concept of the typical victim; in developmental psychology, 
researchers describe the prototypical developmental trajectories of retarded children; or in 
nosology, there is the concept of the alcoholic. In these and other instances, it is often possi-
ble to provide precise numerical descriptions of hypothesized trajectories. 

Consider a learning process that can be described by a first phase of rapid learning pro-
gress. This phase is followed by a slowing down, and the process approaches a ceiling, an 
asymptote. This type of process can be described by an equation of the type pn = 1 - (1 - p1) 
(1 - θ)n-1, where pn is the probability of a correct response in trial n, p1 is some prior response 
probability, n is the learning trial (n = 1, ...), and θ is the acceleration parameter. The learn-
ing curve rises faster for larger scores of θ (see Hilgard & Bower, 1975). Figure 2 displays 
two sample learning curves (black symbols). Both curves have parameter p1 = 0.2. The top 
curve (solid black asterisks) has θ = 0.15, the bottom curve (solid black diamonds) has pa-
rameter θ = 0.05. 

In a classification process, researchers may ask how many individuals display a learning 
curve of the types given in Figure 2. Specifically, one may ask how many individuals display 
a curve with parameter θ = {0.05, 0.1, 0.15 ...}. As a matter of course, the probability that an 
individual will display one of these curves exactly is very slim. Therefore, researchers may 
wish to define a band around each curve within which an individual may lie. This band can 
be considered parallel to a confidence interval. Alternatively, if the parameters of a trajectory 
were estimated using standard statistical methods, confidence intervals can be determined 
and used as bands. A band of width 2ε yields to an equation of the type pn = 1 - (1 - p1) 
(1 -θ)n-1 ± ε. Figure 2 exemplifies the idea of trajectories with band widths (gray lines and 
symbols). For each of the trajectories, a band was drawn with ε = ± 0.1. 

 
 

 
 

Figure 2: 
Learning Curve 
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When assigning individuals to the existing two trajectories, the following rule can be 
used for constant p1: 
 

if 9
θ ' 0.15 ¸ |δ| # 0.1 for 1 < n # N then T ' 1
θ ' 0.05 ¸ |δ| # 0.1 for 1 < n # N then T ' 2

else T ' 3 ,
(1)

 
 
where N is the total number of trials, δ = pi,n - pn, that is the difference of individual i’s re-
sponse probability at trial n from the model probability, pn, and T indexes the trajectories, 
with T = 1 if θ = 0.15; T = 2 if θ = 0.05; and T = 3 else. Alternative assignment rules are 
conceivable (for Bayesian classification rules, see Gutiérrez-Peña, this issue). These include, 
for instance, rules where only a percentage of differences δ must be within the band given by 
ε, and rules where individuals can switch between types of trajectories. 

Equation 1 can be interpreted as an assignment rule. This rule has the following charac-
teristics: 

 
1. It is an a priori rule, that is, this rule was not specified based on information provided by 

data but rather on the theoretical formulation of learning curves that differ only in the 
acceleration parameter, θ. 

2. It is a deterministic, non-statistical rule. Thus, individuals are assigned to Trajectory 1 if 
their learning curves fall within the band for the upper curve. Individuals are assigned to 
Trajectory 2 if their learning curves fall within the band for the lower curve. If neither 
curve applies, individuals are assigned to Trajectory 3, that is, a trajectory with un-
specified characteristics. 

3. The rule allows the bands to overlap. Figure 2 shows that Trajectories 1 and 2 can not be 
perfectly distinguished at Trials 1 through 3. Beginning with Trial 4, the bands are com-
pletely separated. 

4. Although Figure 2 suggests that, after Trial 3, the two learning curves are perfectly 
separated, researchers may need information from all Trials, even including Trial 1, be-
cause an individual can deviate from one or all a priori specified learning curves at any 
trial, and the time point of deviation may be of educational or diagnostic importance. 

 
The importance of a priori specification of trajectories as the ones lined out in this section 

lies first in its connection to substantive theory. The classification system is not determined 
by data characteristics. In contrast, the classification of individuals will reflect data charac-
teristics. When specifying trajectories or, in more general terms, groupings, a priori, one can 
ask what percentage of a population can be described by these groupings that were derived 
from theory and, thus, conform with this theory. In the above example, every individual that 
is assigned to Trajectories 1 and 2 conforms with the theory that allows derivation of these 
two trajectories. Individuals assigned to Trajectory 3 may not necessarily contradict the 
theory but they do not display any of the predicted pathways either. 
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2.2 Cross-classifying Categorical Variables Yields Natural Groupings 
 
Application of the sample methods introduced in the last section presupposes that theo-

ries or prior knowledge exist that allow one to specify trajectories that can be taken by re-
spondents. Sample applications of such knowledge include the description of behavior as 
following a pattern of a cyclical psychosis, the diagnosis of a learning progress as indicative 
of retardation, or the description of the developing gambling habits of an individual as a 
growing addiction. 

There is a number of circumstances, however, that prevent researchers from specifying 
trajectories and their parameters a priori. These circumstances are typically characterized as 
exploratory research, that is, research where theories still need to be built and prior knowl-
edge is scarce. It is important to emphasize that, although exploratory, this research is not 
completely theory-free or without prior knowledge. The area of research will always be 
specified, and the variables under study will always be assumed to be relevant to the phe-
nomenon of interest. If variable selection is completely at random, one may wonder whether 
a research activity still qualifies as scientific. 

In this section, we illustrate how natural groupings can result when categorical, nominal-
level or ordinal variables are observed repeatedly. Consider a study that investigates psychi-
atric diagnoses in a sample of schizophrenic inpatients. The study is carried out to find out 
whether diagnoses change over time. Suppose the diagnoses are (1) cured; (2) paranoia; and 
(3) schizophrenia. Suppose also that there are two observation points (the classification strat-
egy will not change if there are more observation points). Table 2 displays the cross-
classification of the two diagnoses. Please notice that Category 1, that is, the diagnosis cured, 
can appear only at the second observation. Therefore, the cross-classification has 2 x 3 cells 
rather than 3 x 3. 

 
 

Table 2: 
Cross-Classification of Schizophrenia Diagnoses at two Occasions  

(entries in cells are cell indices) 
 

                      Time 2 
Time 1 

Schizophrenic Paranoid Cured 

Schizophrenic 11 12 13 

Paranoid 21 22 23 

 
 
The entries in Table 2 denote the cell indices. They are not frequencies. For example, 11 

denotes the cell that contains those patients who were diagnosed as schizophrenic at both 
occasions. Cell 22 contains the cases that were paranoid at both occasions. These two cells 
(shaded) contain cases with stable diagnoses, also called the persisters or stayers. All other 
cells contain patients who changed their symptoms or symptom severity. These are the 
changers or movers (Clogg, Eliason, & Grego, 1990; von Eye & Schuster, 2002). Many of 
the moves are evaluated positively. For instance, Cells 13 and 23 contain cases that are con-
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sidered cured at the second observation. In contrast, if paranoia is a precursor of schizophre-
nia, Cell 21 contains those cases that worsened by displaying more and more severe symp-
toms of schizophrenia. 

As can be seen from the example in Table 2, cross-classifying categorical variables cre-
ates groupings in a natural way. When repeatedly observed variables are crossed, each of the 
groups is characterized by a specific pattern of constancy or change. In the example in Table 
1, the crossed variables are scaled at the nominal level. When ordinal or higher-level vari-
ables are crossed, questions can be asked that are fueled by the specific scale characteristics, 
and thus, go beyond the questions that can be asked for nominal level variables. For instance, 
when a symptom is observed not as present versus absent but in regard to severity, cross-
classifications of repeated observations allow one to ask questions concerning the develop-
ment of symptoms to the worse or to the better, whether severity is related to change, or 
whether treatment success is related to severity (for examples and methods of analysis see 
Agresti, 1996; Clogg, Eliason, & Grego, 1990; von Eye, 2002; von Eye & Spiel, 1996; von 
Eye & Schuster, 2002). 

The methods for creating groups discussed in Sections 2.1 and 2.2 share in common that 
they are not based on information provided by the data at hand. Rather, these methods use 
information from theory or prior results (Section 2.1) or the information provided by the 
categorical level nature of the variables (see Section 2.2). The information in the data is then 
projected onto the a priori specified structure. The structure itself exists before data are col-
lected, even without the data. In the next section, we discuss methods for forming groups that 
use chiefly the information provided by the data. Specifically, we discuss methods of cluster 
analysis and decisions that must be made when selecting a clustering method. 

 
 

3. Decisions in the Selection of Clustering Methods 
 
Methods of clustering information are popular for a number of reasons. First, these meth-

ods allow researchers to create structure out of chaos. In many instances, as was illustrated in 
Figure 1, it is not deemed sufficient to estimate measures of central tendency or other de-
scriptive measures when it is clear that these measures describe only a small portion of some 
population, and the rest shows large discrepancies from the parameters. If groups exist, 
methods of cluster analysis may help detect them. Second, most methods of cluster analysis 
are non-statistical in the sense that they do not require researchers to make assumptions 
concerning the parameters of underlying distributions. In addition, significance tests are 
rarely performed, for lack of null hypotheses that could be tested. Thus, methods of cluster 
analysis are largely assumption-free and ubiquitously applicable. Third, methods of cluster 
analysis practically always yield solutions (for examples, see von Eye & Bergman, 2003). 
Exploratory factor analysis and principal component analysis, methods of multidimensional 
scaling and most descriptive methods of statistics share this characteristic. As a result, re-
searchers will always be able to come up with a grouping solution. Only in degenerate cases 
where, for instance, all distances between neighbored cases are the same, there will be no 
reasonable solution, that is, no solution that is easily interpreted. 

In particular this third characteristic of cluster analytic methods has met with criticism, 
for it harbors an element of arbitrariness. If one cannot fail, some say, one wonders whether 
the analysis is worthy of the label of scientific. The present section pursues two goals. The 
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first is to show that this element of arbitrariness can be minimized when methods of cluster 
analysis are not blindly applied but a series of decisions has been made and justified. These 
decisions are critical because they determine the characteristics of the clustering solution. 
Second, this series of decisions is introduced and illustrated. Section 3.1 presents a definition 
of the clustering problem. Beginning in Section 3.3.1, we discuss the decisions. 

 
 

3.1 The Clustering Problem 
 
In this section, we give a general definition of the clustering or classification problem 

(Blashfield & Aldenderfer, 1988; Bock, 1974, p. 22; Hartigan, 1975). Consider N objects 
(i.e., cases), O1, ..., ON. For these objects, a data matrix, xki, a similarity matrix4, djk, or a rela-
tion, —, is determined. xki, djk, or — depict the similarity structure of the set of objects, S = 
{O1,...ON}. Searched for is a classification, A = (A1, A2,...) of S. The subsets of A, that is, A1, 
A2, ... are classes (also called groups or clusters) that (1) reflect the similarity structure of the 
objects as well as possible, and (2) allow for data reduction. These two requirements are 
often fulfilled if the objects within a group, Ai, are (1) maximally similar to each other and 
(2) different classes are easily distinguished from each other, that is, the cross-class dissimi-
larity is maximized. The first characteristic is called homogeneity; the second characteristic is 
called separation of groups (classes, clusters). Mathematically more precise formulations are 
possible. They typically take characteristics of data and the structure of the desired classifica-
tion into account. For the sake of simplicity, we only present this definition. The following 
sections introduce the decisions that need to be made when selecting a method of clustering. 

 
 

3.2 Decisions About Clustering 
 
Just as when making decisions concerning the most appropriate statistical method for 

analysis of a particular data set, decisions must be made when selecting a clustering method. 
These decisions concern the characteristics of the method employed and, as a consequence, 
the characteristics of the resulting solution. When making these decisions, characteristics of 
variables and data, and theoretical considerations concerning the desired classification are 
taken into account. 

Before discussing the ten decisions, it is important to emphasize that there is no such 
thing as the correct, unique clustering solution. Rather, employing a clustering method im-
plies that a mathematical structure is superimposed on a data set. The result of a cluster 
analysis will reflect characteristics of both the data and the mathematical structure. Cluster 
analysis is almost always able to depict some but not all of the data characteristics. There-
fore, a clustering solution can be correct in the sense that it reflects certain characteristics. 
However, it will always be incomplete because there are other characteristics that it cannot 
reflect. 

                                                                                                                             
4
 In later sections of this article we will also discuss distance matrices. For the present purposes we assume 
that the term similarity matrix also subsumes distance matrices and other matrices that can be created to de-
scribe the relationships between objects. This applies accordingly to the term similarity structure, below. 
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This perspective of the correctness of a clustering solution has two very important impli-
cations. The first implication is that researchers may wish to apply more than one clustering 
method to their data. These methods may provide different solutions. Each of these solutions 
may be plausible. And, most importantly, each of these possible solutions will be correct in 
the above sense. All this is said assuming, of course, that no computational errors are com-
mitted. The second implication is that many of the method-comparative investigations are 
problematic. This applies in particular to investigations that involve so-called plasmodes, that 
is, real or artificial data sets of known characteristics. These investigations proceed under the 
assumption that the plasmodes display a data characteristic that can be reflected by each of 
the employed methods. This will rarely be the case. Therefore, it does not come as a surprise 
that the conclusions from the method-comparative investigations failed to be clear-cut. The 
investigations are statements about method characteristics as much as about data characteris-
tics. Results can vary with either. 

 
 

3.3 Ten Decisions 
 
This section discusses ten decisions that must be weighed when selecting a clustering 

method. One important decision is notably absent from this list, that is, the decision concern-
ing the selection of a suitable software package. Data analysts have their specific prefer-
ences, and software packages differ in the kind and number of decisions that they enable 
researchers to make. Most general purpose statistical software packages (e.g., SPSS, SYS-
TAT, SAS, S plus) contain a selection of methods. In addition, there exist specialized classi-
fication programs such as Wishart’s CLUSTAN (Wishart, 1987) and Bergman and  
ElKhouri’s SLEIPNER (1998). For the remainder of this article, we assume that data ana-
lysts have access to some appropriate software package, and that this package allows them to 
perform the desired analyses. The order of the following ten decisions has no effect on the 
selection process. 

 
3.3.1 Decision 1: Disjoint versus Overlapping Clusters 

Disjoint classifications have the following characteristic: Each object Oj belongs to only 
one subset Ai d A. In contrast, overlapping classifications allow each object Oj to belong to 
more than one subset. Consider the following example. Two random variables are created for 
a sample of N = 200 with parameters as given in Table 3. 

Researchers may ask whether this sample is homogeneous or, whether there exist well 
separated subgroups. Figure 3 displays the scatterplot of the two variables, VAR(1) and 
VAR(2). 

The circles in Figure 3 indicate the 95% confidence ellipses for two imaginary sub-
groups, that is, 95% of the cases are expected to lie within the circles. The circles overlap. 
We thus conclude that there may exist a small group of approximately six objects that are not 
easily assigned to either group. How can one deal with situations of this kind? 

There are several solutions, two of which will be discussed here. A first solution implies 
creating non-overlapping clusters. In the present example, this can be achieved by, for in-
stance, reducing the diameters of the circles such that they will no longer overlap. The num-
ber of objects located outside the circles will increase as the diameters shrink. Thus, the  
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Figure 3:  
Cluster structure for two random variates 

 
 

Table 3: Parameters of two random variates 
 

  VAR(1) VAR(2) 
N of cases 200 200 
Minimum 0.011 0.023 
Maximum 1.900 1.869 
Mean 1.007 0.948 
Standard Dev 0.544 0.534 

 
 

circles will no longer represent the 95% confidence ellipses. However, there will be no over-
lap. The cases outside can then be assigned to a separate group, be considered members of no 
cluster, be assigned to one of the two big clusters at random, or be allowed to form separate 
small groupings that are also disjunct. 

The second solution implies considering whether overlapping cluster solutions may be 
appropriate. There may be cases for which it is reasonable to assume that they belong to 
more than one group. For instance, an athlete’s body build may allow her to perform both as 
a high jumper and a volley ball player, or a student may be both an average performer and a 
slow developer. 

Thus, researchers face the situation in which they must make a decision as to whether 
clusters may overlap or not. Separation of clusters is a characteristic that describes the de-
gree to which clusters are disjunct. However, the concept of separation is applicable only if 
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classifications are allowed to create groupings that overlap. If groupings are not naturally 
disjunct - as is the case when categorical variables are analyzed (see Section 2.2) -, non-
overlapping clusters can carry some artificial flavor. In continuous variables contexts, over-
lapping groupings are very likely to happen. Therefore, application of methods that always 
create non-overlapping clusters requires justification. Researchers may need to make their 
decisions as to what type of method to apply based on substantive and theoretical considera-
tions. 

When reading applications of clustering methods and when inspecting general purpose 
statistical software packages, one realizes quickly that researchers prefer methods that yield 
non-overlapping clusters. One reason for this preference may be that it seems desirable to 
create groupings where objects can belong to only one cluster. Overlapping groupings are 
perceived by many as only half-complete solutions. In addition, when in a second analytic 
step other variables are used to assess the external validity of a grouping, objects with dual 
citizenship may pose problems for instance when cluster membership is considered a factor 
in a MANOVA. 

Most general purpose statistical software packages do not include modules that allow one 
to create overlapping clusters. Two programs that can create such cluster solutions include 
ADCLUS by Arabie and Caroll (1980) and Pyramid by Aude, Diaz Lazcoz, Codani, and 
Risler (1999; cf. Everitt, Landau, & Leese, 2001). 

 
3.3.2 Decision 2: Hierarchical versus Non-hierarchical Clusters 

Classifications can be either hierarchical or non-hierarchical. Hierarchical clustering pro-
cedures create series of cluster solutions using a process that either groups objects together 
into larger and larger groups. These procedures are called agglomerative. The main charac-
teristic of these procedures is that smaller numbers of clusters result from merging clusters 
without loss of cluster members. When divisive procedures are employed, the clustering 
process is hierarchical if greater numbers of clusters result from splitting clusters. In other 
words, a clustering method is hierarchical if all objects that belong to the same cluster when 
the number of clusters is greater are also members of the same cluster when the number of 
clusters is smaller. One of the most famous applications of hierarchical cluster methods 
enabled biologists to reproduce the descent of species originally developed by von Linné 
(1751, 2003). The results of hierarchical clustering processes are typically displayed in the 
form of dendrograms (see Figures 4 and 5, below). 

Clustering methods are non-hierarchical when such a series is not created. Alternatives to 
hierarchical clustering procedures include methods that identify space density maxima and 
group objects in the same cluster if their respective distances to the same density center (cen-
ter of gravity) is smallest (examples of such methods include the well known k-means 
method and methods discussed by von Eye & Wirsing, 1978, 1980). Non-hierarchical meth-
ods create only one solution. The number of clusters in such a solution is either pre-
determined as in k-means, or results from the number of space density maxima identified 
according to some a priori specified criteria. In contrast, hierarchical methods create N - 1 
solutions. Therefore, a decision as to when to stop merging (in an agglomeration process) or 
dividing (in a divisive process) is a key part of hierarchical cluster analysis (see Section 3.3.3 
for more information). 

When deciding whether to employ hierarchical or non-hierarchical methods, one can use 
two criteria. The first criterion is whether the hierarchy or the series of clusters can be mean-
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ingfully interpreted. If this is the case, there is no substitute for hierarchical methods. When, 
in contrast, there is no way nor intention to interpret the series of cluster solutions, informa-
tion about the agglomeration or division process can help identify a good solution. It is well 
known, however, that many measures of the damage that is done when fusing clusters are not 
always conclusive. When researchers already have hypotheses or assumptions about the 
number of possible clusters, non-hierarchical solutions may be more parsimonious. Only one 
or a small number of solutions needs to be calculated, and interpretation is typically straight-
forward. The second criterion is thus the knowledge that researchers have prior to perform-
ing a cluster analysis. 

 
3.3.3 Decision 3: Agglomerative versus Divisive Clustering 

In the previous sections, we discussed the distinction between disjunct and overlapping 
clusters, that is, a distinction related to the product of classification, and the distinction be-
tween hierarchical and non-hierarchical solutions, that is, a distinction related to the process 
of creating clusters. In this section, we discuss a distinction related to the process of cluster-
ing in hierarchical clustering. Specifically, we discuss the distinction between agglomerative 
and divisive clustering. The former starts the clustering under the assumption that each ob-
ject, Oj, forms a separate cluster, that is, S = {O1,...,ON} = A = (A1, A2,...). When grouping 
objects with the goal to create a more parsimonious solution, agglomerative methods join 
those objects that are the most similar to each other first. This is repeated until either some 
criterion of optimality, for instance, some R2 threshold, has been reached or until the last two 
groupings are joined. 

Divisive clustering proceeds in the opposite direction. It considers all objects members of 
one cluster. When creating groups, divisive clustering splits the existing cluster(s) such that 
the benefit, measured, for instance, in units of decrease in information or increase in R2, is 
greatest. This step is repeated until either some criterion of optimality, for instance, some R2 
threshold, has been reached or until each object forms its own cluster. In other words, the 
situation that S = {O1,...,ON} = A = (A1, A2,...) which is the starting point for the agglomera-
tive procedure is the end point of analysis for the divisive procedure. 

 To illustrate the presentation of the processes of agglomeration and division in the form 
of dendrograms (tree structures), consider the following example. A sample of N = 6 objects 
is classified using an agglomerative clustering method. This process is depicted in Figure 4. 

To illustrate the agglomerative procedure, we read Figure 4 from top to bottom. At the 
top there are six vertical lines. Each line represents one object. In a first step the two left 
most objects are joined to form one cluster. Next, the two right most objects are also joined 
to form a separate cluster. In the third step, Object 3 joins the cluster of the first two. In Step 
4, Object 4 joins the first three. At each of these steps a new cluster is created. In the last 
step, the cluster of Objects 5 and 6 is fused with the cluster of the first 4 objects. Of the N - 1 
solutions thus created, researchers interpret the one that best meets the optimality criteria and 
criteria derived from theory (and plausibility). 

To illustrate the divisive procedure, Figure 4 can be used again. This time, however, we 
read it from bottom to top. The procedure begins by considering all objects members of one 
cluster. In the following steps this big cluster is subdivided until each object resides in a 
separate cluster. As for the agglomerative procedure, optimality criteria and criteria of theory 
and plausibility are used to select from the N - 1 solutions thus created. 
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Figure 4: 
Dendrogramm 

 
 
To give an example with a larger data set, consider the data from Figure 3 again. The 

dendrogram for these data appears in Figure 5. As was suggested in the interpretation of 
Figure 3, this data set contains two groups of objects. Figure 3 also suggests that these two 
groups overlap in the neighborhood of the centroid of the entire sample. The clustering 
method used to create Figure 5 creates disjunct clusters. The dendrogram displayed in Figure 
5 gives no hint at the overlap. 

 
 

 
 

Figure 5: 
Dendrogram for Data in Figure 3 
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When weighing which of the two procedures to select, the agglomerative or the divisive 
one (if any; see Section 3.3.2 for alternatives), it can be shown that results from both meth-
ods are largely the same. Therefore, selection of one of the alternatives may be a matter of 
preferences and program availability. Most software packages focus on agglomerative meth-
ods and divisive methods are rarely included. Single linkage (or nearest neighbor), complete 
linkage (or furthest neighbor), average linkage, centroid clustering, median clustering, 
weighted-average linkage, beta-flexible, density linkage, and Ward’s method are examples of 
agglomerative clustering methods available in many software packages. 

 
3.3.4 Decision 4: Exhaustive versus Non-exhaustive Clustering 

Classifications are exhaustive if A contains all objects, Oj. Non-exhaustive methods gen-
erate classifications that involve only some of the N objects. From a classification perspec-
tive, the objects assigned to clusters are often considered the most important objects. The 
objects that are not assigned to a cluster are often either ignored or assigned to a poubelle, 
that is, a garbage can. 

The idea of non-exhaustive classification can be illustrated in two ways. First, consider 
Figure 3 again. This figure displays the scatterplot of the two variables, VAR(1) and 
VAR(2), and suggests that there may be two groups of objects. However, there may be an 
overlap between the two groups. Shrinking the circles that circumscribe the two groups so 
that there is no overlap will have the side effect that a number of objects will not belong to 
any of the two groups. Thus, after the shrinking, the clustering is non-exhaustive. 

The second way to describe non-exhaustive classifications involves Configural Fre-
quency Analysis (CFA; Indurkhya & von Eye, 1999; Lienert & Krauth, 1975; von Eye, 
2002). CFA inspects cross-classifications as described in Section 2.2 and asks whether the 
number of cases in a cell is greater than or less than expected from some chance model. If the 
null hypothesis of no discrepancies can be rejected, CFA states that objects belong to a type 
if more cases than expected were found. If fewer cases were found, objects belong to an 
antitype. It is a routine result of CFA that only a few types and antitypes emerge, and that the 
majority of cells does not deviate significantly from expectancy. 

Most methods of classification can be used to create exhaustive as well as non-exhaustive 
solutions. In hierarchical agglomerative dendrograms, a non-exhaustive solution could indi-
cate one or more single-case clusters, each of which is dumped into the poubelle. This can be 
done accordingly with clusters that contain only two or three objects. In non-hierarchical 
solutions, one can specify a relatively large number of clusters some of which may then 
contain only very small numbers of cases. It should be noted that it is not equally likely for 
each classification method to yield small clusters. Clustering methods that create clusters by 
letting objects gravitate toward some centroid have a tendency to allow larger clusters to 
swallow small clusters. Examples of such methods include the centroid method, complete 
linkage, average linkage, and the popular Ward method (see Section 3.3.3 for more detail). 

The Pros and Cons for exhaustive and non-exhaustive classification are obvious. On the 
pro-side for exhaustive classification is that each object belongs to a group. Thus, the sample 
subjected to clustering is not reduced in size. However, for some objects, e.g., outliers, it may 
be artificial to be assigned to a group. On the problematic side for exhaustive clustering is the 
result that there may be single-case clusters. Often, researchers experience problems with 
single-case clusters because these are hard to statistically compare with other clusters. For 
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instance, MANOVA cannot be used for subsequent comparisons when one cell contains only 
one case. 

 
3.3.5 Decision 5: Stochastic versus Deterministic Clustering 

Stochastic models view the data points xki as realizations of random variables. This seems 
reasonable if (1) one expects some natural variation within each group Ai; (2) the variables 
used for creating the classification are measured with error; and (3) the objects, O1, ..., ON are 
a random sample. If all these conditions are met, stochastic models allow one to test whether 
the object set S has a group structure. In contrast, deterministic models view S as a fixed set 
of objects. The objects’ characteristics may vary. However, in deterministic models, these 
variations are not considered random. As a result, probability statements do not make sense. 

The Pros and Cons of these two models are obvious. In favor of stochastic models is that 
statistical decisions concerning the existence of substructures become possible. A problem 
with stochastic models is that the null hypothesis used when testing for a particular grouping 
structure is not always easily specified. In favor of deterministic models is that parametric 
assumptions are unnecessary. A problem with deterministic models is that the typically exist-
ing error structure is ignored. 

When asking which of the two approaches, stochastic and deterministic clustering is pre-
ferred by users, there is a clear vote for deterministic models. The reasons for this preference 
are confounded. One reason is that deterministic models may seem easier to interpret. An-
other reason is that only a few of the general purpose statistical software packages include 
programs for stochastic clustering (e.g., S-plus). 

 
3.3.6 Decision 6: The Selection of Base Measures 

Many clustering methods start from calculating an N x N matrix that contains information 
about the relationships between all pairs of objects. Often, these matrices are called similarity 
matrices. Examples of such matrices include correlation matrices, distance matrices, and 
matrices that contain coefficients that count [in percent] the number of incidences in which 
two objects’ characteristics match. The coefficients used in similarity matrices are called 
base measures. Most popular are measures of correlation, typically Pearson’s r, and distance, 
typically the Euclidean distance. It is well known that “ ... resulting clusters depend more on 
the underlying similarity criterion than on the physical process of cluster formation” 
(Wishart, 1970, p.1). The following paragraphs illustrate this result using the correlation 
measure, r, and the Euclidean distance as examples. We give two examples. The first exam-
ple illustrates one shortcoming of Pearson’s r, that is, it cannot be calculated when there is no 
standard deviation. The second example illustrates that clustering based on correlations and 
clustering based on distances can create classifications that are unrelated to each other such 
that information about one classification will not carry information about the other. 

Correlation measures such as r identify objects as identical if their profiles are parallel. 
The measure r is not sensitive to differences in standard deviation and mean. Pearson’s r is 
the most widely used measure of correlation. However, it has been criticized because r can 
be interpreted as the angular distance between the vectors of the two objects under compari-
son only if the vectors have the same norm (Majone & Sanday, 1971). Distance measures 
focus on spatial distance, regardless of whether profiles are parallel or not. Correlation and 
distance scores coincide only if the distance, d = 0. More specifically, we obtain regardless of 
the size of d 
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-1 ≤ r ≤ +1  if d ≠ 0 

and 
r = +1  if d = 0. 
 
Consider the data example in Figure 6. The figure displays the four profiles, A, B, C, and 

D. Figure 6 shows that Profiles A and B are relatively far apart from each other yet parallel. 
Profile C is parallel to A and B and has a smaller standard deviation. Profile D has a standard 
deviation of zero, is relatively close to Profile A, and relatively far from Profiles B and C. 

Table 4 displays the Pearson r correlations among the four profiles. The measures sug-
gest that the Profiles A, B, and C are parallel. The correlation with Profile D cannot be calcu-
lated because sdD = 0. This is indicated by the periods in the last row of Table 4. Table 5 
displays the normalized Euclidean Distances among the four profiles. The measures suggest 
that dAD < dBC < dAB < dAC. The distance (dissimilarity) is greatest between A and C and be-
tween C and D. 

Clustering the data in Figure 6 yields the expected results. Using Ward’s method and 
Euclidean distances for a base measure, Objects A and D are grouped together first, followed 
by Objects B and C. Using the same method with Pearson’s correlation as the base measure, 
the program is unable to complete the classification because as soon as it tries to evaluate the 
correlation between Object D and the other objects, it encounters a missing data point (see 
last row in Table 4). Thus, there is no clustering solution. In general, when there is a profile 
in longitudinal research that suggests no change, it is impossible to include this profile in a 
cluster solution that is based on correlations. 
 
 

 
 

Figure 6: 
Profiles of Four Objects 
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Table 4: Pearson correlations between four Profiles 
 

 A B C D 
A 1.000    
B 1.000 1.000   
C 1.000 1.000 1.000  
D . . . . 

 
 

Table 5: Normalized Euclidean Distances5 between four Profiles 
 

 A B C D 
A 0.000    
B 3.000 0.000   
C 4.528 1.581 0.000  
D 1.000 3.162 4.528 0.000 

 
 
In the second example, we show that the base measures of correlations and distance can 

yield classifications that are independent of each other. A data set with N = 12 cases and t = 5 
observation points was created. We call this data set Chamonix. The parallel plots of these 
twelve cases appear in Figure 7. 

The figure suggests that, as was the case in Figure 6, the twelve cases differ in both cor-
relation and distance. We now apply the same clustering procedures to these data as to the 
data in Figure 6. Specifically, we create a hierarchical solution using Ward’s method using 
(1) Euclidean distances and (2) Pearson’s correlation r as base measures. Figure 8 displays 
the dendrogram for the first solution. Figure 9 displays the dendrogram for the second solu-
tion. 

Figure 8 suggests that, using Euclidean distances, a 2-cluster solution may be most ap-
propriate. Each of the two clusters contains six objects. Fusing the two clusters leads to a 
major increase of the within-cluster object distances. This is indicated by the distance scale at 
the bottom of the scale. 

Figure 9 suggests that using Pearson’s r, a three-cluster solution may be most appropri-
ate. Each of the three clusters contains four cases. Fusing two of the three cluster causes the 
within-cluster distance, measured in units of correlations, to increase dramatically. 

We thus conclude that both using distances and correlations one arrives at relatively 
clear-cut classifications. However, these classifications are independent of each other. Table 
6 displays the cross-classification of the two solutions. 
                                                                                                                             
5
 The (standard) Euclidean distance between the two objects f and u is defined as  

2( ) ,= −∑ i id f u  

where the sum goes over all i, that is, all dimensions. The normalized Euclidean distance is defined as 
2

,
 −

=   
 

∑ i i

i

f udn
sd

 

that is, by dividing the difference between f and u in dimension i by the standard deviation of this dimension. 
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Figure 7: 
Parallel plot of the 12 cases in the Chamonix data set 

 
 
 

 
 

Figure 8: 
Classification of the Chamonix data; Ward’s method; Euclidean distance 
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Figure 9: 
Classification of the Chamonix data; Ward’s method; Pearson’s r 

 
 

Table 6:  
Cross-classification of the two classifications of the Chamonix data set 

 
 1 2 3 Total 
1 2 2 2 6 
2 2 2 2 6 

Total 4 4 4 12 
 
 
The rows of Table 6 display the distribution of cases in the two-cluster solution that is 

based on the Euclidean distance. The columns display the distribution of cases in the three-
cluster solution that is based on Pearson’s r. The association between these two solutions can 
be assessed with the X2 = 0.0 (df = 2; p = 1.0). We thus conclude that the two solutions are 
independent of each other. 

Without additional criteria or knowledge, both solutions are reasonable and defensible. 
Therefore, when weighing which base measure to use, researchers chiefly rely on substantive 
information. The Euclidean distance is in many instances a natural choice because it indi-
cates how far objects are from each other in the space of the variables under study. (It should 
be emphasized that variables must be commensurable before Euclidean distances can be 
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applied. If variables are not commensurable, the variables with the larger scores and vari-
ances dominate the cluster solution.) If, in the context of developmental research, the focus is 
on the level or magnitude of behavior over time, or, if there exists a natural distinction in 
level that separates the top from the bottom clusters of developmental trajectories, it seems 
defensible to use Euclidean or other distance measures as base measures. However, if the 
focus is on trend characteristics rather than levels, on shape, fluctuation, or curvature similar-
ity, solutions based on correlation coefficients may make more sense. 

In some instances, researchers may find it hard to justify a selection of a base measure. In 
these instances, two strategies can be considered. First, one can create classifications using 
each of the base measures that are considered. Closer inspection of these classifications may 
reveal that some are more meaningful than others. An alternative to this approach involves 
using base measures that combine the characteristics of distance and correlational base meas-
ures. An example of such a coefficient is Cattell’s (1949) coefficient, rP, that is sensitive to 
profile shape, mean differences, and differences in standard deviations. Unfortunately, this 
coefficient is not included in the best known general purpose statistical software packages. 

 
3.3.7 Decision 7: Convex versus Non-convex Clusters 

The shape of clusters is of importance in more than one respect, for two reasons. First, if 
clusters take a shape that can easily be depicted, e.g., an ellipsoid or a rectangle, verbal de-
scription of clusters will also be easy. Second, when new objects are related to an existing 
cluster structure, one can ask whether these objects are located within the hull that represents 
a cluster. Therefore, many classification methods create clusters that are convex in shape. 
Subsets Ai are convex if any two objects, Oi and Oj, for i ≠ j, can be connected by a straight 
line that is entirely located within Ai. Examples of convex cluster hulls include ellipsoids, 
squares, circles, rectangles and other types of quadrics (von Eye, 1977; von Eye & Wirsing, 
1978, 1980). 

There are classification methods, however, that create non-convex clusters. For instance, 
clusters can take the shape of bananas where the connecting straight line between data points 
can be located outside the cluster hull. Examples of such points include the end points of the 
banana-shaped structure. The best known classification method that yields non-convex clus-
ters is the single linkage method. Single linkage fuses clusters based on the shortest distance 
of an element with some other element. Thus, it tends to create chains rather than convex 
agglomerates. Hartigan (1975) states that “single linkage clusters are famously strung out in 
long sausage shapes, in which objects far apart are linked together by a chain of close ob-
jects” (p. 200) (for graphical representations see Hartigan, 1975, pp. 201 and 202). 

In most instances, researchers select convex clusters for they can be described by meas-
ures of central tendency or by equation parameters that represent their hull. However, chains 
can be of interest also, for instance when the chain structure can be interpreted. This is the 
case, for example, when events such as the “next best step” are grouped, or sequences of 
decisions where each follows from the preceding one without much reference to the ones 
before. 

 
3.3.8 Decision 8: Symmetric versus Asymmetric Base Measure 

An issue rarely discussed in the context of cluster analysis concerns the symmetry char-
acteristics of base measures. Most typically, researchers employ base measures that are 
symmetric. Consider, for instance, Pearson’s correlation coefficient, r. It is well known that 
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rAB = rBA. In a similar fashion, it holds for the Euclidean distance, d, that dAB = dBA, where A 
and B are two objects. In scaling or in factor analysis, one also assumes that relationships 
between two objects are symmetric. However, this may not always be the case. Consider the 
traveling salesperson’s situation. She has to determine what the most parsimonious, that is, 
shortest distance is that allows her to visit all customers. If the distance between Customer A 
and Customer B is the same in either direction, she faces the standard minimization problem. 
If, however, the salesperson operates within a one-way street system, the distance from A to 
B can be much larger than the distance from B to A. This applies in an analogous fashion to 
measures of similarity. In other words, asymmetric relationships imply that it is possible that 
rAB ≠ rBA or dAB ≠ dBA. 

Typically, researchers assume that similarity relationships are symmetric. For example, 
the similarity between a BMW and a Porsche is the same, regardless of whether one com-
pares the BMW with the Porsche or the Porsche with the BMW. Consider, however, the 
similarity between a mother and her daughter or the similarity between an original and the 
copy. In these cases, the statement that the daughter is similar to her mother (or the copy is 
similar to the original) naturally makes sense. The inverse statement, that is, that the mother 
is similar to her daughter (the original is similar to the copy) changes the semantics, if it 
makes sense at all. 

The number of asymmetric measures of distance or similarity is limited. Examples in-
clude some PRE measures, for instance, Goodman and Kruskal’s (1954) λ , and information 
theory measures of constraint (Newman & Gerstman, 1952). Matrices that depict symmetric 
relationships are axial symmetric. There exist log-linear methods for testing axial symmetry 
in frequency tables (see von Eye & Spiel, 1996). 

Thus, clustering distances or similarity measures must take into account the symmetry 
characteristics of measures. The selection of symmetric over asymmetric measures must be 
justified from substantive considerations. Unfortunately, to the best of our knowledge, there 
is not one software package that allows researchers to select asymmetric base measures. The 
issue has been discussed occasionally in the context of scaling (Kruskal & Wish, 1978) and 
in the context of definitions of similarity, where symmetry is one of the axioms of similarity 
(which can be traced back to Frechet, 1906). 

 
3.3.9 Decision 9: Monothetic versus Polythetic Classifications 

For the distinction between monothetic and polythetic classifications, we assume that the 
N objects, O1, ..., ON are observed in the p variables, M1, ..., Mp. The observed measure is xki, 
for k = 1, ..., N and i = 1, ..., p. Monothetic methods create partitions by only taking one 
variable into account at a time. To illustrate, consider the two groups, 1

iB  and 2
iB , and the 

binary variable Mi that is used to create the partition. Now suppose also that Mi is binary. 
Then the splitting into 1

iB  and 2
iB  can be performed by the following operation 

 

{ }
{ }
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2 1

: |  and 1
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= ∈ =

= ∈ = = −

i
ki

i i
ki

B k k A x

B k k A x A B
 

 

(see Bock, 1974). As a result of this operation the group 1
iB  contains all objects Ok 0 A that 

display a score of xki = 1 in the characteristic under study. Accordingly, one specifies when a 
variable is quantitative  
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where ci is a threshold that is either determined before data analysis or determined 
based on the data. 

When a sample is observed in several variables, the partitioning proceeds by taking one 
variable into account at a time. If variables are categorical, the result can be the same as the 
result of a cross-classification (see Section 2.2, above). If variables are continuous, the ci are 
chosen so that a priori specified optimality criteria are fulfilled. Most typically, the ci are 
chosen such that members of a group are as homogeneous as possible (e.g., high correlations 
or low distances). Classifications are monothetic if “the possession of a unique set of features 
is both sufficient and necessary for membership in the group thus defined” (Sokal & Sneath, 
1963, p. 13). 

In contrast, polythetic classifications are created by simultaneously taking into account 
all variables, M1, ..., Mp. If all variables are taken into account, “there is no single character 
that is both sufficient and necessary to every member of the group, yet the group possesses a 
certain unity” (Sneath, 1965, p. 83). Virtually all classification methods available in the 
current general purpose statistical software packages create polythetic classifications. 

When deciding whether to employ monothetic or polythetic classification methods, re-
searchers use information from substantive theory. Monothetic classifications require objects 
to possess all of a specified set of characteristics to belong to a class (see Section 2.2, above). 
In contrast, polythetic classifications only require objects to show similarity (lack of dis-
tance) to qualify for group membership. On the Pro side for monothetic methods is that they 
are exhaustive and easy to perform. They typically involve divisive procedures and use bi-
nary variables. Results are typically easy to interpret and are often considered useful for 
diagnostic purposes. On the Con side is that monothetic classifications are considered “un-
natural” by many, and they are impractical for many types of variables, for instance, when 
cut offs are hard to justify. On the Pro side for polythetic methods is that they yield less 
artificial classifications. However, they are numerically more complex. In fact, when sample 
sizes are very large, it is still impractical to apply programs for polythetic procedures when 
they require that the entire matrix of base measures be in the computer memory at the same 
time. Monothetic and polythetic clustering methods are often used or described in the context 
of divisive hierarchical methods. 

 
3.3.10 Decision 10: Manifest Variable versus Latent Variable Grouping 

The methods of creating groups and clusters discussed thus far in this article operate at 
the level of manifest, that is, observed variables. Cases are grouped based on their relative 
distances or similarities. The resulting groupings and clusters are described also at the level 
of manifest variables. In contrast to these methods, there exist methods that use the relations 
among manifest variables to create latent variables, that is, unobserved variables. The latent 
variables are used to explain the covariation among the observed variables. In this section, 
we briefly review two variants of latent variable grouping, latent class analysis (LCA; 
Lazarsfeld, 1950; Rost & Langeheine, 1997), and latent class mixture models (LCGM; 
Muthén, 2001; Nagin, 1999). 



Typifying developmental trajectories – a decision making perspective 87 

LCGM is a method of latent growth curve analysis that models heterogeneous latent 
classes of trajectories. Two methods have been proposed. Muthén (2001) uses baseline 
measures to cluster the data into classes. Then, the latent variable structure is used to model 
class trajectories. The method is Bayesian as the class trajectories are conditional on class 
membership. For diagnostics, this method uses posterior predictors of class membership. 

The second method, the semiparametric, group-based approach introduced by Nagin 
(1999) can model data based on the zero-inflated Poisson, censored normal, and binary logit 
distributions. Unobserved latent classes are set to explain individual differences along the 
aggregated single developmental trajectory in a population. Fixed-effect growth is hypothe-
sized within each class so that all individuals of one latent class are hypothesized to have the 
same within-class developmental trajectory over time. The trajectories are class-specific, that 
is, each class has a trajectory that differs from the trajectories of each other class. When data 
are normally distributed, LCGM tends to extract more classes than for non-normal data 
(Bauer & Curran, 2003). 

LCA of categorical variables uses the concept of local independence. The joint probabil-
ity of the observed frequencies is expressed as the product of the marginal probabilities, 
given a latent class. In different words, once the latent class is known, the observed variables 
are independent. Note, however, that local independence is not a common characteristic of 
all latent class models. Mixed Markov models do not pose the restriction of local independ-
ence when they describe response patterns. Mixed Markov Models are of particular impor-
tance for the analysis of longitudinal data (Langeheine & van de Pol, 1993). 

Looking at the individuals in the analysis, LCA models do share in common that all indi-
viduals within a latent class have the same response probabilities for the categories included 
in the analysis. That is, individuals within the same latent class are treated identical and thus 
different than individuals in other latent classes. This concept is obviously stricter than the 
concepts used in cluster analysis in which individuals within a cluster are, on average, more 
similar to each other than to individuals in other clusters. 

From a technical perspective, methods of LCA can be viewed as finite mixture models in 
which the component distributions are multivariate Bernoulli. Parameter estimation is typi-
cally done using maximum likelihood estimation by way of the EM algorithm. Many re-
searchers consider LCA the categorical variable analogue to factor analysis (cf. Molenaar & 
von Eye, 1994). In the present context of typifying, the analogy to cluster analysis is more 
interesting: LCA is also considered a method of cluster analysis for categorical variables. 

 
 

4. A Data Example 
 
In this section, we present a data example that reflects the ten decisions using data from 

the Lives Across Time (LAT) study. The LAT is an ongoing prospective longitudinal study 
of adolescent and adult development currently in its 16th year and sixth wave of data collec-
tion (for more detail see Windle & Windle, 2001). Participants were recruited from suburban 
public high school districts in Western New York when they were in 10th and 11th grade (N = 
1,219). The sample used in the data example consists of a smaller subset of males who an-
swered all five assessments of cigarette smoking (N = 250). Cigarette smoking was asked 
four times with a six-month interval (Waves 1 - 4) and followed up once again when they 
were young adults (Wave 5). Daily cigarette smoking during the last 30 days prior to assess-
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ment was reported on a seven-point scale that reflects quantity of smoking: 0 = None, 1 = 
less than one, 2 = 1 to five cigarettes, 3 = half pack, 4 = one pack, 5 = one and a half packs, 
and 6 = 2 packs or more. At an aggregate level, cigarette smoking seems to increase over 
time, and the average level of their smoking is below one cigarette a day (see Table 7). How-
ever, aggregation does not make sense since it is generally accepted that there are different 
groups of people based on their smoking pattern. For example, there are words to describe 
people of distinctive smoking behavior (e.g., smokers, nonsmokers, experimenters, chippers, 
chain-smokers) that not only reflect the categorical distinction but also signify different 
levels of involvement or dependency. It is very plausible that these groups of smokers and 
nonsmokers have distinctively different developmental trajectories during adolescence and 
young adulthood. We illustrate the process of finding groups following the ten decisions. 
SAS 9 (SAS Institute Inc., 2002) was used for the subsequent analyses.  
 
 

Table 7:  
Descriptive statistics for data on daily cigarette smoking among males 

 
  Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 
N of cases 250 250 250 250 250 
Minimum None (0) None (0) None (0) None (0) None (0) 
Maximum Two packs or 

more (6)a 
Two packs or 

more (6) 
One and a 

half packs (5)
Two packs or 

more (6) 
Two packs or 

more (6) 
Mean .428 .492 .524 .624 .972 
Standard Dev 1.222 1.166 1.159 1.268 1.556 
aNumbers in parentheses are the ranks used for analyses (see also Table 9) 

 
 

4.1 Disjoint versus Overlapping Clusters 
 
The first decision asks whether individuals can be members of two or more clusters at the 

same time (i.e., overlapping clusters) or whether an individual trajectory of smoking should 
be placed in one and only one cluster (i.e., disjoint clusters). With the current data of smok-
ing, it is reasonable to expect that clusters are disjoint. For example, chain smokers cannot at 
the same time be chippers. And nonsmokers cannot simultaneously be smokers. Belonging to 
one cluster precludes one from belonging to other clusters. Therefore, finding disjoint clus-
ters is appropriate for the data. 

 
 

4.2 Hierarchical versus Non-hierarchical Clusters 
 
The second decision asks whether developmental trajectories of smoking among males 

can naturally be grouped hierarchically. The current data example is hierarchical in the sense 
that, for example, once smokers are grouped together from nonsmokers, they can further be 
grouped into smaller groups of smokers based on the quantity of smoking over time. Assum-
ing that the smoking pattern is relatively stable over time, it makes sense that more homoge-
neous developmental trajectories can be identified from a mixture of heterogeneous smoking 
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trajectories. In addition, there are no clear-cut theoretical justifications for the number and 
kind of smoking trajectories. Thus, a hierarchical cluster analysis suits well. 

 
 

4.3 Agglomerative versus Divisive Clustering 
 
In essence, agglomerative and divisive clustering methods should result in same results. 

The only difference is that divisive clustering demands more processing time and memory. 
So we choose an agglomerative clustering method. From the various agglomerative methods 
listed previously, we chose centroid clustering. While Ward’s method of minimum sum of 
squares is a popular choice, it tends to prefer a solution of clusters with equal size. Given the 
data characteristics where uneven size clusters are expected, we chose centroid clustering 
since it is known to give the best results when the size of clusters is different (Everitt, 1987, 
cf. Everitt et al., 2001, p.65). In centroid clustering, the distance is defined as the squared 
Euclidean distance between mean vectors (i.e., centroids).  

 
 

4.4 Exhaustive versus Non-exhaustive Clustering 
 
Exhaustive clustering involves all data observations including outliers or a few cases that 

do not fit well with any clusters. We first examined possible outliers using single linkage 
clustering since this method often yields singletons (i.e., one case per cluster) that have the 
biggest minimum distance from its nearest neighbor. Figure 10 shows the dendrogram of 
single linkage clustering analysis and Table 8 displays the last 10 generations of the cluster 
history that shows chaining and the presence of singletons. The frequency in Table 8 in-
creases by one or two as the number of clusters decreases, which is indicative of chaining 
and singletons. Reading from top to bottom of the table, it is clear that a few cases were 
isolated until the last moments when they were pulled toward the existing clusters one at a 
time, creating chains. From Table 8, observations such as 169, 145, and 44 may be consid-
ered as outliers. At the right side of Figure 10, it is visible that a few cases remained as sin- 

 
Table 8: 

The Last 10 Generations of the Single Linkage Cluster History 
 

Number of  
Clusters 

 
Clusters Joined 

 
Frequency 

Minimum Distance 
between Clusters 

 10 CL11 CL16 241 0.7146 
 9 CL10 OB147 242 0.7146 
 8 CL9 OB60 243 0.7989 
 7 CL8 OB185 244 0.7989 
 6 CL7 OB198 245 0.7989 
 5 OB55 OB56 2 0.8752 
 4 CL6 OB44 246 0.9453 
 3 CL4 OB145 247 0.9453 
 2 CL3 CL5 249 1.0719 
 1 CL2 OB169 250 1.3838 
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Figure 10: 
Single Linkage with Outliers Included (N = 250) 

 
 

4.5 Stochastic versus Deterministic Clustering 
 

gletons until the last moments when they were finally merged one by one with the majority. 
These cases showed extreme swings in their cigarette smoking pattern over time. For exam-
ple, observation 169 had a smoking profile that started out as a non-smoker but, within six 
months, smoked two packs a day only to reduce it to less than one cigarette and then to inch 
up to 1-5 cigarettes a day in subsequent waves, which reflects changes in and out of smoking 
status during middle adolescence. Many hierarchical agglomerative methods are sensitive to 
outliers and therefore we chose to eliminate 1% of observations with the radius of the sphere 
= 2, assigning the excluded outliers to a poubelle.  

The fifth decision involves which one of stochastic and deterministic clustering analysis 
makes more sense. There are several ways to pursue stochastic clustering analysis. Fuzzy 
clustering produces a solution where some of the cases have probabilities of zero and one 
that they will belong to a certain cluster and for some other cases the probabilities are in 
between zero and one so that the case in question can belong to multiple clusters or none. 
Model-based clustering is also available with MCLUST software (Fraley & Raftery, 2002) 
written for the S-Plus 6 software package (Insightful Corporation, 2001). Model-based clus-
tering utilizes the expectation-maximization (EM) algorithm for maximum likelihood to 
determine partitions and uses hierarchical agglomerative clustering solution as initial values. 
Multivariate normal mixtures are used to describe data with the possible addition of Poisson 
distribution to model noise or outliers. A third option is to use Nagin’s semi-parametric 
model-based analysis (Nagin, 1999). In the current data example, we do not make any as-
sumptions about the mixing proportions or the underling density distributions (e.g., multi-
variate normal versus multivariate t) as is required in the latter two; we are only interested in 
finding groups from the observed data without having to make any assumptions. Therefore, 
we chose deterministic cluster analysis. 
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4.6 Selection of Base Measure 
 
The base measure can be correlation-based similarity or distance measures such as 

Euclidean distance for continuous data. Euclidean distance was chosen as a proximity data in 
the current data example because 1) the exact numerical value on smoking carries more 
meaning than the relative standing in cigarette smoking and 2) the Euclidean distance meas-
ure is typically used as a proximity measure for centroid cluster analysis (Everitt et al., 2001, 
p. 62). 
 
 
4.7 Convex versus Nonconvex Clusters 

 
It is difficult to visualize clusters of p-multidimensional data. One way to handle is to 

perform principal component analysis to reduce p dimensions into one or two. Principal 
component analysis allows one to preserve the multivariate structure while condensing p-
dimensional data into a smaller set of principal components. The current data have five re-
peated measures of smoking with bi-variate correlations, ranging from 0.516 to 0.865 among 
them. Principal component analysis resulted in the first two principal components attribut-
able for total 89.7% of the variance of the five repeated measures: 77.9% and 11.8%, respec-
tively for the first and second principal components. A scatter plot between the two principal 
component scores is shown in Figure 11. From this scatter plot, it appears that 1) there are no 
apparent banana-like elongated non-convex clusters, 2) there are probably two or more clus-
ters, and 3) a few outliers exist (e.g., the three observations near the bottom of the figure). 
The outliers are to be eliminated from the subsequent cluster analysis (see also Decision 4.4: 
Exhaustive versus Non-exhaustive Clustering, and Figure 14). 

  
 

 
 

Figure 11:  
Scatter plot of principal components (N = 250) 
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4.8 Symmetric versus Asymmetric Base Measure 
 
Typical dissimilarity measures for continuous data are symmetrical base measures, in-

cluding Euclidean distance or correlation-based measures. From the current data example, 
Table 9 shows three typical cases. Correlations between cases 1 and 2, between 1 and 3, and 
between 2 and 3 are .612, .250, and .408, respectively. Squared Euclidean distances between 
cases 1 and 2, between 1 and 3, and between 2 and 3 are 5, 66, and 49, respectively. Cases 1 
and 3 are most dissimilar and cases 1 and 2 are most similar of all pairs of observations. In 
both of these measures, we assume that the dissimilarity or distance between case 1 and case 
2 is the same as the dissimilarity or distance between case 2 and case 1, which makes sense 
in the current data example. So, symmetrical base measures are suitable for the current data.  

 
 

Table 9:  
Typical Data Points and Symmetrical Measures 

 
Case W1 W2 W3 W4 W5 
1 Never (0)a Never (0) Never (0) Never (0) < 1 (1) 
2 Never (0) Never (0) Never (0) 1-5 Cig.(2) 1-5 Cig. (2) 
3 One pack (4) Half pack (3) One pack (4) One pack (4) One pack (4) 

a Numbers in parentheses are ranks used for analyses (see also Table 7) 

 
 

4.9 Monothetic versus Polythetic Classifications 
 
Monothetic classifications are utilized in divisive hierarchical clustering analysis using 

binary data while polythetic classifications can be used for both binary and interval-scaled 
data. S-Plus (Insightful Corporation, 2001) can handle the divisive monothetic and polythetic 
cluster analysis by the mona and diana functions, respectively. The current smoking data 
ranged from zero to six, thus monothetic divisive classification is not suitable. Hierarchical 
agglomerative cluster method chosen for the data is a polythetic classification method since 
at each grouping step all variables are considered simultaneously.  

 
 

4.10 Manifest Variable versus Latent Variable Groupings 
 
Latent variable analyses of classification - Latent class analysis and latent class growth 

mixture analysis explicitly assume mixtures of densities from which observations spring up. 
Moreover, the latent variable approach is different from manifest variable analysis in the 
sense that it factors in measurement errors of the observed variables used in classification 
analysis and it yields stochastic classification for each individual or object. Thus, the deci-
sion of manifest versus latent variable groupings overlaps to a certain extent with the deci-
sion of stochastic versus deterministic classifications. In addition to the simplicity of mani-
fest variable cluster analysis (there is no need to estimate mixing proportions and distribu-
tional characteristics of the mixture densities as discussed in Decision 4-5), manifest variable 
analysis makes sense for repeatedly measured data because repeated measures share the scale 
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characteristics and in part, measurement errors. Moreover, latent variable analysis involves 
additional theoretical discussion concerning the nature of the latent variables - dimensions or 
typologies (i.e., categorical versus metrical) since mathematically they are interchangeable at 
the latent variable level (Molenaar and von Eye, 1994). For the current data example, mani-
fest variable analysis makes sense because we intend to find homogeneous groups in data 
without making any assumptions on the nature of latent variables, distributions, or measure-
ment errors. 

This series of decisions leads us to using centroid cluster analysis with squared Euclidean 
distance as a proximity measure. Given that all five variables shared the same metric, and 
variability was approximately consistent across time (see Table 7), raw scores were used (as 
opposed to weighted or standardized scores), to compute squared Euclidean distance. Eight 
observations were trimmed based on the decision to eliminate 1% outliers with radius = 2. 
Figure 13 presents the dendrogram for the results. The history of the last 15 cluster solutions 
is provided in Table 10. Both the dendrogram and the history of cluster analysis suggest a 
three-cluster solution. The semipartial R2 indicates the decrease in the proportion of variance 
accounted for by joining two clusters, and the squared multiple correlation, R2 indicates the 
proportion of variance accounted for by the cluster solution. The three-cluster solution shows 
that 80.2% of the variance was accounted for. The proportion of variance lost by moving 
from the four-cluster solution to the three-cluster solution was only 0.027. Values of the 
cubic clustering criterion and pseudo F show local maxima at three clusters. The pseudo t2 
also shows the optimal level at three clusters.  

 
 

 
 

Figure 13:  
Dendrogram of Centroid Clustering Analysis  
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Figure 14 illustrates three clusters and outliers in two dimensional space using principal 
component scores and Table 11 shows descriptive information. The first cluster, indicated by 
hollow circles in Figure 14, can be characterized as non-smokers (n = 187). The second 
cluster, illustrated by solid squares, can be considered as non-smokers during middle adoles-
cence who turned out to be regular smokers in young adulthood (n = 32). The third cluster, 
solid circles, indicates regular smokers all throughout middle adolescence and young adult-
hood (n = 23) who smoke somewhere between one half and one pack of cigarettes a day 
throughout the observation period. Outliers (n = 8), displayed by hollow squares, show an 
elevated level of smoking as a group but standard deviations across time are also substantial.  

 
 

 
 

Figure 14:  
Scatter Plot of Principal Components by Clusters (N = 250) 

 
 

Table 11:  
Average cigarette smoking among males by clusters (standard errors in parentheses) 

 
Cluster Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 
Cluster 1 (n = 187) .06 (.29) .11 (.36) .11 (.38) .12 (.44) .16 (.46) 

Cluster 2 (n = 32) .13 (.42) .09 (.30) .31 (.69) .97 (1.28) 3.25 (.76) 
Cluster 3 (n = 23) 3.22 (1.28) 3.17 (1.03) 3.39 (.72) 3.48 (.73) 3.65 (.71) 
Outliers (n = 8) 2.13 (1.96) 3.38 (1.85) 2.75 (1.67) 2.88 (1.81) 3.25 (2.32) 
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5. Summary and Discussion 
 
This article discusses two methods of classification. The first group of classification is 

concerned with theory-driven, a priori classifications. Empirical data serve to see whether a 
priori classifications coincide with natural groupings. The second group of classification 
methods is concerned with finding groups in data. Ten decisions of classification are pro-
posed and discussed in this article, and empirical data are used to illustrate how the ten deci-
sions help guide selection from the pool of clustering methods. The clusters describe trajec-
tories of smoking in male adolescents. The series of ten decisions takes into account data 
characteristics and also the mathematical characteristics of clustering methods. Clearly dif-
ferent classification results are possible from the same data. However, none is inherently 
wrong; each reflects characteristics of the decisions involved in cluster analysis. Discrimi-
nant analysis or logistic regression analysis can subsequently be employed to examine group 
differences. 
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