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摘要： 脂肪组织中,激素敏感脂肪酶(HSL)被认为是调节脂肪酸代谢的关键限速酶. HSL在糖尿病的发病过程
中起重要作用.抑制 HSL活性有助于糖尿病的治疗,因此探索新颖的 HSL抑制剂变成当前研究的热门.在激素
敏感脂肪酶的作用机制和三维结构缺乏的情况下,需要发展预测 HSL抑制剂的方法.本文采用几种机器学习方
法(支持向量机((SVM)、k鄄最近相邻法(k鄄NN)和 C4.5决策树(C4.5 DT))对已知的 HSL抑制剂与非抑制剂建立分
类预测模型. 252个结构多样性化合物(123个 HSL抑制剂与 129个 HSL非抑制剂)被用于测试分类预测系统,
并用递归变量消除法选择与 HSL抑制剂相关的性质描述符以提高预测精度.本研究对独立验证集的总预测精
度为 75.0%-80.0%, HSL抑制剂的预测精度为 85.7%-90.5%,非 HSL抑制剂的预测精度为 63.2%-68.4%.其中
支持向量机方法给出最好的总预测精度 80.0%.本研究表明支持向量机等机器学习方法可以有效预测未知数据
集中潜在的 HSL抑制剂,并有助于发现与其相关的分子描述符.
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Abstract： Hormone鄄sensitive lipase (HSL) is known as the key rate鄄limiting enzyme responsible for regulating free
fatty acids (FFAs) metabolism from adipose tissue. Recently, HSL has been found to be useful in the treatment of diabetes
so the discovery of new HSL inhibitors (HSLIs) is of interest. Methods for the prediction of HSLIs are highly desired to
facilitate the design of novel diabetes therapeutic agents because limited knowledge exists concerning the mechanism
and three dimensional (D) structure of hormone鄄sensitive lipase. We have explored several machine learning methods
(support vector machines (SVM), k鄄nearest neighbor (k鄄NN), and C4.5 decision tree (C4.5 DT)) to predict desirable HSLIs
from a comprehensive set of known HSLIs and non鄄HSLIs. Our prediction system was tested using 252 compounds
(123 HSLIs and 129 non鄄HSLIs) and these are significantly more diverse in chemical structure than those in other
studies. The recursive feature elimination selection method was used to improve the prediction accuracy and to select
the molecular descriptors responsible for distinguishing HSLIs and non鄄HSLIs. Prediction accuracies were 85.7% -
90.5% for HSLIs, 63.2%-68.4% for non鄄HSLIs, and 75.0%-80.0% for all structures based on three kinds of machine
learning methods using an independent validation set. SVM gave the best total accuracy of 80.0% for all the structures.
This work suggests that machine learning methods such as SVM are useful to predict the potential HSLIs among
unknown sets of compounds and to characterize the molecular descriptors associated with HSLIs.
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Type 2 diabetes is a complex, multi鄄factorial, and chronic
metabolic disease[1]. The prevenient researches presented that the
important characteristics of the type 2 diabetes are higher levels
of fatty acids in plasma and tissue[2]. It has been shown that the
elevated level of plasma fatty acids (FAs) plays an important role
in the pathogenesis of insulin resistance and type 2 diabetes[3,4].

In the period of low鄄energy in organism, lipids such as
triglycerides are decomposed to release energy through their hy鄄
drolysis followed by oxidation, primarily 茁鄄oxidation. Accompa鄄
nying this process, FAs and glycerol are also liberated. But in
type 2 diabetic patients, adipose tissue would be decomposed
during the period of high鄄energy, for example, nocturnal and
postprandial periods[5], and the increase of FA levels in plasma is
inspected obviously. So the energy can not be stored in the adi鄄
pose tissue. Hormone鄄sensitive lipase (HSL) is a multifunctional
tissue lipase which is called a component of the metabolic switch
between glucose and FAs, as it is the rate鄄limiting enzyme in
adipose tissue lipolysis and net FAs mobilization[6]. HSL can cat鄄
alyze the fat metabolism to elevate levels of fatty acids. The ac鄄
tivity of HSL is modulated via phosphorylation or dephosphory鄄
lation primarily controlled by many kinds of hormone, such as
insulin, which can inactivate HSL[7]. Because of the insulin resis鄄
tance in the type 2 diabetes patients, the active of HSL is ad 鄄
vanced and the fat metabolism is accelerated, leading to elevated
level of FAs. So inhibiting the activity of HSL will decrease in
the release of FAs[8]. Such key role of HSL in the fat metabolism
has led to the suggestion that HSL may be a potential therapeutic
target for this disease[9].

Discovering the novel inhibitors of HSL (HSLIs) has been be鄄
coming a hot spot in the therapeutics of type 2 diabetes. During
the last few years, a series of various classes of HSLIs were re 鄄
ported by different research groups, which contain 2H鄄isoxazol鄄
5鄄ones[10], oxadiazolones[11], pyrrolopyrazinediones[12], carbazates[13],
carbamoyltriazoles[14], and aryl boronic acids[15]. Few efforts have
been directed at the development of computational methods for
the prediction of HSLIs. Mutasem et al.[16] discovered some new
potent HSLIs with quantitative structure鄄activity relationship
(QSAR) method through screening the National Cancer Institute
(NCI) list of compounds and their in鄄house built database of
drugs and agrochemicals. Recently, structure鄄 and mechanism鄄
based drug design methods have been developed and applied to
drug discovery projects [17]. However, the application of these
methods for the HSLI prediction may be retarded by the following
cases, that is, the lack of available HSL crystallographic structu鄄
res for the new inhibitors to combine with, the complexity of the
catalytic mechanism of the HSL in adipose tissue lipolysis, and
millions of molecules in the compound libraries. This prompts us
to explore the possibility of developing non鄄structure鄄based
computational methods for predicting hormone鄄sensitive lipase
inhibitors, which facilitates the identification of HSLIs in the early

drug design phase without requiring the knowledge about their
mechanisms, the intrinsic relationships between activities and
molecular properties, and the structures of targeted proteins and
other macromolecules and molecular assemblies.

It has been well shown that the machine learning (ML)
methods are very useful tools for the classification of the
pharmacodynamic, pharmacokinetic, and toxicological properties
of drug agents [18]. High throughput screening (HTS) is a method
of drug discovery or gene/protein function determination which
can test or class tens of thousands of compounds against a par鄄
ticular through selecting for drug鄄like characteristics such as
solubility, partition coefficient (lgP), molecular weight, and num鄄
ber of hydrogen bond donors/acceptors (Lipinski忆s rule of 5)[19].
Recently, the ML methods have also been applied in HTS broad鄄
ly. In this paper, we will use ML methods (the support vector ma鄄
chines (SVM), k nearest neighbor (k-NN), and C4.5 decision tree
(C4.5 DT)) to study the classification prediction of HSLIs and
non鄄HSLIs. It is of interest to improve the performance of SVM
and to explore other machine learning methods for facilitating
the classification prediction of HSLIs. The prediction precision
of these ML methods relies on selecting appropriate subset of
molecular descriptors suitable for distinguishing HSLIs and non鄄
HSLIs. The recursive feature elimination (RFE) method[20], which
has been extensively used in the feature selecting, was employed
in this research for selecting the most relevant molecular descri鄄
ptors. To assess the prediction accuracy of the models used in
this work, two different evaluation methods were employed. One
is five鄄fold cross validation and the other is evaluation by an
independent validation set.

1 Materials and methods
1.1 Selection of HSLIs and non鄄HSLIs

A total of 260 HSLIs and non鄄HSLIs with known IC50 values
was selected from a number of published papers[10,12-15,21] and their
structures are supplied in Table S1 of Supporting Information
(which is available free of charge via the internet at http://www.
whxb.pku.edu.cn). Based on the tested experimental data in pre鄄
venient researches [12-15], when the IC50 value is lower than 500
nmol·L-1, the molecule will have better activity. And when the
IC50 values are between 400 and 600 nmol·L -1, the activity of
molecules is ambiguous. So we divided all molecules to three
sets: one set includes 123 HSLIs (IC50<400 nmol·L-1), the second
set includes 129 non鄄HSLIs (IC50>600 nmol·L-1). The last set
includes 8 molecules (400 nmol·L-1臆IC50臆600 nmol·L-1) which
are ambiguous between HSLIs and non鄄HSLIs. In these three
sets, we only chose the first two sets as the tested sets.

The 2D structure of each of the compounds was generated by
using ChemDraw[22] and was subsequently converted into 3D str鄄
ucture by using Corina [23] for calculating the quantum chemical
properties. The 3D structure of each compound was manually

Key Words： Hormone鄄sensitive lipase; Machine learning method; Molecular descriptor; Recursive feature
elimination; Support vector machine
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inspected to ensure that the chirality of each chiral agent is
properly generated. All the generated geometrics have been fully
optimized without symmetry restrictions.

First all compounds were divided into training set, testing set,
and independent validation set according to their distribution in
the chemical space defined by their structural and chemical fea鄄
tures. The ID of compound in every subset is supplied in Table
S2 of Supporting Information. The training and testing sets were
used to develop and optimize a statistical model, and the inde 鄄
pendent validation set is used for assessing the classification ac鄄
curacy of the model. Then, all compounds in the training and
testing sets were randomly divided into five subsets of approxi鄄
mately equal size. After training the SVM with a collection of
four subsets, the performance of the SVM was tested against the
fifth subset. This process was repeated five times, so that every
subset was once used as the test data.
1.2 Molecular descriptors

Molecular descriptors are routinely used to quantitatively rep鄄
resent structural and physicochemical properties of molecules,
which have been extensively applied in the structure鄄activity re鄄
lationship(SAR)[24], QSAR[25], and other computational researches
of pharmaceutical agents [26]. In this work, 198 molecular descrip鄄
tors as described in the earlier studies[27] were used. These descri鄄
ptors are given in Table S3 of Supporting Information, including
18 descriptors in the class of simple molecular properties, 27 de鄄
scriptors in the class of molecular connectivity and shape, 97 de鄄
scriptors in the class of electro鄄topological state, 31 descriptors
in the class of quantum chemical properties, and 25 descriptors
in the class of geometrical properties. They are computed from
the 3D structure of each compound by using our own designed
molecular descriptor computing program. When computing the
quantum chemical descriptors and molecular surfaces, a
semiempirical AM1 method widely used in QSAR and SLM
models of compounds was used for preprocessing structural op鄄
timization. The irrelevant and redundant descriptors for HSLIs
and non鄄HSLIs in the 198 molecular descriptors were eliminated
by using feature selection method[20].
1.3 Feature selection method

In a dataset with a fixed number of samples, excessive descri鄄
ptors may cause a prediction model to be over鄄fitted to lead to
affect its performance. Therefore, feature selection methods have
been employed to enhance the performance of ML methods by
eliminating the molecular descriptors redundant and irrelevant to
the discrimination of two datasets. The feature selection method,
the recursive feature elimination (RFE), has been widely acknow鄄
ledged because of its efficacy preformed in discovering informa鄄
tive feature molecular descriptors most relevant to prediction of
antibacterial compounds[27], prediction of the human ether鄄a鄄go鄄
go鄄related gene(hERG) potassium channel inhibitors [28], predic鄄
tion of tetrahymena pyriformis toxicity chemicals [18]. Therefore,
the RFE method combined with SVM was used in this work to
determine a preferable set of descriptors relevant to the predic鄄
tion of HSLIs and enhance the prediction accuracies of the mod鄄

els.
The computation procedure in this work can be outlined as

follow: The Gaussian kernel was employed to train a SVM
classification model with a series of variation of the parameter 滓
in the special region against the whole training dataset and the
corresponding prediction accuracies were evaluated by 5鄄fold
cross鄄validation. For a fixed parameter 滓, in the first step, the
SVM builds a model with the complete set of descriptors. The
second step is ranking the contribution of the descriptors in the
datasets based on a criterion score got from a scoring function.
In the third step, the m lowest ranked descriptors are removed.
Finally, the SVM classifier is retrained by using the remaining
descriptors, and the corresponding prediction accuracy is com 鄄
puted by mean of five鄄fold cross validation. All the four steps
are then repeated for other 滓 until all descriptors have been re鄄
moved. After the completion of these procedures, the set of de鄄
scriptors and parameter 滓 that gave the best prediction accuracy
is selected.

The choice of the parameter m affects the performance of
SVM as well as the speed of feature selection. To control the
size of the selected descriptors, we only consider the number of
descriptors smaller than one鄄fifth of the whole descriptors [29].
Our earlier studies[18,20,27] suggested that the performance of a SVM
system with m=5 is only reduced by a few percentages smaller
than that with m=1, which is consistent with the findings from
the other study[30]. In this study, m=5 is used for the sake of com鄄
putational efficiency.
1.4 Machine learning methods

There are a number of downloadable ML method software
packages. For example, PHAKISO (http://www.phakiso.com/in鄄
dex.htm) and WEKA [31] (http://www.cs. waikato.ae.nz/~ml/weka)
for a collection of ML method software, NeuNet (http://www.
cormactech.com/neunet/index.html) for neural network, SVM鄄
Light (http://svmlight.joachims.org) for SVM software are used in
many work. We use our own programs to build SVM model for
predicting the drug agents from HSLIs and non鄄HSLIs. And we
compare the result of SVM model with the results of other ML
methods.
1.4.1 SVM

The method of SVM has been extensively described in the ar鄄
ticles[32]. Here we only briefly descript it. SVM is based on the
structural risk minimization (SRM) principle from machine lear鄄
ning method. In linearly separable cases, SVM constructs a hy鄄
perplane which separates two different classes of molecules with
a maximum margin. With regard to the nonlinearly problem,
SVM projects feature vectors into a high鄄dimensional feature
space and searches for a linear optimal separating hyperplane
(decision boundary) in the new feature space. The transform can
be done by using a kernel function that satisfied the MercerNs
theorem.
1.4.2 k鄄NN

In k鄄NN, the Euclidean distance between an unclassified vec鄄
tor x and each individual vector xi in the training set is mea 鄄

003



Acta Phys. 鄄Chim. Sin., 2010 Vol.26

sured[33]. A total of k number of vectors nearest to the unclassified
vector x are used to determine the class of the unclassified vec鄄
tor. The class of the majority of the k鄄nearest neighbors is cho鄄
sen as the predicted class of the unclassified vector x.
1.4.3 C4.5 DT

C4.5 DT is a branch鄄test鄄based classifier[34]. A branch in a de鄄
cision tree is in accordance with a group of classes and a leaf
represents a specific class. A decision node specifies a test to be
conducted on a single attribute value, with one branch and its
subsequent classes as possible outcomes of the test. In C4.5 DT,
recursive partitioning is used to examine every attribute of the
data and rank them according to their abilities to partition the re鄄
maining data, thus constructing a decision tree.
1.5 Performance evaluation

As in the case of all discriminative methods[35], the performan鄄
ce of ML methods can be measured by the quantity of true posi鄄
tives (TP), true negatives (TN), false positives (FP), and false neg鄄
atives (FN). There are several accuracy functions for measuring
prediction performance, which include sensitivity (SE), specifici鄄
ty (SP), the overall prediction accuracy (Q), and Matthews corre鄄
lation coefficient (C) are given by Eq.(1-4), respectively.

Q= TP+TN
TP+TN+FP+FN 伊员园园豫 (1)

C= TP伊TN-FN伊FP
(TP+FN)(TP+FP)(TN+FN)(TN+FP)姨 伊员园园豫 (2)

2 Results and discussion
2.1 Overall prediction accuracies and merit of the

machine learning methods
SVM prediction of HSLIs is evaluated by the methods of both

the use of 5鄄fold cross validation and independent validation set.
Both of the methods appear to give consistent assessment about
the prediction accuracy.

Firstly, through comparing the accuracies of SVM, which
used 5鄄fold cross validation with and without the use of RFE of
feature selection method, the feature selection method plays an

important role in the performance of SVM for the prediction of
HSLIs and non鄄HSLIs. The results are shown in Table 1.
Through this method, we find 21 descriptors which are critical
for SVM model. The 21 descriptors are shown in Table 2. The
accuracies of SVM with RFE are 72.0% for HSLIs and 74.3%
for non鄄HSLIs; the accuracies of SVM without RFE are 64.1%
for HSLIs and 74.7% for non鄄HSLIs. And the overall prediction
accuracy 73.3% obtained from SVM with RFE is substantially
better than the value of 69.6% derived from SVM without RFE.
It is obviously indicated that the method with RFE is substan鄄
tially better than that derived from SVM without RFE, especially
for HSLIs. The results show that the selection of appropriate
molec 鄄ular descriptors is important for the improvement of av鄄
erage prediction accuracy, but more important for implying
which pharmacological features are more propitious to distin鄄
guish HSLIs and non鄄HSLIs.

Secondly, the accuracies of the databases are predicted
through independent validation with all 198 descriptors and 21
descriptors selected by RFE. The results are shown in Table 3.
These results suggest that the accuracies of independent valida 鄄
tion set with 21 descriptors selected by RFE are obviously better
than those with all descriptors. So these 21 descriptors are more
important for our model. And it further proves the method with
RFE is useful for our model.

Apart from the cross鄄validation method, the independent vali鄄
dation set also has frequently been used for testing the robustness
of a model. In this work, an independent validation set with 21
HSLIs and 19 non鄄HSLIs is constructed from our existing
datasets according to their distribution in the chemical space.
Table 4 gives all prediction results of HSLIs and non鄄HSLIs de鄄
rived from three ML methods k鄄NN, C4.5 DT and SVM by us鄄
ing the RFE selected descriptors and an independent validation
set. For comparison, those results from SVM are also labeled in
Table 4. By comparing the prediction accuracies from the three
methods, we have obtained several results. For HSLIs, the accu鄄
racies of these methods are in the range of 85.7%-90.5% with

Table 1 Accuracies of HSLIs and non鄄HSLIs derived from SVM without and with the use of the feature selection method RFE
by using five鄄fold cross validation

Statistical significance is indicated by S.E. (standard error). The number of HSLIs or non鄄HSLIs is TP+FN or TN+FP.

Method Cross validation
HSLIs non鄄HSLIs

Q(%) C(%)
TP FN SE(%) TN FP SP(%)

SVM 1 14 4 77.8 17 8 68.0 72.1 45.2
2 10 5 66.7 12 6 66.7 66.7 33.2
3 21 15 58.3 13 5 72.2 63.0 28.8
4 14 3 82.4 17 7 70.8 75.6 52.4
5 6 11 35.3 23 1 95.8 70.7 40.8

average 64.1 74.7 69.6 40.1
S.E. 8.4 5.4 2.2 4.2

SVM+RFE 1 15 3 83.3 14 11 56.0 67.4 39.7
2 9 6 60.0 14 4 77.8 69.7 38.5
3 25 11 69.4 12 6 66.7 68.5 34.4
4 12 5 70.6 19 5 79.2 75.6 49.8
5 13 4 76.5 22 2 91.7 85.4 69.7

average 72.0 74.3 73.3 46.4
S.E. 3.9 6.1 3.4 6.4
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Table 2 Twenty-one molecular descriptors selected by the RFE feature selection method for the classification of
HSLIs and non鄄HSLIs

Descriptor Description Class
ncof count of F atoms simple molecular property
ncocl count of Cl atoms simple molecular property
ncarb count of C atoms simple molecular property
nring numbers of rings simple molecular property
nrot number of rotatable bonds simple molecular property
3 字C simple molecular connectivity chi indices for cluster molecular connectivity and shape
5 字CH simple molecular connectivity chi indices for cycles of 5 atom molecular connectivity and shape
6 字CH simple molecular connectivity chi indices for cycles of 6 atom molecular connectivity and shape
5 字V0

CH valence molecular connectivity chi indices for cycles of 5 atoms molecular connectivity and shape
1资 molecular shape kappa indices for one boned fragments molecular connectivity and shape
S(15) atom鄄type H Estate sum for AHn (not C, N, O, S) electrotopological state
S(18) atom鄄type estate sum for >CH2 electrotopological state
S(28) atom鄄type estate sum for >C< electrotopological state
S(48) atom鄄type estate sum for -PH2 electrotopological state
S(64) atom鄄type estate sum for >Ge< electrotopological state
Trmsd balaban RMSD index electrotopological state
着b hydrogen bond acceptor basicity (covalent HBAB) quantum chemical property
浊 absolute hardness quantum chemical property
QH, SS sum of squares of charges on H atoms quantum chemical property
dis1 length vectors (longest distance) geometrical property
Hlb hydrophilic鄄hydrophobic balance geometrical property

SVM giving the best accuracy at 90.5%. For non鄄HSLIs, the ac鄄
curacies are in the range of 63.2%-68.4% with SVM and k鄄NN
giving the best accuracy at 68.4%. Lastly, for both HSLIs and
non鄄HSLIs, the average accuracies are in the range of 75.0%-
80.0% with SVM giving the best accuracy at 80.0%, k鄄NN giv鄄
ing the second best accuracy at 77.5% and C4.5 DT giving the
worst accuracy at 75.0%. We could check whether a prediction
system is over鄄fitting through a frequently used method which is
to compare the prediction accuracies determined by using cross
validation methods with those determined by using the indepen鄄
dent validation set. Since descriptor selection is performed by
using the cross validation method as the modeling testing sets,
an over鄄fitted classification system is expected to have much
higher prediction accuracy for the cross validation sets than that
for the independent validation set. As shown in Tables 1 and 4,
the prediction accuracies of the ML methods systems based on
the ind ependent validation set and those based on the cross鄄
validation method are similar. This work indicates the ML meth鄄
ods systems are unlikely to be overfitted.

Overall, our study suggests that ML methods, especially the
SVM, are useful for facilitating the prediction of novel HSLIs
from compounds with diverse structures. Another advantage of
the SVM studied in this work is that they do not require the
knowledge about the molecular mechanism or structure鄄activity

relationship of a particular drug property.
2.2 Molecular descriptors associated with the

diversity between HSLIs and non鄄HSLIs
Selecting molecular descriptors which are most relevant to the

prediction of HSLIs is important for optimizing the prediction
models and for elucidating the molecular factors contributing to
HSLIs. Commonly, QSAR models particularly design a group of
specific descriptors to represent the studied HSLIs which have
similar structural groups or structural alerts[16]. In this research, a
total of 21 molecular descriptors are selected by RFE. These de鄄
scriptors, given in Table 2, represent the structural and physico鄄
chemical properties associated with the diversity between HSLIs
and non鄄HSLIs. Some of them are found to match or partially
match those descriptors used in the published HSLIs QSAR
models[16]. The pharmacophoric features, such as hydrogen bond
acceptor, hydrogen bond donor, ring aromatic and hydrophobic,
are primarily attributable to the HSL bioactivities. In our work,
RFE method selects the descriptors, and ncof (count of F atoms),
ncocl (count of Cl atoms) and 着b (hydrogen bond acceptor ba鄄
sicity) are relative with hydrogen bond acceptor; nring (numbers
of rings) and Hlb (hydrophilic鄄hydrophobic balance) are as the
same as the results in these researches too. Mutasem et al. [16]

constructed the QSAR model of HSLIs with several molecular
descriptors, more of which are selected by RFE in our work.

Table 4 Comparison of the prediction accuracies of HSLIs
and non鄄HSLIs derived from different machine learning

methods by using the independent validation set
Method Parameter TP FN TN FP HSLIs SE(%) non鄄HSLIs SP(%) Q(%)
C4.5 DT - 18 3 12 7 85.7 63.2 75.0

k鄄NN k=14 18 3 13 6 85.7 68.4 77.5
SVM 滓=5 19 2 13 6 90.5 68.4 80.0

Table 3 Comparison of the prediction accuracies of HSLIs
and non鄄HSLIs obtained from SVM by using the

independent validation set with all 198 descriptors and 21
descriptors selected by RFE

TP FN SE(%) TN FP SP(%) Q(%)
all descriptors 14 7 66.7 15 4 79.0 72.5
21 descriptors 19 2 90.5 13 6 68.4 80.0

Set of descriptor
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Fig.2 Structures of the misclassified non鄄HSLIs

Fig.1 The Structures of the Misclassified HSLIs

For example, SssCH3 (methyl) which are the electrotopological
descriptors are selected to be the most correlative descriptors
named S(18) (atom鄄type estate sum for >CH2). Otherwise, shadow
descriptors are geometric descriptors that characterize the shape
of the molecules. In other research[16], shadow鄄Ylength (the length
of molecule in the Y dimension) is important and the dis1
(length vectors) is selected in our article according to shadow鄄
Ylength[16].
2.3 The misclassified compounds in the independent

validation set
There are twelve molecules incorrectly classified by our SVM

system with the independent validation set method. The predic鄄
tion accuracy is 90.5% for HSLIs, 68.4% for non鄄HSLIs and
80.0% for all of them. And for HSLIs set, which is comprised of
21 molecules, there are 2 molecules which are predicted as non鄄
HSLIs, on the other hand, for non鄄HSLIs set, which is comprised
of 19 molecules, there are 6 molecules which are predicted as
HSLIs. All of these misclassified molecules are shown in Fig.1
and Fig.2. From these two figures, we can see that the misclassi鄄
fied molecules are mainly with multiple rings and various hetero
atoms such as nitrogen, oxygen, chlorine and fluorin. Examina鄄
tion of incorrectly predicted compounds suggests that using
currently molecular descriptors may not be sufficient to properly
discriminate the molecules with complex structures or chemical
configurations. Therefore we should try to further explore dif 鄄

ferent combination of descriptors and to select more optimal set
of descriptors by using more refined feature selection algori 鄄
thms. So it implies that further improvement and refinement of
our molecular descriptors may be good for our prediction model.

3 Conclusions
This study shows that machine learning methods, especially

SVM, are useful for facilitating the prediction of HSLIs without
the knowledge of mechanisms but only with the choice of spe 鄄
cific molecular descriptors. But the current ML methods are lim鄄
ited in their ability to facilitate the study of the mechanism of
predicted properties. Nevertheless, we believe in the near future,
this weakness may be partially overcome by the development of
regression鄄based ML methods. In addition, our study indicates
that prediction accuracy of this model is affected by the molecular
descriptors selected by RFE which can further help to optimally
select molecular descriptors. To conclude, the availability of
more extensive information about various HSLIs and associated
mechanisms will facilitate the development of machine learning
methods into practical tools for the prediction of different types
of HSLIs in the early stage of drug development. Recent works
on the introduction of weighting function into ML methods de鄄
scriptors may also be applied to develop ML methods into a
practical tool for the prediction of HSLIs and thus facilitate new
drug development.

Supporting Information Available: The information of the
investigated dataset is provided in Tables S1, S2 and S3. This
information is available free of charge via the internet at http://www.
whxb.pku.edu.cn.
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