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Abstract 

In this comment on an article by Rasch and Guiard (2004), it is argued that the selection 
of nonparametric over parametric tests cannot rest solely on the characteristic of tests as 
robust against non-normality. Other violations exist. It is shown that the t-test, which is 
known to be virtually immune to violations of the normality assumption, is highly sensitive 
to violations of the independence assumption. It is concluded that a dismissal of nonparamet-
ric tests that is based on the result that tests are robust against normality violations, may be 
premature. More research is encouraged that addresses issues of violations of assumptions. 
This research should include both parametric and nonparametric tests. 
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Robustness is one of the rather important characteristics of methods of statistical deci-
sion-making. Statistical tests are considered robust if they keep their characteristics under 
adverse conditions, that is, under conditions in which the assumptions are violated on which 
the derivation of the tests rests. For many tests, distribution-free alternatives have been for-
mulated. For example, the Wilcoxon test is a distribution-free alternative to Student’s t-test, 
or Friedman’s method is a distribution-free alternative to one-way analysis of variance. 

It is well known that tests can be robust against one violation while being sensitive to 
others. One of the most powerful tests is Student’s t-test. This test is widely known as being 
robust against violations of the normality assumption. Rasch and Guiard (2004) present im-
pressive results both at the theoretical and the applied levels that show that the t-test is ex-
tremely robust against violations of the normality assumption. Indeed, the authors present a 
very concise and illustrative specification of the well known result (Bartlett, 1935) that the t-
test has a nonparametric property over a parametric class consisting of normally distributed 
variables (Randless & Wolfe, 1979; von Eye, 1988). It has been said that the t-test is asymp-
totically nonparametric (cf. Lehmann, 1975). The authors therefore conclude that there is 
practically no need for such alternatives as the Wilcoxon test. 

In this brief comment, we attempt to show that alternative tests may be needed after all. 
We show that the t-test, while almost immune to violations of normality, is highly sensitive 
to violations of the assumption of independence. Drawings are independent if no case sys-
tematically carries information that another case also carries. Specifically, we present the 
results of a simulation study in which we vary the degree of autocorrelation and show that the 
distribution of the t-statistic depends systematically on the degree of autocorrelation (cf. von 
Eye, 1983). 

 
 

1. A simulation of the t-distribution under various degrees of autocorrelation 
 
Consider the first order stationary autoregressive process 
 

1( ) ( ( ))i i ix E x x E x−= + ϕ − + ε  

 
for i = 1, ..., n, the sample size, where E(x) is the expectancy of x, φ is the first order 

autocorrelation, the xi are random variates, and εi is the N(0; 1) random error. Without loss of 
generality, we set E(x) = 0. Because we have stationarity, |φ| < 1. 

In the following illustration, we focus on Rasch and Guiard’s experiment 1, case 2, that 
is, the one-sample t-test. The simulation followed the steps outlined by von Eye (1983): 

  
1) the sample size n varied from 5 to 40, in steps of 5; 
2) the autocorrelation varied from -0.8 to +0.8, in steps of 0.2 (note that this selection 

of values differs from the one in the earlier simulation, because here, we wanted φ = 
0 to be part of the autocorrelation values); 

3) the autocorrelated series was calculated beginning with x1 = ε1. The following scores 
in the series were xi = φxi + εi, for i = 2, ..., n. Also in deviation from von Eye’s 
(1983) study in which a random number generator was used that was provided by the 
system, we here used the generator in the function GASDEV from the Numerical 
Recipes FORTRAN collection (Press, Flannery, Teukolsky, & Vetterling, 1989). 
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This generator returns a normally distributed deviate with zero mean and unit vari-
ance. It is based on the function RAN1, also provided in the recipe collection. This 
function uses three congruential generators (cf. the discussion of generators in Rasch 
& Guiard, 2004). The authors state that this generator’s “period is (for all practical 
purposes) infinite and ought to have no sensible sequential correlations” (Press et al., 
1989, p. 196). The latter characteristic is most important here because we hope that 
the equation given above specifies the only source of autocorrelation in our simula-
tion; 

4) for each series of size n and autocorrelation φ, the t-score 
x

t n
s

= was calculated. 
The size of each data set was determined to be 2000 (and thus larger than in von 
Eye, 1983). 

 
  

2. Results 
 
We present results in two sections. First, we report ANOVA results; then, we examine 

the shapes of the t-distributions. For the ANOVAs, we treat the data as collected for a fixed 
effect 8(sample sizes) x 9(autocorrelation levels) design. Each of the cells of this design 
contains 2000 cases. The design is therefore orthogonal. For each of the sample sizes, there 
were thus 18,000 cases, and for each correlation level, there were 16,000 cases. The results of 
this analysis are summarized in Table 1. 

Table 1 shows that the sources of variation explain basically nothing of the variation of 
the means of the t-distributions created in the simulation. The partial η2 estimates are close to 
zero, the largest individual score being no bigger than 2 per mill, for the sample size factor. 
Accordingly, the estimated R2 = 0.003 is also very low (adjusted R2 = 0.003). We conclude 
that the mean parameter of the t-distribution remained unaffected by the simulation. Please 
note that we refrain from interpreting the significance of effects because, in this study, the 
sample sizes are that large that even the most minuscule effects turn out significant. The only 
exception is the effect for ρ which caused virtually no mean variation at all, hence the low 
power. 

 
Table 1:  

ANOVA of the sample size by autocorrelation level simulation 
 

Source Type III Sum 
of Squares 

df Mean 
Square

F Sig. Partial Eta 
Squared 

Observed 
Power 

Corrected 
Model 

1509.935 71 21.267 6.570 .000 .003 1.000 

Intercept 34.241 1 34.241 10.577 .001 .000 .902 
N 812.542 7 116.077 35.858 .000 .002 1.000 
RHO 9.554 8 1.194 .369 .937 .000 .179 
N * RHO 687.839 56 12.283 3.794 .000 .001 1.000 
Error 465917.077 143928 3.237   
Total 467461.252 144000   
Corrected 
Total 

467427.012 143999   
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Figure 1:  
t-distributions by sample size and autocorrelation level 

 
 
Without going into more detail, we conclude from this part of the analyses that the means 

of the statistic of the one-sample t-test are indeed not sensible at all to the variations induced 
in the present simulations. We now ask, however, whether the shape of the distribution is 
also unaffected. To answer this question, we produce probability plots. Figure 1 displays two 
examples. The first example, presented in the left-hand panel, gives the nine curves for the t-
statistic under the nine autocorrelation conditions, for n = 5. The second example, presented 
in the right-hand panel, does the same, for n = 40. 
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Figure 1 shows first that each of the various distributions of the t-statistic does indeed 
have a mean of zero. However, the shapes of the distributions depend on both the sample size 
and the autocorrelation level with the distortion being larger for smaller sample sizes. As a 
consequence, the percentiles of the distribution are not independent of the level of autocorre-
lation, and significance tests will suggest biased decisions. The magnitude of the bias varies 
with the magnitude of the autocorrelation. 

 
 

2. Conclusion 
 
While it is well known, and has repeatedly and convincingly been shown that the t-

statistic is practically immune to violations of the normality assumption (Rasch & Guiard, 
2004), the statistic is also known to be highly sensitive to other violations. In this comment, 
we showed that one such violation is the one against the independence assumption. Already 
in 1980, Brillinger had issued warnings against applying models that had been developed 
under the assumption of independence to data with dependence structures. 

Based on these results, we wonder whether the dismissal of nonparametric tests is prema-
ture. Yes, these tests may be unnecessary if only violations of normality are suspected. How-
ever, other violations are lurking. The degree to which parametric as well as nonparametric 
tests are sensitive to such violations as dependency structures is largely underresearched. 
Methodologists should be encouraged to study the behavior of tests under these and many 
other conditions. 
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