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Detection of Image Compositing

Based on a Statistical Model for

Natural Images
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Abstract Nowadays, digital images can be easily tampered
due to the availability of powerful image processing software.
As digital cameras continue to replace their analog counterparts,
the importance of authenticating digital images, identifying their
sources, and detecting forgeries is increasing. Blind image foren-
sics is used to analyze an image in the complete absence of any
digital watermark or signature. Image compositing is the most
common form of digital tampering. Assuming that image com-
positing operations affect the inherent statistics of the image,
we propose an image compositing detection method on based on
a statistical model for natural image in the wavelet transform
domain. The generalized Gaussian model (GGD) is employed to
describe the marginal distribution of wavelet coefficients of im-
ages, and the parameters of GGD are obtained using maximum-
likelihood estimator. The statistical features include GGD pa-
rameters, prediction error, mean, variance, skewness, and kurto-
sis at each wavelet detail subband. Then, these feature vectors
are used to discriminate between natural images and composite
images using support vector machine (SVM). To evaluate the
performance of our proposed method, we carried out tests on
the Columbia Uncompressed Image Splicing Detection Dataset
and another advanced dataset, and achieved a detection accu-
racy of 92% and 79%, respectively. The detection performance
of our method is better than that of the method using camera
response function on the same dataset.

Key words Image compositing, generalized Gaussian model
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Today, digital images have been used in a growing num-
ber of applications from news reporting and law evidences
to forensic investigation and consumer photography. Due
to the widespread popularity of digital images and avail-
ability of powerful image processing tools, it is important
to authenticate digital images, identify their sources, and
detect forgeries.

Blind image forensics research aims to solve these prob-
lems. Blind image forensics is a form of image analysis for
finding out the condition of an image without relying on
pre-extracted or pre-embedded information[1]. During the
past few years, many blind forensics techniques for digital
image authenticity have been developed. These approaches
can be roughly divided into three categories:

1) Approaches based on the artifacts left by the process
of image forgery: a forged image usually undergoes some
common image processing operations. As a result, digital
forgeries can be detected by tracing artifacts introduced by
image operations. Different methods have been proposed to
detect copy-move forgeries[2], double JPEG compression[3],
and image lighting inconsistency[4].

2) Approaches based on the consistency of imaging
equipment: natural images are usually obtained through
data acquisition devices, which introduce uniform charac-
teristics to the entire image, and then the variation in the
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local characteristics across the image can be used to detect
tampering. Color filter array interpolation[3], consistency
of camera response function[5], and sensor pattern noise[6]

have been used to detect image forgeries.
3) Approaches based on the statistical characteristics of

natural images: although good forgeries leave no visual ar-
tifacts, they may affect the underlying statistics of images
more or less. In [7−8], several statistical approaches are
proposed to detect image splicing.

In this paper, we aim at image compositing forgeries, and
propose a detection method based on a statistical model for
natural image in the wavelet transform domain.

Compositing is perhaps the most common operation
when tampering with an image. It is a process of crop-
ping and pasting regions from other images to a new image
with necessary post-processing, such as blurring and scal-
ing. Since compositing is often used for image manipula-
tion, an efficient method is needed to detect image com-
positing. In this paper, we describe a statistical model for
natural images that is built upon multiscale wavelet decom-
position. The model consists of parameters estimated from
generalized Gaussian model (GGD) and cumulant of fea-
tures at each wavelet detail subband. Experimental results
show that the proposed method can distinguish authentic
images from composite images with a high accuracy, even
when the images have undergone post-processing.

The rest of paper is organized as follows. The proposed
natural image statistical model is described in Section 1.
Section 2 describes the detection approach including fea-
ture extraction and classification. Section 3 presents and
discusses the experimental results, and Section 4 contains
conclusions.

1 Natural image statistical model in the
wavelet transform domain

Due to the capability of multiscale and multiresolution
analysis, discrete wavelet transform (DWT) has been used
widely, as a powerful signal-processing tool. On the other
hand, the statistic models for natural images have played
an increasingly important role in the field of image process-
ing and analysis. In the research of natural image statistics,
it is found that the marginal distribution of the coefficients
in individual detail wavelet subband can be well fitted with
a generalized Gaussian density[9−10]. However, the image
compositing operation changes the statistics of wavelet co-
efficients, leading to a change of their statistical distribu-
tion.

1.1 Generalized Gaussian density modeling of
wavelet coefficients

Let x = (x1, · · · , xN ) denote a set of N wavelet coeffi-
cients at a particular subband, and the marginal distribu-
tion of x can be well-fitted with two-parameter generalized
Gaussian density model[9−11], which is defined as:

pm(x; α, β) =
β

2αΓ(1/β)
e−(|x|/α)β

(1)

where Γ(·) is the Gamma function, i.e., Γ(z) =∫∞
0

e−ttz−1dt, z > 0, α is the scale parameter, which deter-
mines the width of the model peak (standard deviation),
and β is the shape parameter, which determines the de-
creasing rate of the peak. The Laplacian density and Gaus-
sian density are the special cases of GGD model, when
β = 1 and β = 2, respectively.

In this paper, the model parameters of GGD are es-
timated using maximum-likelihood (ML) estimator. We
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define the likelihood function of the wavelet coefficients
x = (x1, · · · , xN ) as:

L(x; α, β) = ln

N∏
i=1

pm(xi; α, β) (2)

According to the parameter estimation theory, α and β
are the solutions of (3) and (4):

∂L(x; α, β)

∂α
= −N

α
+

N∑
i=1

β |xi|β α−β

α
= 0 (3)

∂L(x; α, β)

∂β
=

N

β
+

NΨ(1/β)

β2
−

N∑
i=1

( |xi|
α

)β

ln

( |xi|
α

)
= 0

(4)
where Ψ(·) is the digamma function, i.e., Ψ(z) =
Γ′(z)/Γ(z).

Fix β > 0, then (3) has a unique, real, and positive
solution as

α̂ =

(
β

N

N∑
i=1

|xi|β
)1/β

(5)

Substitute (5) into (4), then the shape parameter β is
the solution of the following equation:

1+
Ψ(1/β̂)

β̂
−

N∑
i=1

|xi|β̂ log |xi|
N∑

i=1

|xi|β̂
+

ln

(
β̂

N

N∑
i=1

|xi|β̂
)

β̂
= 0 (6)

The Newton-Raphson iterative procedure[12] is adopted

to solve (6) and to get ML estimate β̂ of the shape param-

eter β. Substituting β̂ into (5), we can get ML estimate α̂
of the scale parameter α.

Fig. 1 shows a typical example of histograms of three-
scale wavelet subband coefficients together with plots of
the fitted GGD models. Fig. 1 shows that the histograms of
wavelet coefficients of the natural image can be well fitted
with GGD models and characterized by a sharp peak at
zero and long symmetric tails. Therefore, we only need two
model parameters to represent the marginal distribution of
wavelet coefficients in a subband efficiently.

In addition to the two model parameters, we also in-
clude the prediction error as a third feature. Let us assume
that p(x) is the true probability density distribution of the
wavelet subband coefficients x = (x1, · · · , xN ), and the pre-
diction error d(pm ‖p ) is defined as the Kullback-Leibler
distance (KLD) between pm(x; α, β) and p(x):

d(pm ‖p ) =

∫
pm(x; α, β) ln

pm(x; α, β)

p(x)
dx (7)

Practically, this quantity can be evaluated numerically
using histograms:

d(pm ‖p ) =

K∑
i=1

hm(i) ln
hm(i)

h(i)
(8)

where hm(i) and h(i) are the normalized heights of the
i-th histogram bins, and K is the number of bins in the
histograms.

(a) A natural image

(b) The histograms of the coefficients of its three-scale DWT

decomposition fitted with GGD models

Fig. 1 Histograms of wavelet subband coefficients together
with plots of fitted GGD models

1.2 Cumulant-based features

In order to capture the characteristics and correlations
of local image energy at different scales and different ori-
entations, we also extract low-order and high-order statis-
tical features from wavelet detail subbands, which are re-
ferred to as cumulant-based features. Given image DWT
decomposition, the cumulant-features are composed of the
mean, variance, skewness, and kurtosis of the subband coef-
ficients at each orientation and at each scale. Assume that
x = (x1, · · · , xN ) denotes a set of N wavelet coefficients
at a particular subband, we use µ and σ2 to represent the
mean and variance of x. We define:

µ = E(x) =
1

N

N∑
i=1

xi (9)

σ2 = E[(x− µ)2] (10)

S =
E[(x− µ)3]

σ3
(11)

κ =
E[(x− µ)4]

σ4
(12)

where S is the skewness and κ is the kurtosis.

2 Image compositing detection method
2.1 Feature extraction

In this subsection, the feature extraction procedure is de-
scribed, as shown in Fig. 2. Firstly, DWT of L scales is ap-
plied to the given image, and there are 3L detail subbands.
For each detail subband, two parameters of GGD model,
the prediction error, and the four cumulant features are
then extracted to form a feature vector with 7× 3L = 21L
dimensions. Finally, the feature vector is fed into an SVM
classifier.
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Fig. 2 The flow of our method

2.2 Feature validation analysis

To visualize the distribution of these image feature vec-
tors, the high-dimensional feature vectors were projected
onto a three-dimensional linear subspace spanned by the
top three principal components obtained as a result of the
principal component analysis (PCA) of all image feature
vectors. The PCA is described as follows:

Denote column vectors fff i ∈ Rn, i = 1, 2, · · · , K, as the
original feature vectors, where n is the dimensionality of a
column vector and K is the number of data points. The
overall mean is as follows:

µµµ =
1

K

K∑
i=1

fff i (13)

The zero-meaned data are packed into a n×K matrix:

M = (fff1 −µµµ fff2 −µµµ · · · fffK −µµµ) (14)

If the dimensionality n of fff i is smaller than the number
of data points K, as in our case, then the n × n (scaled)
covariance matrix is computed as follows:

C = MM t (15)

The principle components are the eigenvectors eeej of the
covariance matrix (i.e., Ceeej = λjeeej), where the eigenvalue,
λj is proportional to the variance of the original data along
the j-th eigenvector. The dimensionality of each fff i is re-
duced from n to p by projecting (via an inner product) each
fff i onto the top p eigenvalue-eigenvectors. The resulting
p-dimensional vector is the reduced-dimension representa-
tion.

Fig. 3 shows the projected feature vectors of 183 natu-
ral and 180 composite images (images come from Columbia
Uncompressed Image Splicing Detection Dataset) onto the
top three principal components for the 21 × 3=63 wavelet-
domain statistics. In this case, the three top principal com-
ponents capture over 70 % of the total variance in the orig-
inal data set. By reducing the dimensionality, a significant
fraction of information is discarded, but it allows us to in-
spect the distribution of the feature vectors for natural and
composite images visually. As we have expected, the fea-
ture vectors from the proposed image statistics for natural
images form a relatively tight cluster. More importantly,
the composite images are well separated from the ensemble
of natural images. This indicates that the proposed image
statistics are capable of capturing statistical regularities in
natural images, whereas composite images do not possess
such regularities.

2.3 Classification

SVM is a popular technique for classification, which is
widely used in machine learning applications.

The LibSVM toolbox[13] is used for our classification,
which provides four common kernels: linear, polynomial,
radial basis function (RBF), and sigmoid. The RBF ker-
nel is chosen in our method. The RBF kernel nonlinearly

maps samples into a higher dimensional space, so it can
handle the case when the relation between class labels and
attributes is nonlinear. To choose the penalty parameter
C and kernel parameter gamma (symbol), we use 5-fold
cross-validation to search for the best parameters.

Fig. 3 Projection of the 21 × 3 = 63 wavelet-domain statistics
for 183 natural images and 180 composite images onto the top

three principal components

3 Experimental results
To evaluate the performance of our proposed method, we

first carried out the test on the Columbia Uncompressed
Image Splicing Detection Dataset[7], and then on an ad-
vanced image compositing detection dataset.

3.1 Basic image compositing detection

Columbia Uncompressed Image Splicing Detection
Dataset consists of 183 authentic images and 180 spliced
images. Authentic images are taken with four cameras:
Canon G3, Nikon D70, Canon EOS 350D, and Kodak
DCS330. Each spliced image has a “strange” region copied
from another image taken by different camera, so each im-
age contains contents from exactly two cameras.

Because no post-processing was performed during the
generation of spliced images, this dataset is referred to as
basic image compositing detection dataset.

The DWT of three scales is used. In each experiment,
half of the authentic images and half of the spliced ones are
chosen randomly for training, and the remaining for test-
ing. In order to void the effect of the randomness, for each
result, the experiment is conducted 20 times and the arith-
metic average is recorded. The results of the experiment
are shown in Table 1.

Table 1 Performance of the classifier in our experiment

Feature set GGD feature Cumulant feature Proposed method

TP rate (Recall) 87.25% 85.71% 90.11%

TN rate 90.31% 76.67% 94.44%

Accuracy 88.76% 81.22% 92.27%

Precision 90.06% 78.72% 94.25%

1) The GGD parameters and prediction error features
obtain 87.25% true positive rate (TP rate, also referred to
as Recall), 90.31 % true negative rate (TN rate), 88.76 %
accuracy, and 90.06% precision.

2) The cumulant features alone obtain a little worse per-
formance, which are 1.54%, 13.64 %, 7.54%, and 11.34%
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lower than the GGD parameters and prediction error fea-
tures, respectively.

3) The best results (last column) are obtained by in-
corporating all the proposed features, which improve the
performance of the GGD parameters and prediction error
features (first column) by 2.86 % in TP rate, 4.13% in TN
rate, 3.51% in accuracy, and 4.19 % in precision, respec-
tively.

It can be seen that although the performance of the cu-
mulant features is lower than that of the GGD parameters
and predict error features, combining all feature sets has
further improved the detection rate.

In [8], Hsu proposed an automatic spliced image detec-
tion method based on consistency checking of camera char-
acteristics in different areas of an image. The performances
of their method and our method are compared on the same
image compositing detection dataset, and the correspond-
ing results are shown in Table 2, where L =3 in this paper,
and M =8 in [8].

Table 2 Comparison of performance between the proposed
method and Hsu′s method

The proposed method Hsu method

Feature dimensions 21× L 20×M

Precision 94.25% 70%

Recall 90.11% 70%

As shown in Table 2, the proposed method not only re-
duces the feature dimensions by 97-D, but also improves the
performance by 24.25% in precision and 20.11 % in recall,
respectively.

3.2 Advanced image compositing detection

In order to make the experiments more practical, we
build another dataset of 100 authentic JPEG images and
100 composite JPEG images, which are manipulated by
either inserting extra content or replacing the original con-
tent. To make them more realistic, some pre-processing
operations, such as resizing, rotation, and brightness ad-
justment, are adopted to the inserted content before past-
ing it to the image. In some cases, we have to blur the block
boundaries after pasting too. This test set is referred to as
the advanced dataset. Note that, in order to evaluate the
generalized capability of the proposed method, the experi-
ments are conducted on the new advanced dataset without
re-training the SVM classifier. The results are shown in
Table 3. The results are still encouraging, even when the
trained detector is applied to new composite images with
pre- and post-processing operations.

Table 3 Performance of the trained classifier on
the advanced dataset

Dataset The advanced dataset

Recall 82.26%

TN rate 75.18%

Accuracy 78.73%

Precision 80.28%

4 Conclusion
In this work, we propose a method for image compositing

detection, based on a statistical model for natural image in
the wavelet transform domain. The algorithm has the fol-
lowing characteristics: 1) It is fully passive and automatic;
2) Its physical meaning is intuitive, and the feature dimen-
sions are less than that of Hsu′s method; 3) Due to sim-

plified implementation and high detection accuracy rate,
it has great potential for practical applications. The pro-
posed method is tested over two datasets, and the results
are satisfying. In the future work, the statistical models
for natural images will be further studied, and more re-
liable and effective detection method for different image
datasets and images with different types of manipulation
will be explored.
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