NdCl₃-CdCl₂-HCl-H₂O的相平衡及其固相化合物的研究*

乔占平1 卓立宏1 郭应臣1 王 惠2

(¹南阳师范学院化学系,河南南阳 473061; ²西北大学化学系,陕西省物理无机化学重点实验室,西安 710069)

摘要测定了四元系NdCl₃-CdCl₂-HCl-H₂O(298.15 K)的相平衡溶度数据,绘制了相应的溶度图.该四元系是由4个固相区CdCl₂·H₂O(原始盐)、9CdCl₂·NdCl₃·20H₂O、5CdCl₂·NdCl₃·13H₂O、NdCl₃·6H₂O(原始盐)组成的复杂体系. 用 X 射线粉末衍射及 TG-DTG 和荧光光谱对 9CdCl₂·NdCl₃·20H₂O 和 5CdCl₂·NdCl₃·13H₂O 进行了研究.荧光研究表明,化合物 9CdCl₂·NdCl₃·20H₂O 具有微弱的荧光强度,5CdCl₂·NdCl₃·13H₂O 的荧光强度则相对大于 9CdCl₂·NdCl₃·20H₂O 的.对 X 射线粉末衍射进行了指标化.

关键词: 四元体系, 相平衡, CdCl₂, NdCl₃, 荧光光谱 **中图分类号**: O642.4

稀土卤化物与稀碱卤化物所形成的化合物具有 特殊的光学性质.为寻找这类新化合物及形成机理, 文献[1-3]研究了稀土卤化物与碱金属卤化物在盐酸 介质中的相关系,且发现新化合物Cs₃EuCl₃·14H₂O、 Cs₂EuCl₅·4H₂O、3CsCl·CeCl₃·3H₂O、CsCl·CeCl₃·4H₂O 具有上转换发光性能.为比较过渡元素/稀土氯化物 与稀碱金属/稀土氯化物盐水体系中相关系间的 差异,并为合成新的无机材料寻找可能的途径,文 献[4-6]分别研究了 LaCl₃-ZnCl₂-HCl(7%)-H₂O (298.15 K)的相平衡,YCl₃-CdCl₂-H₂O和YCl₃-CdCl₂-HCl-H₂O(298.15 K)的相平衡,CeCl₃-CdCl₂-H₂O和 CeCl₃-CdCl₂-HCl-H₂O (298.15 K)的相平衡,均发现了 新的化合物.本文在前述研究的基础上研究了四元 系 NdCl₃-CdCl₂-HCl(~8.32%)-H₂O 在 298.15 K 时的 相平衡关系,并发现了新的组成比化合物.

1 实验部分

1.1 试 剂

Nd₂O₃(99.99%), NdCl₃·6H₂O的制法参见文献[1], CdCl₂、EDTA、AgNO₃、六次甲基四胺、二氯荧光黄、 甲基红、二甲酚橙、邻二氮菲均为分析纯试剂.使用 二次蒸馏水.

1.2 实验仪器和条件

SDTQ600 型热重分析仪, 升温速率 10 K·min⁻¹, N₂ 流速 100 mL·min⁻¹. D/Max-1400 X 射线粉末衍 射仪, 管压35 kV, 管流40 mA, Cu靶, 扫描速度16 (°)·min⁻¹. F-4500 荧光分光光度计, 扫描速度 12000 nm·min⁻¹. 分析方法、相平衡研究及固相的确定方法按 文献[5-7].

2 结果与讨论

2.1 四元系 NdCl₃-CdCl₂-HCl-H₂O 的溶度图

表1为四元系NdCl₃-CdCl₂-HCl-H₂O在298 K时的溶度数据及其在底面三角形 NdCl₃-CdCl₂-H₂O上的投影数据.图1为相应的溶度图.

由图1知,该体系的溶度曲线由四段构成,分别 与化合物CdCl₂·H₂O、9CdCl₂·NdCl₃·20H₂O(9:1型)、 5CdCl₂·NdCl₃·13H₂O(5:1型)和NdCl₃·6H₂O相对应. 9:1型和5:1型化合物都是固液同成分溶解的化合 物,这对培养单晶及从体系中合成和纯化新化合物 具有实际意义.即通过选择某一化合物表现出固液 同成分溶解的相平衡性质来得到纯净化合物.另外, 5:1型化合物是我们在该类体系研究中所发现的一 种新组成比的化合物.

在相平衡结果指导下,制备了 9:1 型、和 5:1 型 的化合物,对其组成进行化学分析,结果分别为

²⁰⁰⁵⁻⁰⁴⁻²⁷ 收到初稿, 2005-06-06 收到修改稿. 联系人: 乔占平 (E-mail: nyqiaozp@nytc. edu. cn; Tel: 0377-63513735-8020; Fax: 0377-63513540). *河南省自然科学基金资助项目(0311021900)

表 1 四元系 NdCl₃-CdCl₂-HCl-H₂O(298 K)的溶度及在三角底面 NdCl₃-CdCl₂-H₂O 上的投影数据

Table 1 Solubility of the quaternary system NdCl₃-CdCl₂-HCl-H₂O at 298 K and central projection data on the trigonal base NdCl₃-CdCl₂-H₂O

	Composition of solution(w)					Composition of residue(w)					
No.	composition in tetrahedral			composition on trigonal base		composition in tetrahedral			composition on trigonal base		Solid
	HCl	$CdCl_2$	NdCl ₃	CdCl ₂	NdCl ₃	HCl	$CdCl_2$	NdCl ₃	CdCl ₂	NdCl ₃	phase
1	0.0871	0.4762	0	0.5216	0	_	_	_	-	-	А
2	0.0851	0.4682	0.0163	0.5117	0.0178	0.0447	0.6858	0.0087	0.7179	0.0091	А
3	0.0831	0.4726	0.0255	0.5154	0.0278	0.0451	0.6773	0.0131	0.7093	0.0137	А
E_1	0.0833	0.4709	0.0307	0.5137	0.0335	0.0573	0.6040	0.0324	0.6407	0.0344	A+B
5	0.0842	0.4546	0.0415	0.4964	0.0453	0.0657	0.5310	0.0600	0.5683	0.0642	В
6	0.0853	0.4412	0.0510	0.4823	0.0557	0.0659	0.5249	0.0680	0.5619	0.0728	В
7	0.0858	0.4324	0.0598	0.4730	0.0654	0.0677	0.5123	0.0740	0.5495	0.0794	В
8	0.0811	0.4295	0.0720	0.4675	0.0783	0.0619	0.5195	0.0849	0.5538	0.0905	В
9	0.0812	0.4173	0.0842	0.4542	0.0916	0.0649	0.5028	0.0921	0.5377	0.0985	В
E_2	0.0827	0.4124	0.0907	0.4496	0.0989	0.0677	0.4830	0.0960	0.5181	0.1030	B+C
11	0.0852	0.4078	0.0938	0.4458	0.1025	0.0410	0.5318	0.1392	0.5545	0.1451	С
12	0.0765	0.3775	0.1382	0.4088	0.1496	0.0617	0.4455	0.1478	0.4748	0.1575	С
13	0.0786	0.3600	0.1538	0.3907	0.1669	0.0637	0.4387	0.1593	0.4682	0.1701	С
14	0.0819	0.3359	0.1763	0.3659	0.1920	0.0729	0.3954	0.1745	0.4265	0.1882	С
15	0.0750	0.3229	0.2041	0.3491	0.2206	0.0631	0.4047	0.1930	0.4319	0.2060	С
E_3	0.0708	0.3132	0.2202	0.3371	0.2370	0.0202	0.5211	0.2176	0.5318	0.2221	C+D
E_3	0.0818	0.3028	0.2220	0.3298	0.2417	0.0230	0.1316	0.5298	0.1347	0.5423	C+D
18	0.0822	0.2752	0.2321	0.2998	0.2529	0.0230	0.0814	0.5662	0.0833	0.5795	D
19	0.0862	0.1699	0.2714	0.1859	0.2970	0.0233	0.0482	0.5838	0.0493	0.5977	D
20	0.0880	0.0973	0.3005	0.1067	0.3295	0.0216	0.0252	0.6021	0.0257	0.6154	D
21	0.1030	0	03206	0	0.3574	-	_	-	-	-	D

average acidity (*w*)=0.0832. eutonic point(average), E_1 : CdCl₂51.37%, NdCl₃3.35%; E_2 : CdCl₂44.96%, NdCl₃9.89% E_3 : CdCl₂33.34%, NdCl₃23.93%; A: CdCl₂·H₂O; B: 9CdCl₂·NdCl₃·20H₂O; C: 5CdCl₂·NdCl₃·13H₂O; D: NdCl₃·6H₂O

图 1 四元系 NdCl₃-CdCl₂-HCl-H₂O 在三角底面 NdCl₃-CdCl₂-H₂O 上的投影图

Fig.1 Solubility diagram of the quaternary system NdCl₃-CdCl₂-HCl-H₂O projected on the trigonal base NdCl₃- CdCl₂-H₂O CdCl₂ 72.80%、NdCl₃ 11.12%和CdCl₂ 65.22%、NdCl₃ 18.01%与9:1和5:1型的理论值CdCl₂ 72.99%, NdCl₃ 11.09%和CdCl₂ 65.41%, NdCl₃ 17.88%吻合较好.

2.2 化合物 9CdCl₂·NdCl₃·20H₂O 和 5CdCl₂· NdCl₃·13H₂O 的表征

2.2.1 XRD 分析

图 2 给出的是化合物 9CdCl₂·NdCl₃·20H₂O 和 5CdCl₂·NdCl₃·13H₂O 的 X 射线粉末衍射图. 2 个化 合物几条强衍射线的面间距分别为 *d*=1.0747(100), 0.8386(78), 0.6583(76), 0.5211(78), 0.2695(60) nm和 *d*=0.6215(56), 0.5163(99), 0.3243(63), 0.2761(60), 0.2088(54) nm, 与原料化合物CdCl₂、NdCl₃·6H₂O的 X 射线粉末衍射数据 *d*=0.5850(100), 0.3270(70), 0.2648(90), 0.2412(30), 0.1826(55), 0.1922(30) nm 和

图 2 化合物 9CdCl₂·NdCl₃·20H₂O 和 5CdCl₂·NdCl₃·13H₂O 的 X 射线粉末衍射图谱 Fig.2 X-ray powder diffraction spectra of compound 9CdCl₂·NdCl₃·20H₂O and 5CdCl₃·NdCl₃·13H₂O

d=0.6500(100), 0.6000(63), 0.5400(50), 0.5100(50), 0.3430(100) nm相比均不同, 其谱图也不是后两者标 准谱图的简单叠加, 未检索到这2个化合物和这2个 化合物的 X 射线粉末衍射标准图谱和数据, 说明是 2 种新化合物.

对 X 射线多晶粉末衍射数据采用 Wernen 面指 数尝试法计算机程序¹⁸进行指标化,结果表明,所有 的衍射峰均能用一套晶胞参数指标化,实验测得的 d_{esp} 与计算的 d_{cal} 值非常接近,个别计算值与实验值 的最大相对误差小于 0.28%,总的相对误差分别为 3.02×10^{-5} (9:1)、2.27×10⁻⁵(5:1).指标化结果确定 2 个 化合物均为单斜晶系,9CdCl₂·NdCl₃·20H₂O 晶胞参 数为: a=1.2118 nm, b=2.6361 nm, c=2.3498 nm, $\beta=$ 88.89°; 5CdCl₂·NdCl₃·13H₂O 晶胞参数为a=1.2480nm, b=2.6921 nm, c=2.1746 nm, $\beta=91.14°$.

2.2.2 荧光分析

图 3 为室温下以 220 nm 光做激发光源得到的 荧光光谱图. 从图3(a)可以看出, 化合物9CdCl₂·NdCl₃·20H₂O 在 380 nm 处有很弱荧光发射峰, 而化

合物 5CdCl₂·NdCl₃·13H₂O 则分别在 330 nm 和 380 nm处有相对较强的荧光发射峰(见图3(b)),且在 380 nm 处的发射峰强度大于在 330 nm 处的强度 (图 3 中的其它峰为仪器的系统峰).比较图 3(a)、(b)知,化 合物 5CdCl₂·NdCl₃·13H₂O 的荧光强度大于化合物 9CdCl₂·NdCl₃·20H₂O,即化合物随 Nd³⁺的含量增加, 荧光发射峰强度增强,说明这些发射峰均是源于化 合物中 Nd³⁺的"斯托克斯效应".

2.2.3 TG-DTG 分析

图 4 为 2 个化合物的 TG-DTG 图, 表 2 为各阶 段分解的峰温和失重数据. 由图 4A 可知, 化合物 9CdCl₂·NdCl₃·20H₂O 在 323~481K 有两次明显的失 重. 失重值分别为 14.95% (DTG 峰温 382.42 K)和 0.83% (DTG 峰温 470.56 K), 与理论失水值 15.13% (19 个结晶水)和 0.80% (1 个结晶水)吻合较好, 失重 总值(15.78%)与理论含水总量(15.92%)相吻合. 同 样, 由图 4B 可看出化合物 5CdCl₂·NdCl₃·13H₂O 在 323~504 K 也有两次明显的失重. 失重值分别为 15.36% (DTG 峰温 388.37 K) 和 1.25% (DTG 峰温

图 5 化日初 9CdCl₂·NdCl₃·20H₂O(a)种 5CdCl₂·NdCl₃·15H₂O(b)时处元无盲 Fig.3 Fluorescence spectra of compound 9CdCl₂·NdCl₃·20H₂O(a) and 5CdCl₂· NdCl₃· 13H₂O(b)

图 4 化合物 9CdCl₂·NdCl₃·20H₂O(A)和 5CdCl₂·NdCl₃·13H₂O(B)的 TG-DTG 图 Fig.4 TG-DTG and graphs of compound 9CdCl₂·NdCl₃·20H₂O(A) and 5CdCl₂·NdCl₃·13H₂O(B) 1) TG; 2) DTG

表 2 化合物 9CdCl₂·NdCl₃·20H₂O 和 5CdCl₂·NdCl₃·13H₂O 的 TGA-DTG 数据

Compound	Lost water molecular	$T_{\rm p}/{ m K}$	Lost we	Product	
	number	DTG	experimental	theoretical	
$9CdCl_2 \cdot NdCl_3 \cdot 20H_2O$	19	382.42	14.95	15.13	$9CdCl_2 \cdot NdCl_3 \cdot H_2O$
	1	470.56	0.83	0.80	$9CdCl_2 \cdot NdCl_3$
	20		15.78	15.92	
5CdCl ₂ •NdCl ₃ •13H ₂ O	12	388.37	15.36	15.41	$5CdCl_2 \cdot NdCl_3 \cdot H_2O$
	1	480.76	1.25	1.28	$5CdCl_2 \cdot NdCl_3$
	13		16.61	16.70	

 $Table \ 2 \quad TG\text{-}DTG \ date \ of \ compound \ 9CdCl_2 \cdot NdCl_3 \cdot 20H_2O \ and \ 5CdCl_2 \cdot NdCl_3 \cdot 13H_2O$

480.76 K), 与理论失水值 15.41%(12 个结晶水)和 1.28%(1 个结晶水)相吻合, 失重总值(16.61%)与理 论含水总量(16.70%)一致.

根据以上分析结果,可知 2 个化合物的脱水过 程大致如下:

$$9CdCl_{2} \cdot NdCl_{3} \cdot 20H_{2}O \frac{323 \times 411 \text{ K}}{-19H_{2}O}$$

$$9CdCl_{2} \cdot NdCl_{3} \cdot H_{2}O \frac{461 \times 481 \text{ K}}{-H_{2}O} \quad 9CdCl_{2} \cdot NdCl_{3}$$

$$5CdCl_{2} \cdot NdCl_{3} \cdot 13H_{2}O \frac{323 \times 458 \text{ K}}{-12H_{2}O}$$

$$5CdCl_{2} \cdot NdCl_{3} \cdot H_{2}O \frac{464 \times 504 \text{ K}}{-H_{2}O} \quad 5CdCl_{2} \cdot NdCl_{3}$$

3 结 论

研究了氯化钕与氯化镉在盐酸介质中反应的相关系,在体系中发现了2种新化合物,9CdCl₂·NdCl₃·20H₂O和5CdCl₂·NdCl₃·13H₂O,对化合物进行了XRD、TG-DTG和荧光分析表征.本文研究所提供的

溶度图对2种新型化合物的制备具有指导作用.

References

- 1 Wang, H.; Duan, J. X.; Ran, X. Q.; Gao, S. Y. J. Chem. Thermodynamics, 2002, 34: 1495
- Wang, H.; Duan, J. X.; Ran, X. Q.; Gao, S. Y. Chinese Journal of Chemistry, 2002, 20(9): 904 [王 惠, 段锦霞, 冉新权, 高世扬. 中国化学(Zhongguo Huaxue), 2002, 20(9): 904]
- Wang, H.; Duan, J. X.; Ran, X. Q.; Gao, S. Y. Chinese Journal of Chemistry, 2004, 22(10): 1128 [王 惠, 段锦霞, 冉新权, 高世 扬. 中国化学(Zhongguo Huaxue), 2004, 22(10): 1128]
- 4 Qiao, Z. P.; Zhuo, L. H.; Wang, H. Chin. J. Inorg. Chem., 2004, 20(8): 929 [乔占平, 卓立宏, 王 惠. 无机化学学报(Wuji Huaxue Xuebao), 2004, 20(8): 929]
- 5 Qiao, Z. P.; Zhuo, L. H.; Wang, H. *Chin. J. Inorg. Chem.*, **2003**, **19** (3): 303 [乔占平, 卓立宏, 王 惠. 无机化学学报(*Wuji Huaxue Xuebao*), **2003**, **19**(3): 303
- Zhuo, L. H.; Qao, Z. P.; Guo, Y. C.; Wang, H. Acta Phys. -Chim. Sin., 2005, 21(2): 128 [卓立宏, 乔占平, 郭应臣, 王 惠. 物理 化学学(Wuli Huaxue Xuebao), 2005, 21(2): 128]
- 7 Chen, Y. S. Analysis of physical chemistry. Beijing : Higher

Education Press, 1988: 505 [陈运生. 物理化学分析. 北京: 高等 教育出版社, 1988: 505]

8 Wernen, P. E.; Eriksson, L.; Westdhl, M. J. Appl. Cryst., 1985, 18
 (5): 36

Phase Equilibrium of the NdCl₃-CdCl₂-HCl-H₂O System at 298.15 K and Characterization of New Compounds *

QIAO, Zhan-Ping¹ ZHUO, Li -Hong¹ GUO, Ying-Chen¹ WANG, Hui² (¹Chemistry Department, Nanyang Normal University, Nanyang 473061; ²Key Laboratory for Physical and Inorganic Chemistry of Shaanxi Province, Department of Chemistry, Northwest University, Xi'an 710069)

Abstract The equilibrium solubility of the quaternary system NdCl₃-CdCl₂-HCl-H₂O was determined at 298.15 K and the corresponding equilibrium diagram was constructed. The result shows that the quaternary system was complicated with four equilibrium solid phases CdCl₂·H₂O, 9CdCl₂·NdCl₃·20H₂O (9:1 type), 5CdCl₂·NdCl₃·13H₂O (5:1 type) and NdCl₃·6H₂O. The two new compounds, 9CdCl₂·NdCl₃·20H₂O and 5CdCl₂·NdCl₃·13H₂O, have not yet been reported in literatures, and they were congruently soluble in the quaternary. The two new compounds have been prepared from the system and characterized by XRD, TC-DTG, and fluorescence (FL) spectra. Result of FL spectra showed that the 9CdCl₂·NdCl₃·20H₂O has weak fluorescence intensity, and 5CdCl₂·NdCl₃·13H₂O exhibited larger fluorescence intensity than 9CdCl₂·NdCl₃·20H₂O. X-ray powder diffraction patterns were indexed.

Keywords: Quaternary system, Phase equilibrium, Cadmium chloride, Neodymium trichloride, Fluorescence spectra

Received: April 27, 2005; Revised: June 6, 2005. Correspondent: QIAO, Zhan-Ping(E-mail: nyqiaozp@nytc. edu. cn; Tel: 0377-63513735-8020; Fax: 0377-63513540). *The Projected Supported by NSF of Henan Province(0311021900)