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Abstract 

We present an optimization-based framework for identifying and quantifying interactions transcription 
factor networks. We explore the availability of high-temporal resolution expression data using the 
Living Cell Array and we formulate to critical problems. First, we demonstrate how to rigorously obtain 
bi-clusters of transcription factor and condition through a novel MILP formulation and subsequently 
demonstrate how such networks can be quantify using appropriate deconvolution schemes based on 
linear programming.  
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The Living Cell Array is a micro-fluidics device which 
utilizes cells transfected with artificially constructed 
reporter plasmids(King, Wang et al. 2007). These reporter 
plasmids consist of a minimal promoter and 4 repeats of a 
transcription factor’s consensus sequence as identified via 
the TRANSFAC database(Matys, Fricke et al. 2003), and 
an unstable GFP. Therefore, the activation of a given 
transcription factor is correlated with the fluorescence of 
the given cell. In this experimental context, the activation 
of a given transcription factor is performed by utilizing a 
soluble factor which is known to activate that transcription 
factor. An example of this would be the use of TNF-α for 
the activation of NFkB.  

One of the questions which we seek to answer is 
whether, such data is sufficient for the purposes of 
identifying how the activation of one transcription factor 
can affect the activity of another. Our starting point is the 
hypothesis that transcription factors which show similar 
activity under multiple stimulatory conditions will be 
linked, and if these links can be fully identified, then it 

should be possible to construct a network which describes 
how all of the measured transcription factors interact. 

The primary computational problem which must be 
solved is the identification of a subset of conditions in 
which a group of transcription factors show similar 
activation kinetics. This is because most genes are 
activated by multiple transcription factors, and therefore 
co-expressed genes may not be co-expressed under all 
conditions. Finding this set of conditions and 
genes/transcription factors is the bi-clustering 
problem(Cheng and Church 2000).  

Bi-clustering has been previously identified as being 
NP-Hard(Zhang 2002), and is normally solved via 
heuristics. However, the use of heuristic algorithms make 
it difficult to determine if the largest given bi-cluster has 
been found. Furthermore, the use of heuristic approaches 
makes it difficult to add in additional constraints to allow 
the algorithm to find arbitrarily overlapping bi-
clusters(Cano, Adarve et al. 2007). The second issue is 
more serious in the reconstruction of transcriptional 



  
 
networks because without overlapping bi-clusters, the data 
then is broken down into independent sub-networks which 
runs counter to the hypothesis that biological networks are 
highly connected(Freeman, Goldovsky et al. 2007). 

While there exist various algorithms that can find 
overlapping bi-clusters(Liu and Wang 2007), they 
normally require some a priori knowledge. By utilizing a 
math programming formulation, it is possible to obtain bi-
clusters which are guaranteed to be optimal as well as 
arbitrarily overlapping bi-clusters. 

Methods  

Data 
 

The data obtained from the LCA consists of N 
transcription factors, M conditions, and t time points 
Figure 1. Therefore, for each combination of transcription 
factors and activation via soluble factors, a time series is 
reported rather than a single value. To make use of a bi-
clustering formulation, this 3 dimensional data was 
reduced into a two dimensional data via k-means clusters. 
For bi-clustering one is interested in whether transcription 
factors are co-expressed under a given condition. 
Therefore, the k-means clustering was performed on all of 
the transcription factors for a given condition, such that if 
the two transcription factors are co-expressed under a 
given condition, they are assigned to the same cluster 
thereby giving them the same cluster index. 

The data itself consists of the transcription factors and 
stimulatory factors given in Table 1. The transcription 
factor HSE is not shown despite being used in the 
experiment because it did not have a specific activator in 
the experiment. Additionally, there were stimulatory 
conditions consisting of Lipopolysaccharide(LPS), Cyts, 
Cyts+Dex. LPS is an inflammatory endotoxin and for the 
purposes of this analysis not associated with a specific 
transcription factor and functions as a general 
inflammatory signal. Cyts represents a combination of all 
of the different soluble signals without Dexamethasone, 
and Cyts+Dex represents stimulation with all of the 
different factors. These two conditions were excluded 
because they represent a composite stimulus in which all 
of the factors could be stimulated at the same time. 
Additionally, in the data, NT functioned as a negative 
control whereas D4G functioned as a positive control. 

 
Table 1: Stimulatory Factors and their associated 
Transcription Factors 
Soluble Factors Transcription Factor 
TNF-α NFkB 
Dexamethasone GRE 
IL1 AP1 
IL6 STAT3 
ISRE IFN-γ 
Bi-Clustering 

This bi-clustering formulation assumes that all of the 
transcription factors under a given condition ought to have 
the same value or dynamics. This is one of the many ways 
a bi-cluster can be defined(Madeira and Oliveira 2004).  

The identification of a bi-cluster is given in (1).  
 

 
Figure 1: The data obtained form the Living Cell 

Array . Each column denotes different simulation via a 
different soluble factor, Each row denotes the response of 
a given transcription factor(King, Wang et al. 2007).  
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In this formulation, λ represents a binary vector which 
denotes the assignment of a transcription factor into a bi-
cluster, whereas µ represents the assignment of a condition 
into a bi-cluster. Therefore, if a given transcription factor 
or condition has been selected, the corresponding binary 
variable is assigned a one, whereas if it is not selected it is 
assigned a zero. Γ represents a large number, D the 
transformed data, with the indices i,i’,k  denoting the 
index of transcription factors and conditions. 

This formulation attempts to pick up a vector λ and µ 
such that for all of the selected genes in a given column, 
the indices returned via the k-means clustering are 
constant. In addition to these constraints, the objective 
function is defined as (2) with an additional constraint (3). 
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One of the issues which need to be dealt with each bi-

clustering formulation is the definition of the optimum. In 
the formulation, the goal is to find the largest number of 
genes which are co-expressed under P different 
conditions. This formulation is then solved parametrically 
for all possible values of P [N..1]. This formulation was 
selected over more commonly used criteria such as 
maximal area because it is unclear why slightly smaller bi-
clusters may be less significant. For example, it is difficult 
to distinguish between the relative importance of a 10x10 
bi-cluster vs. a 8x12 bi-cluster. The important aspect 



  

however is that no bi-clustering formulation should find a 
bi-cluster which is wholly a subset of another previously 
found bi-cluster. 

Constraint (4), is a variation of the Integer-Cuts 
formulation and allows us to reject solutions that are 
whole subsets of previously obtained solutions. 
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The overall bi-clustering formulation is given in (5) 
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Generation of Directed Graph 

The output of the bi-clustering yields a bi-partite 
network. It is possible to generalize the bi-partite network 
into a directed graph in which the interaction between the 
soluble factors and the transcription factors were linked. 
Normally the generalization of a bi-partite network into a 
directed graph consists of having nodes in the input layer 
also being present in the output layer. This is not the case 
with this specific example. However, utilizing the a priori 
information given in Table 1, both layers can still be 
merged into a cohesive graph. The important assumption 
which is made is that each soluble factor can only 
stimulate its reporter. These direct links are a consequence 
of the experimental design. Therefore while the addition 
of TNF-α has been shown to also activate the STAT3 
reporter, it cannot do it directly. From this, it is possible to 
infer the presence of links between the different nodes.   

In the example provided, the justification for the link 
is that since the STAT3 reporter can only be activated by 
its associated reporter, IL-6, any activation via TNF-α 
must occur via IL-6. Furthermore, since TNF-α is known 
to activate NFkB directly, we can infer that the activation 
of NFkB causes in some indirect manner the activation of 
STAT3 either through an intermediate such as IL6. 
Converting each of the links found in the bi-partite 
solution in such a fashion, will allow for the formulation 
of the more commonly shown directed graph. Such graphs 
can then be used for the reconstruction of network 
dynamics. 

 

 
 
Reconstruction of Network Dynamics 

 
After the network architecture has been identified, it 

then becomes possible to solve for the underlying network 
dynamics, i.e. the strength of the interactions between the 
different transcription factors. To do so, the generalized 
model x’ = Ax+B, where x and x’ represent the dynamics 
and the first derivative of the responses obtained via the 
LCA, and A represents the strength of the connections 
which vary with respect to time, and B represents a 
forcing function which is the addition of the soluble 
factors to the system. Allowing the entries A to vary with 
time allow us to identify significant nonlinearities within 
the system. This is important because oftentimes the 
nonlinearities point to significant mechanisms at work 
such tolerance. If A is allowed to vary with time, it is 
necessary for the dynamics denoted via x to be obtained 
under as many different conditions as there are 
transcription factors. The LCA with its ability to obtain 
dynamics for multiple transcription factors under multiple 
conditions satisfies this constraint.  
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The optimization formulation attempts to compute the 

weight of A for every time point. It is hypothesized that 
the numerical evolution of A over time may give insights 
as to the underlying mechanism or nonlinear formulation.  
The formulation for conducting such a reconstruction is 
given in (6), where D represents the data, D’ represents 
the derivative, i is the index for the different transcription 
factors, j is the index for the different conditions, C is the 
connectivity structure determined via the bi-clustering 
formulation, s represents a binary matrix to denote which 
transcription factor is directly stimulated under a given 
experimental condition, and β represents a weighting 
function that takes into account that not all of the reporters 
are activated at the same level by an equivalent level of 
their soluble factor. 



  
 

 
Results and Conclusion 
 

The networks which result from the bi-clustering are 
given in Figure 2, which when converted into a directed 
graph yields Figure 3. Utilizing this network structure, it 
then becomes possible to solve for the different 
interactions.  

From Figure 3, we begin to see significant feed 
forward interactions such as with those involving NFkB 
and STAT3, and the central location of ISRE within the 
network. From the data, the nodes corresponding to AP1 
were not included because they were not found in any of 
the bi-clusters. HSE was also removed because it did not 
have an explicit activator, nor an experimental condition 
which was designed to activate it, it was impossible to 
infer what the effect of HSE activation upon the rest of the 
network is given a bi-clustering formulism. 

 
Utilizing this network architecture and solving for the 

dynamics yields Figure 4. The dynamics present yield 
some interesting insights as to the overall mechanisms that 
work in conjunction with the architecture. For instance, we 

see that the response of NFkB to external stimulation 
appears to have a significant lag event perhaps due to a 
rate limiting dimerization event, the loss of GRE activity 
over time points to a tolerance mechanism coupled with 
the clear down-regulation of NFkB by GRE, and possible 
oscillatory effects associated with ISRE due to its central 
role in the feedback loop. One of the most interesting of 
these dynamics is that most of the transcription factors 
appear to exhibit a significant level of tolerance under 
constant stimulation.  

Though the system which was solved is a small proof 
of principle example, many significant mechanisms were 
still evident in the final solution denoted in Figure 4. The 
fact that such dynamics were visible even in such a small 
case suggest that the same framework would yield useful 
insights in a more comprehensive system in which all of 
the interacting transcription factors were measured. All the 
more exciting is the fact that along with the computational 
framework, the experimental framework allows this to be 
accomplished efficiently and at low cost. 

 
Figure 4: The time varying 
connection strengths between the different transcription 
factors 

While most of the current work in bi-clustering has 
focused upon creating heuristics to accurately approximate 
the results of an NP-Hard problem(Cheng and Church 
2000; Liu and Wang 2007), such that the runtimes are 
reasonable, it is our contention that more attention needs 
to be paid to the problem of intersecting bi-clusters(Prelic, 
Bleuler et al. 2006), specifically the fact that neither the 
architecture, nor the number of bi-clusters is known a 
priori, and therefore should not be parameters within the 
system 

By utilizing a framework which allows for 
overlapping bi-clusters, we were able to see dynamic 
signatures which correspond to mechanistic actions such 
as tolerance and time-lag event. We hypothesize that the 
dynamics of other transcription factors which were not 
easily interpretable may be due to interactions with 
transcription factors which we did not measure.  
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