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Abstract 

A major goal in post-genomic era is to reverse engineer transcriptional regulatory networks. Advances in high-
throughout technologies e.g. DNA microarrays coupled with the working knowledge on the connectivity interactions 
between putative regulators and their target genes have opened new opportunities for the application of reverse-
engineering approaches in modeling regulatory networks.  In this paper, we propose a mixed–integer optimization 
algorithm that combines prior biological information and expression data to identify multiple regulatory structures 
which can be subsequently analyzed in order to identify robust transcription factor activity profiles, as well as 
alternative regulatory networks that could be used for developing and exploring relevant hypotheses.
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Introduction

The principal goal of reverse engineering approaches is to 
identify the activation program of transcription modules 
under particular conditions (Wang, Cherry et al. 2002) so 
as to hypothesize how activation/deactivation of gene 
expression can be induced/suppressed (Ng, Bursteinas et 
al. 2006). The identification of transcription factors, their 
target genes and the interactions that control (regulate) 
gene expression has been addressed over the past few 
years with a variety of experimental and computational 
approaches (Iyer, Horak et al. 2001; van Steensel, Delrow 
et al. 2003).  Recently, methods combining TF-gene 
connectivity data and gene expression measurements have 
emerged (Bussemaker, Li et al. 2001; Yeung, Tegner et al. 
2002; Alter and Golub 2004; Gao, Foat et al. 2004; Kato, 
Hata et al. 2004; Boulesteix and Strimmer 2005; Kao, Tran 
et al. 2005; Tran, Brynildsen et al. 2005; Sun, Carroll et al. 
2006).  

In the present study we explore an optimization-based 
model that identifies optimal reconstruction and network 
architectures in a rigorous manner. The proposed 
algorithm captures alternative regulatory architectures as 
well as it assesses robustness of specific transcription 
factors based on a consistency metric. We further evaluate 
the biological implications of the multiple alternative 
structures in their biological context and demonstrate how 
a systematic framework can define the basis for a 
consistent hypothesis generation mechanism related to 
putative regulatory interactions. Another key aspect of our 
model is that we can take known directionality in 
regulation of a transcription factor into account. 
Complementary to this we can also infer the role for those 
regulators that their activity on certain promoter regions is 
unknown – it can be either activation or repression 
(unknown). Identifying robust transcription factors is of 



  

 

clinical relevance as it can serve as a diagnostic tool for in 
silico target identification (Sun, Carroll et al. 2006).  

Methods 

The dynamics of gene expression are modeled using 
simple synthesis and degradation terms  expressed by a set 
of reactions which involve the specific binding of TFs to 
DNA sequences as well as the recruitment of RNA 
polymerase I complex (Sun, Carroll et al. 2006) . 
Assuming a quasi-steady state for mRNA synthesis and 
degradation and performing a log transformation we get a 
log-linear model as shown in Eq. 1.  
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where E matrix is the log-ratio of the gene expression level 
of gene i at time point t relative to the initial condition 
(t=0), and its dimensions are Ng (number of genes) x NT 
(number of time points), Π is the connectivity matrix 
whose entries are constant and characterize the strength of 
interaction between any regulatory pair (i,j) with j refers to 
the regulator and its dimensionality is  Ng x NTF (number 
of transcription factors) considering the strength 
coefficients as surrogates for the binding affinity of the 
transcription factor to the promoter region. The P matrix 
refers to the inferred activity profiles (TFA) for each TF 
expressed also as log ratios with respect to control time 
point (t = 0hr). 
 
Integer Optimization  

The optimization algorithm aims at decomposing the 
available gene expression signatures in a reduced “basis 
set” defined by transcription factor activities. In essence, 
based on the integer linear problem as shown in (Table 1) 
we are addressing the following questions: Can we identify 
specific regulators with robust reconstructed activities 
across multiple network architectures? Are there 
preferential patterns emerge in terms of TFs functionality 
(activator or repressor)? 

 
Model Linearization  

The introduction of  Peff variable in Table 1 introduces 
a non-convex bilinearity in the formulation due to the 
product of the continuous variable P(j,t) and the binary 
variable r(i,j) as shown in Eq. (2). Such a variable serves 
as the effective activity of a regulator on its target genes 
taking the nature of interaction (activator or repressor) into 
account. That is to say, based on the nature of regulatory 
interaction the effect of changes in TFA of a regulator 
would have distinct effects on changes on the expression 
level of its target genes.  
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Such product is exactly linearized through the introduction 
of the constraints (Glover 1975) and they are presented in 
Eq. (3) 
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where M is a big number and the general form in (3) can 
be reduced to further sub-forms based on whether j 
regulator activates or represses gene i. Moreover, the 
superstructure of all the possible regulatory interactions is 
defined in Eq. (4):  
 

1 TF(j) regulates gene(i), i.e. (i,j) 0
D(i, j)

0 otherwise, i.e. (i,j) = 0                    
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Finally, we approximate the log-ratio of the expression 
data as it follows: 
   

eff
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In Equation (5) the presence of “error” term simulates 
the existence of potential sources of uncertainty 
associated with lack of knowledge about structure 
connectivity and directionality.      

Table 1: Mixed-Integer Formulation 

mixed-integer Synthesis & Analysis of Regulatory Networks (miSARN)
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The mixed-integer linear optimization problem (Table 1) 
solved using the GAMS modeling software (Brooke, 
Kendrick et al. 2004) running CPLEX for the solution of 
the corresponding MILP. We used temporal expression 
data of E coli during transition from glucose to acetate as 
the sole carbon source publicly available at 
http://ww.seas.ucla.edu/~liaoj/. The connectivity matrix 
was based on RegulonDB database (Salgado, Santos-
Zavaleta et al. 2001).  

Results-Discussion 

The complete regulatory network consists of 30 
regulators and given the fact that each gene must be 
regulated by at least one TF the formulation becomes 
infeasible if parameter m (Table 1) becomes less than 18. 
That is to say, we run the optimization algorithm 
parametrically with respect to number of TFs getting the 
pattern as shown in Figure 1. Interestingly, we observe that 
for m=26…30 the reconstruction error remains the same.  

 
 
We are identifying robust activity profiles (TFA) 

across 13 multiple regulatory structures (m=18…30) 
applying a consistency metric for each j regulator; 
robustness-R(j) defined as it follows: R(j)=[f(j)/Mt]*C(j), 
where f(j) denotes the frequency of j TF across Mt total 
multiple solutions and C(j) defines the average Pearson’s 
correlation coefficient for the multiple inferred TFA - 
P(j,t). The reconstructed profiles for the 13 multiple 
solutions are shown in Figure 2 distinguishing  9 TFs 
(Ada, CysB, FadR, GatR, LeuO, Lrp, PurR, TrpR, and 
TyrR) to be characterized by the highest robustness 
(R(j)=1). This critical subset of TFs indeed play a critical 
role in the transition of E coli from glucose to acetate 
(Landini, Hajec et al. 1994). Moreover, we further 
generate alternative structures with the same 
reconstruction error for a given m by activating the integer 
cuts. By doing so, we get equivalent network structures 
(Figure 3) that open the possibility of identifying TFs 
whose targeted silencing might be “lethal” to system’s 
dynamics. For instance, the Phage-Shock-Protein System 
shown in the upper left (Figure 3) is regulated by PspF and 
RpoN promoters in Y. Enterocolitica, a bacteria very 

similar to E. Coli; it was found that a PspF null mutation 
did not impart lethality upon the specific strain, but rather 
caused a slight decrease in the growth rate of the strain, as 
was the deletion of the RpoN promoter region. In fact the 
deletion of either the PspF or the RpoN sequence from the 
promoter region yielded a strain that was nearly 
indistinguishable(Maxson and Darwin 2006), suggesting 
that with the deletion of a single promoter sequence, in the 
pspA gene, the other transcription factor can indeed 
compensate for the loss in control.  

 

 
 
As far as the TFs with unknown directionality is 

concerned we get the following 3 TFs along with their 
target genes: (1) CRP: galE, galK, galT, prop; (2) LRP: 
kbl; (Stelling, Sauer et al.) PhoB: ugpB, ugpE. The 
inferred role of the 3 aforementioned TFs across the 13 
multiple solutions is consistent for all TFs. Specifically, 
there is only one solution out of 13 in which the 
transcription factor CRP acts as a repressor. The remaining 

Figure 3: Equivalent network architectures. 
Square:TF, oval: Genes, Dark squares: 

interchangeable TFs, CsgD denotes the activity of the 
corresponding TF, csgD denotes the gene 

Figure 2: Reconstruction of TFA profiles 

Figure 1: Reconstruction error vs. number of 
transcription factors 



  

 

solutions identify the following relations: (1) CRP: 
activates galE, galK, galT; represses proP; (2) LRP: 
activates kbl; (3) PhoB: represses ugpB, ugpE.   

Conclusions  

Our proposed optimization algorithm allows us to 
unravel the principles that govern complex biological 
phenomena such as gene regulation. We suggest a 
systematic framework that integrates high-throughput data, 
network connectivity coupled with the known 
directionality of regulation for most of the regulatory pairs 
with the fundamental task to gain biological insight about 
regulatory networks. Therefore, our model not only 
provides us with the optimal reconstruction but also it 
offers us the possibility of generating multiple 
architectures that ultimately reveal us either a critical 
subset of TFs with robust activity profiles or a set of 
interchangeable TFs crucial to which TFs have a “lethal” 
impact to the dynamics of the system. Finally, our model 
can decipher the directionality of those TFS whose 
regulatory role is unknown.  
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