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Abstract Primary vertex reconstruction is crucial to estimate the beam profile in collision experiments. We

study the principle of an iterative process, called the Kalman filter method, and apply it to primary vertex

reconstruction at BES0. A Newton procedure to find the zero point of the distance function’s gradient is used

for primary vertex finding in 3-dimensional space. Results are obtained based on raw data at BES0.
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1 Introduction

The purpose of primary vertex reconstruction is to

determine the interaction points of events, and then

further determine the average of the beam profile in

high energy physics experiments. Information on a

general interaction point is a critical parameter for

reconstruction of secondary particles decaying from

that point. In addition, it is also a key parameter in

the realization of a Monte Carlo simulation since the

consistency of the Monte Carlo simulation and raw

collision data in physical analysis is very important.

Beijing Spectrometer (BES)0 [1, 2] has been up-

dated for the Beijing Electron and Positron Collider

(BEPC)/ in the τ -charm region. Exciting raw col-

lision data have been collected at a high luminosity

since July 2008. The BES Offline Software System

(BOSS) [3] has successfully served the raw data pro-

cessing.

Two algorithms, the Kalman and global meth-

ods [4, 5], are provided for primary and secondary ver-

tex fitting at BES0. The Kalman method is applied

to precisely determine the parameters of the beam po-

sition, while the global method is generally used for

physics analysis. This paper discusses the Kalman

method and its application for primary vertex re-

construction. With the enhancement of raw collision

data, the primary vertex reconstruction from vertex

constraints is essential to check the performance of de-

tector hardware and software of subsystems. It also

contributes to the criteria for selecting good charged

tracks for physics analysis.

2 Algorithm: the Kalman filter

method

The Kalman filter method [6, 7] aims at obtaining

the optimal estimation of an unknown variable using

known measurements. It provides the smallest possi-

ble variance among all linear least-squares estimators

if the linear model with Gaussian errors is applicable.

In filter language, the parameters to be estimated are

called “state vectors”. Initially, the state vector con-

sists only of prior information about the vertex po-

sition x0, and its covariance matrix C0. x0 can be

set to an arbitrary value and C−1
0 is set to zero if
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there is no prior information. For each track k, the

state vector is augmented by the 3-momentum vector

pk. Without process noise, the “system equation” is

simply the identity

xk = xk−1 = x.

The functional dependence of the track parameters

on the state vector is determined by the equation of

motion (track model), and is described by the “mea-

surement equation”, which in general is nonlinear,

qk = α̃(x,pk)+εk, cov(εk) = Vk.

If there is multiple scattering between the vertex and

the reference surface, it has to be included as addi-

tional fluctuation in Vk. A linear regression model is

obtained by approximating α̃ by a first order Taylor

expansion at some point (xe,pe),

α̃(x,p) ≈ α̃e(xe,pe)+A(x−xe)+B(p−pe) =

ce +Ax+Bp,

with A = ∂α̃/∂x|x=xe,p=pe
and B = ∂α̃/∂p|x=xe,p=pe

being the two (n×3) matrices of derivatives of (xe,pe),

where n is the number of track parameters.

Fig. 1. The schematic of adding a new track

into an updated vertex.

Vertex reconstruction using the Kalman filter

method is characterized of updating the vertex po-

sition and its covariance matrix step by step through

adding a new track k (measured by α0k). Fig. 1 shows

the schematic of updating the vertex by adding new

tracks in the filtering procedure. It includes three

types of process: filtering, prediction and smoothing.

In terms of “time”, prediction is the estimation of the

state vector at a “future” time; filtering is the esti-

mation of the “present” state vector, based upon all

“past” measurements; smoothing is the estimation of

the state vector at some time in the “past” based on

all measurements taken up to the “present” time.

The χ2 in the Kalman filter method can be writ-

ten as a sum of two terms. The total χ2 of the fit is

equal to the sum of the χ2 in all filter steps.

χ2
KF = (xk−xk−1)

TC−1
k−1(xk−xk−1)+

(α0k −α̃k)
TGk(α0k −α̃k), (1)

where α̃k = cek + Akxk + Bkpk. Minimizing the χ2

with respect to xk and pk yields two vector equa-

tions which can be solved for the parameters xk, pk

and their covariance matrices. The results are as fol-

lows:

xk = Ck

[

C−1
k−1xk−1 +AT

k GB
k (α0k −cek)

]

,

pk = WkB
T
k Gk(α0k−cek−Akxk),

cov(xk) = Ck = (C−1
k−1 +AT

k GB
k Ak)

−1,

cov(pk) = Dk = Wk +WkBT
k GkAkCkAT

k GkBkWk =

Wk +ET
k C−1

k Ek,

cov(xk,pk) = Ek =−CkA
T
k GkBkWk, (2)

with

Gk = V −1
k ,

Wk = (BT
k GkBk)

−1, (3)

GB
k = Gk −GkBkWkB

T
k Gk.

Since there is no process noise in the vertex fit, the

smoother is extremely simple. The momentum vec-

tors and covariance matrices with the final estimate

of the vertex position can be recomputed:

xn = xk, Cn = Ck,

p
n
k = WkB

T
k Gk(α0k −cek−Akxn),

cov(pn
k ) = Dn

k = Wk +WkBT
k GkAkCnAT

k GkBkWk =

Wk +EnT
k C−1

n En
k ,

cov(xn,pn
k) = En

k =−CnAT
k GkBkWk,

cov(α̃n

k) = AkCnAT
k +AkE

n
k BT

k +

(AkE
n
k BT

k )T +BkD
n
k BT

k . (4)

If there is a significant change in the smoothed ver-

tex position, it may be worthwhile to recompute the

derivative matrices Ak and Bk.

Suppose that only a few tracks originate possibly

from a secondary vertex; the estimated position of the

primary vertex has no noticeable bias. The filtered

or smoothed residuals can be used to decide whether

or not a particular track really does belong to the
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primary vertex. The residuals and their covariance

matrices have the following forms:

rk = α0k −cek−Akxk−Bkpk,

cov(rk) = Rk = Vk(G
B
k −GB

k AkCkAT
k GB

k )Vk,

r
n
k = α0k −cek−Akxn−Bkp

n
k ,

cov(rn
k ) = Rn

k = Vk(G
B
k −GB

k AkCnAT
k GB

k )Vk. (5)

Since Rk and Rn
k are singular the filtered chi-square

χ2
F and the smoothed chi-square χ2

S have to be com-

puted in the following way:

χ2
F = r

T
k Gkrk +(xk −xk−1)

TC−1
k−1(xk −xk−1),

χ2
S = r

nT
k Gkr

n
k +(xn−x

n∗

k )T(Cn∗

k )−1(xn−x
n∗

k ),

(6)

where x
n∗

k is the smoothed estimate xn with the track

α0k removed. It is obtained by the inverse Kalman

filter:

Cn∗

k = (C−1
n −AT

k GB
k Ak)

−1,

x
n∗

k = Cn∗

k [C−1
n xn−AT

k GB
k (α0k −cek)] .

(7)

If α0k belongs to the primary vertex, χ2
F and χ2

S are

χ2-distributed with 2 degrees of freedom.

3 Measurement equation and deriva-

tive matrices

At BES0 the helix is determined by a 5-

component parameter vector α = (dρ,φ0,κ,dz ,λ)T,

where dρ is the distance of the helix from the pivotal

point (0,0,0) in the x-y plane, φ0 is the azimuthal an-

gle to specify the pivotal point with respect to the

helix center, κ is the signed reciprocal transverse mo-

mentum, dz is the distance of the helix from the pivot

point in the z direction, and λ = cotθ, where θ is the

polar angle measured from the +z axis.

Assume that a particle has charge Q and is mov-

ing along a helix in a magnetic field of strength B.

The trajectory of a helix is governed by the following

equations, valid when B is along ~z.

px = p0x cosρs⊥−p0y sinρs⊥,

py = p0y cosρs⊥ +p0x sinρs⊥,

pz = p0z,

E = E0,

x = x0 +
p0x

a
sinρs⊥−

p0y

a
(1−cosρs⊥),

y = y0 +
p0y

a
sinρs⊥+

p0x

a
(1−cosρs⊥),

z = z0 +λs⊥.

(8)

where (x0,y0,z0) is a known point on the helix,

(p0x,p0y,p0z,E0) is its 4-momentum vector there and

ρ = a/p⊥, a = −cBQ. They are functions of s⊥, the

arc length in the x-y plane from (x0,y0,z0) to the

point (x,y,z).

The 7-component parameter vector α=(px, py, pz,

E, x, y, z)T is preferred to be the track representation

since it is much simpler to transport in a magnetic

field. The input parameters to primary vertex recon-

struction are a set of tracks, which are parameterized

at the closest point approaching the origin from the

main drift chamber (MDC) track fitting.

The choice of expansion point (xe,pe) is in prin-

ciple arbitrary; it is natural to choose (xe,pe) =

(xk−1,p0k) as a start point, where xk−1 is the ver-

tex already fitted with k − 1 tracks and p0k is the

3-momentum vector of the k-th track at the closest

point approaching the origin; however, the approxi-

mation error of the linear expansion should be small

compared with the measurement errors. If necessary,

the linear expansion can now be repeated at the new

point (xe,pe) = (xk,pk) and the filter can be recom-

puted, until there is no significant change whether in

χ2 or in the estimation. One more iteration should be

sufficient. The estimation of track k’s parameter can

be obtained from the updated vertex parameters and

its 3-momentum vector at the vertex position. This

procedure is called virtual measurement, as shown in

Fig. 2. The k-th track parameter should be extrapo-

lated from the vertex to the closest point approaching

the origin in Eq. (1).

Fig. 2. The schematic illustration of “virtual

measurement” in Kalman vertex fitting.

Before deriving the measurement equation and

the corresponding Jacobian, let us follow the nota-

tions:

1) x = (x,y,z) — the vertex position;

2) pk = (px,py,pz) — the 3-momentum of the k-th

track, originating from the vertex x;
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3) α0k — the k-th track measurement, parame-

terized at the closest point approaching the origin;

4) α̃ = α̃(x,p) — parameters of the k-th track,

extrapolated from the vertex to the closest point ap-

proaching the origin, the measurement equation can

be expressed in the helix format.

The measurement equation α̃(x,p) is determined

by computing the track parameters from instanta-

neous position and momentum [8].

α̃(x,p) =








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[

−
px +ay
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Q

p⊥
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a
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
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, (9)

where

p⊥ =
√

p2
x +p2

y,

T =
√

(px +ay)2 +(py−ax)2,

J = sinρs⊥ =
p0xpy−p0ypx

p2
⊥

=

py

p⊥

·
px +ay

T
−

px

p⊥

·
py−ax

T
=

a

Tp⊥

(xpx +ypy).

(10)

p⊥, T and J are intermediate variables in calcu-

lation. The two 5×3 derivative matrices A = ∂ α̃/∂x

and B = ∂α̃/∂p can be easily calculated [8].

4 Procedure of primary vertex recon-

struction

The actual inputs of primary vertex reconstruc-

tion are all the reconstructed tracks. For raw data,

the particle identification information still needs fur-

ther calibration and reconstruction optimization for

the dE/dx and TOF system [9, 10]. Currently, all the

charged particles are treated as pions in the primary

vertex reconstruction process. Since the improper

particle hypothesis is assigned during the Kalman

track fitting program, the improper track parameters

and covariant matrices are obtained for primary ver-

tex reconstruction. This may cause the resolution to

be somewhat worse.

The selection criteria for good charged tracks are

as follows. All charged tracks are required to be well

measured by MDC within |cosθ| < 0.93, where θ is

the polar angle. The track parameters are required

to satisfy |dz| < 20 cm, where dz is the coordinate

of the closest point approaching the origin along the

z direction.

Primary vertex reconstruction at BES0 includes

vertex finding and vertex fitting. The task of ver-

tex finding is to sort a set of tracks into subsets that

share points of origin. The vertex finding algorithm

operates on geometric knowledge only. The primary

vertex locates at the interaction region, and its dis-

tribution depends on the beam profile.

A very fast method of finding the minimal dis-

tance between two helices is essential for the cluster-

ing algorithms in primary vertex reconstruction. As

a problem of finding a local minimal, the Newton pro-

cedure is applied to find the minimal distance and the

corresponding closest points between each helix pair.

Fig. 3(a) and (b) show the distribution of minimal

distance and the coordinate of the closest point in

the x-y plane between two helices. A loose cut, such

as 3.5σ on the coordinates of x and y of the closest

point, can be set to remove the obviously unqualified

tracks.

Fig. 3. (a) The distribution of minimal distance and (b) the coordinates of the closest point in the x-y plane

between two helices.
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After primary vertex finding, tracks which fulfill

the requirements are regarded as the seed tracks for

primary vertex fitting. It is important which tracks

are selected as the first two candidates for vertex fit-

ting. The track pair with the least minimal distance

is a good choice when the initial primary vertex is

unknown. The remaining tracks can be added to the

pre-determined vertex one by one. The vertex posi-

tion and updated track parameters can be calculated

in the filtering procedure described in Sec. 2 and

Sec. 3, where the 3-momentum vector of each track

is determined by the reconstructed helix parameter

α = (dρ,φ0,κ,dz ,λ)T, the 3-position vector (x, y, z)

is taken as the value of the vertex position in the last

filter step. The χ2 of the filter for each track is calcu-

lated according to Eq. (6). A track will be removed if

the χ2
F is too large during filtering. Since the charged

track number in the BES0 experiment is quite low,

some of bias may be raised if we test the χ2
F only.

To resolve this problem, the χ2 of smoothing (χ2
S) for

each track is calculated when the filtering process is

finished. Fig. 4(a) and (b) show the distribution of

χ2 in the filtering and smoothing procedures respec-

tively. The χ2
S is larger than the χ2

F since the former

is obtained based on the estimated vertex that takes

Fig. 4. The distribution of (a) χ
2
F and (b) χ

2
S.

all filtered tracks and their errors into account. The

combined filtering-smoothing algorithm allows the

computation of optimal estimates of the vertex po-

sition formed by any track sets in an event. Test on

both the χ2
F and the χ2

S can effectively remove the

ghost tracks and accurately calculate the beam posi-

tion.

5 Determination of the beam position

Initial vertex positions are unknown and the free-

dom of vertex fitting is 2n−3, n is the number of tracks

in an event, while beam positions are given by the Ac-

celerator Group, the freedom of fixed vertex fitting is

2n. However, Z of beam bunch size from our offline

vertex fitting is more precise than the measurements

from the Accelerator Group. This is significant for

the realization of Monte Carlo simulation.

Fig. 5. Track number vs. vertex resolution (a)

for the x and y and (b) for the z directions.

In each run, we reconstruct primary vertices for

all events and finally get an average vertex position.

According to Eq. (2), the primary vertex resolution

depends on the number of seed track candidates in

the vertex fitting procedure. The correlative relation-

ship between them is shown in Fig. 5, (a) for the x

and y and (b) for the z directions of the primary ver-

tex resolution. From the figure, we can see that the
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greater the number of selected tracks contributing to

the vertex fitting, the better the vertex resolution.

Especially, the resolution improves significantly from

two tracks to three tracks. In order to achieve better

vertex resolution, at BES0, only events with at least

three charged tracks are selected for primary vertex

reconstruction.

The distribution of the mean of beam bunch posi-

tion is shown in Fig. 6(a) for raw data from Run 5463

to Run 6201. The results are given using the Kalman

vertex fitting method discussed in Sec. 2. Since the

samples include all types of events, it is appropriate to

fit the distribution of the primary vertex with Gaus-

sian and polynomial functions, which can effectively

eliminate background interference such as beam gas.

Fig. 7 shows the primary vertex distribution and the

fit results in a certain run. In Fig. 6(a), the mean

vertex positions in the x and y directions fluctuate

slightly and the mean vertex position in the z direc-

tion varies from −0.3 cm to 0.4 cm. In detail, the x

positions are about 0.1 cm away from the origin while

the y positions about −0.25 cm.

Fig. 6. The vertex positions.

Fig. 7. The fitting results of the primary vertex.

The primary vertex resolutions along the x, y and

z directions are shown in Fig. 6 (b) and (c). The

resolution of x is about 500 µm–600 µm, y is about

400 µm–500 µm while z is about 1 cm. The data in

Run 6000–6201 have 100% high voltage of all layers.

It is clear that the resolutions of the data collected

with all high voltage in the inner layer are better than

the other data. Besides high voltage, the differences

between the runs mainly result from the instability of

beam bunches from the accelerator.

For the decay particles, the offset is especially

useful for the case that its production point closely

approaches the interaction point of the event. For

physics analysis, it is inappropriate to select dρ, the

first component of track parameters, as the selection

criteria for good charged tracks, as shown in Fig. 8(a).

At BES0, track parameter dρ is given from the ori-

gin as the pivot. Since the primary vertex has a clear

offset from the origin, the distribution of dρ is not

single-peaked. We suggest substituting the following

variable

Rxy = (xi−xv)cosφ+(yi−yv)sinφ (11)

for dρ, where (xv,yv) is the primary vertex position,

(xi,yi) is the position on track i closest to the origin,

and φ is the second component of track parameters

mentioned in Sec. 3.1. The distribution of Rxy is

single-peaked, as shown in Fig. 8(b). In the BEPC

energy region and with a detector magnetic field of

1 Tesla, Rxy denotes approximately the signed dis-

tance of the helix from the pivotal point, that is, the

interaction point, in the x-y plane. The cuts on Rxy
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are more reasonable than dρ.

Fig. 8. The distance of the helix from the piv-

otal point of (a) the origin, and (b) the pri-

mary vertex.

5.1 Discussion of pull distribution

The pull of 5-component track parameters (αi) is

defined as

pull =
(αi−αi0)

√

Vαi
−Vαi0

, (12)

where “0” denotes the parameters before performing

primary vertex fitting and “Vαi
” denotes the ith di-

agonal element of the covariance matrix. If the pull

distribution can be fitted by the Gaussian function

N(0,1), it validates the calculation of error matri-

ces. Table 1 gives the fitted resolution of the pull

distribution of 5-component track parameters using

the Gaussian function.

Table 1. Pull of 5-component track parameters.

parameter pull

dρ ∼1.14

φ0
∼1.09

κ ∼1.50

dz ∼1.78

λ ∼1.78

Because of the existence of serious noise in the

Main Draft Chamber (MDC) in 2008 BES0 data

taking, the high voltage for the inner chamber is not

always turned to its full value. This partly spoils the

resolution of particle momentum for less good hits in

the inner 8 layers. The differences between the re-

sults and the expectations are mostly caused by two

reasons. One reason is the calibration constants of

detector alignment are not considered in the event

reconstruction yet. From the results of primary ver-

tex position, it is important to align the detector pa-

rameters in the software [11]. The other is that the

error matrices of tracking are filled with smaller val-

ues than the truth. This is related to the function we

choose for fitting. This work is in progress.

6 Conclusion

Primary vertex reconstruction based on the

Kalman filter method has been developed. Accord-

ing to raw collision data at BES0, vertex resolutions

for multi-prong events agree with the expectations in

principle. Updated calibration constants of dE/dx

and alignment are expected. The results can be im-

proved after particle identification.
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