文章编号:0253-9950(2009)04-0202-04

韧致辐射法同时测量⁹⁰Sr 和⁹⁰Y

孙宏清,丁有钱,杨志红,张生栋,崔安智

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:本工作提出了用韧致辐射法同时测量样品中⁵⁰ Sr 和⁵⁰ Y 的设想。采用二(2-乙基已基)磷酸萃取制备无⁵⁰ Y 的⁵⁰ Sr 溶液,应用阱型 NaI(Tl)探测器进行跟踪测量,得到⁵⁰ Sr 与⁵⁰ Y 探测效率比 k_o 根据 k 值,跟踪测量未知样品,可以得到样品中⁵⁰ Sr 和⁵⁰ Y 的量。因此可以直接用⁵⁰ Sr $-^{50}$ Y 作为 Y 的示踪剂。 关键词:示踪剂;韧致辐射;Sr-Y;二(2-乙基已基)磷酸 中图分类号:TL922 文献标志码:A

Simultaneous Measurement of ⁹⁰Sr and ⁹⁰Y by Measuring Their Bremsstrahlung

SUN Hong-qing, DING You-qian, YANG Zhi-hong, ZHANG Sheng-dong, CUI An-zhi

China Institute of Atomic Energy, P. O. Box 275(126), Beijing 102413, China

Abstract: An effective method is found that 90 Sr and 90 Y can be measured by measuring the bremsstrahlung produced in a 90 Sr and 90 Y sample. According to the metrical principle, the detection efficiency ratio k of 90 Y to 90 Sr is obtained by measuring a 90 Sr sample from which 90 Y has been removed by extraction of 90 Y with di(2-ethylhexly) phosphoric acid (HDEHP). The results indicate that the simultaneous measurement of 90 Sr and 90 Y is feasible and 90 Sr- 90 Y can be directly used as the tracer of Y.

Key words: tracer; bremsstrahlung; Sr-Y; HDEHP

放化分离工作中常常需要使用 Y 的放射性 示踪剂,然而 Y 的放射性同位素绝大多数寿命很 短,只有⁸⁸ Y($T_{1/2}$ =108 d)和⁹¹ Y($T_{1/2}$ =58.5 d)寿 命较长,但生产比较困难。⁸⁸ Y 要用⁸⁸ Sr 的加速器 带电粒子核反应或⁸⁹ Y(n, 2n)反应产生;⁹¹ Y 只能 通过重核裂变产生。较为复杂的生产流程使它们 的应用受到限制。

⁹⁰ Y 是长寿命核素⁹⁰ Sr ($T_{1/2} = 28.78$ a)的子体,可从长寿命⁹⁰ Sr 的衰变中不断得到,但它的寿命只有 64.1 h,作为放射性示踪剂从母体⁹⁰ Sr 中

提取后为了保持其适当的活度,不宜长时间保存。 若能在⁹⁰ Sr 和⁹⁰ Y 共存的情况下,准确测定⁹⁰ Y, 那就可用⁹⁰ Sr-⁹⁰ Y 作为 Y 的放射性示踪剂,将给 有关 Y 的放化测量带来很大方便。国内外利用 韧致辐射法测量⁹⁰ Sr 已有多人研究^[1-6],他们都是 利用⁹⁰ Sr 的子体⁹⁰ Y的高能 β 射线能产生强的韧 致辐射,并在⁹⁰ Sr-⁹⁰ Y 放射性衰变平衡下测量 ⁹⁰ Sr。本工作拟利用韧致辐射测量法,基于⁹⁰ Sr 和⁹⁰ Y 的 β 射线能量的不同产生的韧致辐射能量 的差异,在一定条件下只测量⁹⁰ Y而不受⁹⁰ Sr 的干

收稿日期:2008-05-29;修订日期:2009-05-13

作者简介:孙宏清(1972—),男,北京平谷人,实验师,从事核物理测量

扰或能同时给出样品中⁹⁰Sr和⁹⁰Y各自的含量。

1 实验部分

1.1 仪器与试剂

HDEHP,北京化工冶金研究院,铜盐沉淀法 纯化^[7];二甲苯,分析纯,北京化工厂;⁹⁰ Sr-⁹⁰ Y 溶 液,中国原子能科学研究院同位素研究所提供;阱 型 NaI(Tl) γ 谱仪,ADC 为 20~1 024 道,能量范 围 10~2 000 keV,美国 ORTEC 公司;800 型离 心器,上海手术器械十厂。

1.2 测量原理

⁹⁰ Sr 和⁹⁰ Y 发射的 β 粒子能量分别为 0.546, 2.28 MeV,根据韧致辐射理论^[8],初始能量为 *E* 的电子所辐射的总能量正比于 E^2 ,因为⁹⁰ Sr 和⁹⁰ Y 的 β 能量相差很大,它们产生的韧致辐射能量将 相差更大,从而在不同能区对⁹⁰ Sr 和⁹⁰ Y 的探测 效率有明显的不同,使经预先刻度的仪器分别测 出⁹⁰ Sr 和⁹⁰ Y 成为可能。

根据放射性母子体衰变公式,*t*时刻,含⁹⁰Sr 和⁹⁰Y样品的放射性总活度 *A* 应由它们各自的活 度组成:

$$A = A_1 + A_2 \,. \tag{1}$$

式中, A_1 , A_2 分别为⁹⁰Sr, ⁹⁰Y的放射性活度。

由于母体核素⁹⁰ Sr 的半衰期长达 28.78 a,在 实验的分析时间内可以认为其活度不变;子体核 素⁹⁰ Y 的半衰期远小于⁹⁰ Sr 的半衰期,即 $\lambda_2 \gg \lambda_1$ 。 因此,放射性的总活度为:

 $A = A_1^0 + A_1^0 (1 - e^{-\lambda_2 t}) + A_2^0 e^{-\lambda_2 t}$ (2) 式中, $A_1^0 (1 - e^{-\lambda_2 t})$,样品中由⁹⁰ Sr 生成⁹⁰ Y 的部 分; $A_2^0 e^{-\lambda_2 t}$,样品中⁹⁰ Y 衰变的部分。

设仪器对^{∞}Sr 和^{∞}Y 的韧致辐射探测效率分别 为 ϵ_1 和 ϵ_2 ,则测得样品的总计数率 C 应由下式表示:

$$C = A_{1}^{0} \varepsilon_{1} + A_{1}^{0} \varepsilon_{2} (1 - e^{-\lambda_{2}t}) + A_{2}^{0} \varepsilon_{2} e^{-\lambda_{2}t}$$
(3)
$$C = C_{1}^{0} + C_{1}^{0} (\varepsilon_{2}/\varepsilon_{1}) (1 - e^{-\lambda_{2}t}) + C_{2}^{0} e^{-\lambda_{2}t}$$
(4)

令 $k = \epsilon_2 / \epsilon_1$,则有

$$C = C_1^0 + k C_1^0 (1 - e^{-\lambda_2 t}) + C_2^0 e^{-\lambda_2 t}$$
(5)

$$C = C_1^0 (1+k) + (C_2^0 - kC_1^0) e^{-\lambda_2 t}$$
(6)

以 C 对 $e^{-\lambda_2 t}$ 作图,得到截距 $a = C_1^0(1+k)$ 、斜 率 $b = C_2^0 - kC_1^0$ 的直线。只要能够测出⁹⁰ Y 对⁹⁰ Sr 的效率比值 k,即可求出分离后任意时刻 t 样品中 的 C_1^0 和 C_2^0 。

制备一个样品使其初始时刻 $A_2^0 = 0$,即该样 品初始时刻只含⁹⁰ Sr 而不含⁹⁰ Y,又能证明 A_2^0 确 实等于 0,跟踪测量该样品,得到 a 和 b 值,利用 $a+b=C_1^0+C_2^0$,其中 $C_2^0=0$,得

$$C_1^0 = a + b_{\circ} \tag{7}$$

又
$$a = C_1^0(1+k)$$
,得到

$$k = \frac{a}{a+b} - 1 = \frac{-b}{a+b}.$$
(8)

2 结果与讨论

2.1 初始时刻只含⁹⁰Sr 不含⁹⁰Y 样品的制备及其 鉴定

文献[9]证明,在低酸下使用 HDEHP 萃取 ⁹⁰ Sr-⁹⁰ Y 时, Y 的分配系数较高, 而 Sr 很少被萃 取。连续进行多次萃取,将保障水相中⁹⁰ Y 的初 始含量可以忽略或说其为 0。

本试验参考文献[9],在萃取管中加 6.0 mL 0.5 mol/L HCl,加入一定量的⁹⁰ Sr-⁹⁰ Y 溶液,再 加入 2.0 mL 0.75 mol/L HDEHP-二甲苯,振荡 2 min 后离心分相(记录分相零时刻),从中取出 1.4 mL 水相溶液放入 γ 测量管中,用阱型 NaI (Tl) γ 谱仪跟踪测量。

将剩余水相转移到另一萃取管中,再加 2.0 mL 0.75 mol/L HDEHP-二甲苯,振荡、离 心,如上所述,重复萃取 4次,共取 4 个水相样品 在阱型 NaI(Tl) γ 谱仪上分别在 4 d 内跟踪测量 10 次。随着时间的推移,样品中⁹⁰ Y 的含量不断 增加。拟合样品总计数率 $C 与 e^{-\lambda_2 t}$ 的关系曲线 示于图 1。从图 1 可看出,水相 2,3 和 4 的直线 几乎重合,但与水相 1 的直线有明显偏离,该结果 说明水相 2,3 和 4 的成分一样,表明第二次萃取 后水相中的 A_2^0 (⁹⁰ Y)已趋于 0,⁹⁰ Sr 几乎不被萃 取,2,3,4 次萃取后,水相中⁹⁰ Sr 的含量变化很小。

为了对⁹⁰ Y 的韧致辐射能谱有一个直观的概 念,图 2 给出了水相 2 在阱型 NaI(Tl)γ 谱仪上第 10 次测量的韧致辐射能谱图。

2.2 不同能量阈值的分析结果

⁹⁰ Sr 产生的韧致辐射能量远远低于⁹⁰ Y 产生 的韧致辐射能量,即⁹⁰ Sr 产生的韧致辐射应在韧 致辐射能谱的低能区,若对其能谱设置一个能量 阈值,⁹⁰ Sr 的效率将大大下降,随着阈值的提 高,⁹⁰ Sr 效率的降低要比⁹⁰ Y 效率的降低快得多; 甚至当阈值提高到一定程度时,⁹⁰ Sr 的效率将降 为 0。根据这种思路,将测得的 2, 3, 4 号水相样 品的数据在不同能量阈值下进行处理, 2 号水相 样品不同阈值下计数率 $C 与 e^{-\lambda_2 t}$ 的关系曲线示 于图 3。从图 3 可以看出,不同能量阈值下的截 距 a 和斜率 b 不一样,说明选择不同能量阈值下 探测效率比 k 值不同。

将水相 2, 3, 4 的计数率与 $e^{-\lambda_2 t}$ 拟合得到的

图 2 水相 2 在阱型 NaI(Tl)γ 谱仪上的韧致辐射能谱 Fig. 2 Bremsstrahlung spectrum of aqueous phase 2 with NaI(Tl) spectrometer

a 和b 按式(8)计算出 k 值,结果列于表 1。从表 1 可看出, k 随能谱能量阈值的提高而增大, 这是因 为⁹⁰Sr 的辐射能量要比⁹⁰Y 的低得多,当能谱能 量限提高时,会把绝大部分⁹⁰Sr 的辐射计数卡掉, 使其效率大大降低, π^{90} Y的效率降低少得多,因 而 k 大大增加。当能谱能量阈增至 150 keV 时,k 值很大,即⁹⁰ Sr 的探测效率很低,阈值再提高 时,⁹⁰Sr的探测效率降为 0, k 值将无意义。

依据上述结果,用阱型 $NaI(Tl) \gamma$ 谱仪跟踪 测量样品,根据不同需求,可对数据作不同处理:

1) 若只关心⁹⁰ Y, 可设阈值大于 150 keV, ⁹⁰ Sr 的探测效率为 0,即 $C-e^{-\lambda_2 t}$ 拟合关系曲线的 斜率 $b = C_2^0 - kC_1^0$ 中的 C_1^0 为 0,则 $b = C_2^0$;

2) 若想同时得到 90 Sr 和 90 Y 的结果,则设阈 值为 10 keV,根据 $C-e^{-\lambda_2 t}$ 拟合关系曲线的截距

图 3 水相 2 在不同能量限下的 $C - e^{-\lambda_2 t}$ 关系曲线 Fig. 3 Curves of C against $e^{-\lambda_2 t}$ for aqueous phase 2, measured under different threshold

 $a = C_1^0(1+k)$,斜率 $b = C_2^0 - kC_1^0$,和已刻度好的 k 值,可算得 C_1° 和 C_2° , 即⁹⁰ Sr 和⁹⁰ Y 各自含量;

3) 若只关心⁹⁰ Sr 的量, 截距 $a = 2^{90}$ Sr-⁹⁰ Y 达 到平衡时的计数率,它可以代表^m Sr 的量,且与 k 值无关,只要跟踪⁹⁰Y大约1个半衰期,即可得到 较好的拟合曲线,不必等⁹⁰Sr-⁹⁰Y平衡后再测量, 这样可大大缩短取得⁹⁰Sr 数据的时间。

2.3 ⁹⁰Sr-⁹⁰Y 如何用作 Y 的示踪剂

当研究 Y 的化学行为时,可直接加入⁹⁰ Sr-⁹⁰Y作为Y的示踪剂,只是在测量各个化学流分 中 Y 的含量时,因为样品中可能存在⁹⁰ Sr,必须跟 踪测量,并如上节1)的方法处理即可。

若测量未知样品,需用到 k 值,则要求样品的 测量条件和刻度 k 值时的条件(包括介质溶液)相 一致,如果韧致辐射探测效率与介质溶液关系不 大, 即 k 值与介质溶液关系不大, 则在某一条件下 刻度的 k 值可用于不同介质样品的测量。

在化学行为研究中,经常会用到不同浓度的 HCl和 HNO_3 ,因此,研究了不同浓度的 HCl和 HNO。对韧致辐射探测效率的影响。在不同浓 度 HCl(0,1,3,6,12 mol/L)介质和 HNO₃ (0.1,4,8,16 mol/L)介质中分别滴一定量的 90 Sr- 90 Y 溶液,在阱型 NaI(Tl) γ 谱仪上进行测 量,结果列于表 2。表 2 结果表明,在不同浓度的HCl介质中, 90 Sr- 90 Y 放射性溶液的比强度随 HCl浓度的增加略有增加;而在 HNO₃ 介质中, ⁹⁰Sr-⁹⁰Y放射性溶液的比强度随HNO₃浓度的增 加略有减少:2种介质中放射性溶液的比强度变 化趋势不同,原因尚不清楚,这有待进一步研究。 但改变幅度并不大,其总平均值为 8.91(1 \pm $(3.5\%)/(s \cdot mg)(n=8)$,不确定度为 (3.5%),在此 不确定度范围内,测得的k值可适用于这些介质 的样品中。这将给实际应用带来方便。

E	水相(Aqueous phase)	а	b	k
10 keV	2	2 565	-2471	31
	3	2 567	-2498	
	4	2 594	-2514	
		(2 575(1±0.63%))	$(-2494(1\pm 0.87\%))$	
50 keV	2	2 172	-2 118	51
	3	2 177	-2 145	
	4	2 185	-2 147	
		$(2\ 178(1\pm 0.\ 30\%))$	$(-2\ 137(1\pm 0.76\%))$	
100 keV	2	1 784	-1760	137
	3	1 787	-1782	
	4	1 778	-1769	
		$(1\ 783(1\pm 0.25\%))$	$(-1\ 170(1\pm 0.95\%))$	
150 keV	2	1 510	-1498	864
	3	1 512	-1517	
	4	1 496	-1498	
		$(1\ 506(1\pm 0.58\%))$	$(-1\ 504(1\pm0.\ 72\%))$	

表1 k值的计算结果

注(Note):括号中数据为 $\overline{x}(1\pm s_r)$ (The data in parentheses are $\overline{x}(1\pm s_r)$)

3 结 论

依据⁹⁰Sr 和⁹⁰Y 的 β 射线能量差别大、因而其 韧致辐射能量差别更大的原理,设想并实现了用 韧致辐射法测量⁹⁰Sr 和⁹⁰Y 样品,分别给出其中 各自的含量。因此,可用⁹⁰Sr-⁹⁰Y 作为 Y 的示踪 剂,这将对研究 Y 的化学行为带来很大方便。韧 致辐射影响因素比较复杂,不同介质中,对韧致辐 射的探测效率不同,这有待进一步研究。

表 2 样品介质对韧致辐射效率的影响

Table 2Relation between mediumand efficiency of bremsstrahlung

		比强度(Specific	
样品介质(Medium)	$c/(\operatorname{mol} \bullet \mathrm{L}^{-1})$	intensity)/	
		$(s^{-1} \cdot mg^{-1})$	
HCl	0.1	8.66	
	3	9.00	
	6	9.31	
	12	9.34	
HNO_3	0.1	9.04	
	4	8.67	
	8	8.64	
	16	8.58	
		(8.91(1±3.5%))	

注(Note):括号内数据为 $\overline{x}(1\pm s_r)$ (The datum in parentheses is $\overline{x}(1\pm s_r)$)

参考文献:

- Olson D G. Health Physics Operational Monitoring[M].
 Vol 1. Willis C A. [s. l.]: Gordon and Breach Science Publishers Inc., 1972: 689.
- Brodzinski R L, Nielson H L. A Well Logging Technique for the in Situ Determination of ⁹⁰ Sr[J]. Nucl Instrum Methods, 1980, 173: 299-301.
- [3] Wang C F, Yuan M C, Lee J H. Rapid Determination of ⁹⁰Sr by Compton Suppression Gamma-Ray Spectrometry[J]. J Radioanal Nucl Chem, 1997, 223(1-2): 157-162.
- [4] Mietelski J W, Meczynski W. Application of a Low-Background Gamma-Ray Spectrometer to the Determination of ⁹⁰Sr[J]. Appl Radia Isot, 2000, 53: 121-126.
- [5] Mietelski J W. On a Pure Instrumented Method of ⁹⁰ Sr Determination in Bone Samples[J]. J Radioanal Nucl Chem, 2001, 250(3): 551-553.
- [6] 刘大鸣,李大明,郭景儒,等. 韧致辐射测量法分析 放射性废水中⁹⁰ Sr 含量[J]. 原子能科学技术,1995, 29(6): 529-533.
- [7] 龙海燕,陆熙炎.高纯度二(2-乙基已基)磷酸的制 备[J].原子能科学技术,1964,6:153-156.
- [8] (南) M 姆拉杰诺维奇著. 放射性同位素和辐射物理 学导论[M]. 王选廷等译. 北京:原子能出版社, 1986:132.
- [9] Healy T V. Rapid Solvent Extraction Methods for Fission Products Separator and Analysis[J]. Radiochem Acta, 1963, 2(2): 52.