文章编号:0253-9950(2009)04-0223-07

水与三甲基硅烷醇羟基的 氢同位素交换反应的理论研究

蒋树斌,王和义,钟志京,杨 勇,杜 阳,罗顺忠

中国工程物理研究院核物理与化学研究所,四川 绵阳 621900

摘要:以(CH₃)₃SiOH 羟基模拟 Li₄SiO₄ 陶瓷表面羟基,研究了 H₂O 与(CH₃)₃SiOH 羟基 H 的氢交换反应机 理。采用 HF, MP2 方法,在 3-21G 和 6-311G++** 水平上优化了(CH₃)₃SiOH, H₂O, (CH₃)₃SiOH—H₂O 复合物及氢交换反应过渡态的结构。计算了生成(CH₃)₃SiOH—H₂O 复合物的反应热,探讨了氢交换反应的路 径。结果表明,可以形成 2 种形式的(CH₃)₃SiOH—H₂O 复合物,一种是 H₂O 的 O 原子与(CH₃)₃SiOH 羟基的 H 原子作用形成的复合物,另一种是 H₂O 的 H 原子与(CH₃)₃SiOH 羟基的 O 原子乍用形成的复合物。MP2/ 6-311G++** 水平上,对基组重叠能(BSSE)进行校正后,上述 2 种复合物的反应热分别为 20.046 5 kJ/mol 和 21.630 7 kJ/mol。有利的氢交换反应路径为:H₂O 的 H 原子与(CH₃)₃SiOH 羟基的 O 原子作用形成的复合 物,然后 H₂O 提供 1 个 H 原子、1 个 O 原子,(CH₃)₃SiOH 提供 1 个 O 原子、1 个 Si 原子形成由 O, H, O, Si 4 个原子构成的四元环过渡态,最后 H₂O 的 O 原子与(CH₃)₃SiOH 的 Si 原子成键形成新的(CH₃)₃SiOH,而 (CH₃)₃SiOH 的 Si – O 键断裂,由(CH₃)₃SiOH 的羟基和 H₂O 的 1 个 H 原子形成新的 H₂O 分子,MP2/ 6-311G++** 水平上,BSSE 校正后,此路径的反应活化能为 186.898 4 kJ/mol。 关键词:三甲基硅烷醇;水;同位素交换;从头算

中图分类号:O641.12 文献标志码:A

Ab Initio Study on the Mechanism of Hydrogen Exchange Reaction Between H₂O and Hydroxyl of (CH₃)₃SiOH

JIANG Shu-bin, WANG He-yi, ZHONG Zhi-jing, YANG Yong, DU Yang, LUO Shun-zhong

Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

Abstract: The hydrogen exchange reaction mechanism between H_2O and -OH of surface of Li₄SiO₄ ceramic has been investigated using hydroxyl of $(CH_3)_3SiOH$ as a simple model of hydroxyl of surface of Li₄SiO₄ ceramic. The structures of $(CH_3)_3SiOH$, H_2O , $(CH_3)_3SiOH$ — H_2O complexes and transition states of hydrogen exchange reaction have been optimized at HF/3-21G, HF/6-311G++**, and MP2/6-311G++** levels. The association energies of $(CH_3)_3SiOH$ — H_2O and the path of hydrogen exchange reaction have also been explored. The results show that two of associate complexes can be formed, the O of H_2O interact with the H of hydroxyl of $(CH_3)_3SiOH$ to form one complex and the another complex is formed by the interaction between the H of H_2O and the O of hydroxyl of $(CH_3)_3SiOH$. At HF/6-311G++** and MP2/6-311G++** levels, the association energies after basis set superposition error cor-

基金项目:中国工程物理研究院重点科学发展基金项目(2007A02003)

作者简介:蒋树斌(1970—),男,四川青神人,博士,副研究员,环境放射化学专业

rection of two complexes above are 18.016 1, 18.816 6, 20.046 5, 21.630 7 kJ/mol, respectively. The favorable path of hydrogen exchange reaction is as follow: first, the H of H₂O interactes with the O of hydroxyl of $(CH_3)_3SiOH$ to form associate complex, second, 4-membered ring transition state consisted of O, from H₂O, H, from H₂O, O, from $(CH_3)_3SiOH$, Si, from $(CH_3)_3SiOH$ is formed, third, the formation of new O—Si bond and the break old O—H bond lead the new $(CH_3)_3SiOH$ to be formed, at the same time, the new H₂O is formed resulting in the rupture of old O—Si bond and the formation of new H—O bond. At HF/6-311G + +** and MP2/6-311G + +** level, the activation energies of this path are 232.905 3 kJ/mol and 186.898 4 kJ/mol with counterpoise correction.

Key words: $(CH_3)_3SiOH$; H_2O ; isotope exchange; ab initio calculation method

产氚增值剂是聚变堆的关键材料之一。由于 高的Li含量、好的材料兼容性及高的机械强度 等, Li_2 TiO₃, Li_4 SiO₄ 陶瓷小球成为了人们关注 的产氚增值剂材料,小球的释氚性能也成为人们 研究热点[1-3]。以 Li_4SiO_4 为增值剂时,Li(n,α)³ H 反应生成的氚首先以 T⁺ 的形式存在于 Li₄SiO₄ 晶格中,然后扩散到增值剂表面以羟 基—OT 的形式存在^[4]。—OT 与惰性载气中的 微量 H_2O 或 H_2 的氢同位素交换在氚的释放行 为中扮演着重要角色^[5-6]。Narisato^[1]和 Munakata^[2] 用实验方法研究了添加催化剂对 Li₄SiO₄, Li₂TiO₃ 陶瓷小球表面 H 同位素交换 的影响, Nakazawa^[7-8]用从头算法从理论上研究 了 B, Al 和 Ga 等杂原子对 Li₄SiO₄ 表面羟基性 质的影响。但有关 Li₄SiO₄ 表面 羟基—OT 与 H_2O 或 H_2 的氢同位素交换机理的研究报道仍很 少。本工作以三甲基硅烷醇((CH₃)₃SiOH)的羟 基表示 Li₄SiO₄ 表面羟基,通过从头算法研究 $H_2O + H 与(CH_3)_3$ SiOH 中羟基氢的交换反应 机理。

1 计算方法

全部计算工作用 Gaussian03 程序包完成。 采用量子化学的 HF, MP2 方法,基组为 3-21G 或 6-311G + +**, 对 (CH₃)₃SiOH, H₂O, (CH₃)₃SiOH—H₂O 复合物构型做了完全放开的 全几何优化。进行了振动频率分析,得到稳定构 型和内转化过渡态构型。用本征值追踪法(EF) 对过渡态构型进行优化和频率分析,发现有唯一 的虚频,确定其为过渡态构型。

2 结果与讨论

2.1 几何构型

游离 $(CH_3)_3$ SiOH, H_2 O及 $(CH_3)_3$ SiOH—

 H_2O 吸附复合物的结构示于图 1。优化后各物质 的几何参数、原子电荷、总能量、键重叠布居均列 于表 1-3。由于很容易形成多聚体^[9],未见 $(CH_3)_3$ SiOH 单体的晶体结构参数文献报道。 Ignatyev^[10]用 B3LYP 方法 DZP+diff 的基组优 化过 $(CH_3)_3$ SiOH 结构,所得结果 $(Si-O_1)$ 键长 0.1677 nm, $O_1 - H_1$ **键 K** 0.0966 nm, ∠H₁-O₁-Si为 118.6°)与表 1 中 MP2 方法计算结 果有较好吻合。从表1还可看出,基组不同和是 否进行电子关联对(CH₃)₃SiOH 和 H₂O 的几何 参数、原子电荷和总能量均有显著影响。添加极 化使 $(CH_3)_3$ SiOH的Si $-O_1$ 键长和 O_1 —H₁键长 变短,而包含电子关联则使这些键长变长。添加 极化使原子的绝对电荷值降低,而包含电子关联 对原子电荷影响轻微。 $(CH_3)_3$ SiOH 和 H₂O 的 总能量因添加极化、增加电子关联而降低。添加 极化函数通常会使分子内成键原子间的电子密度 向键中心转移,导致键长和原子电荷绝对值的变 小[11]。而包含电子关联则使分子内成键原子间 的电子密度向键两端转移,导致键长增加[12],但 包含电子关联对分子的原子电荷布居影响轻 微[11]。添加极化函数、增加电子关联对 $(CH_3)_3$ SiOH 和 H₂O 的键角也有显著影响, ∠H₁-O₁-Si 从 127. 648° 减 为 121. 818° 和 117.480°, /H₂-O₂-H₃ 从 107.724° 减 为 106.159°和103.390°。键角的变化与分子成键原 子的电子密度分布密切相关,对于含 O 化合物,O 原子 s, p 轨道的杂化程度决定了以 O 原子为顶 点的键角大小^[13-14], s轨道比例越大键角越大,p 轨道比例越高键角越小。

如图 1 所示, $(CH_3)_3$ SiOH 与 H_2O 可形成 2 种形式吸附复合物, H_2O 提供 O, $(CH_3)_3$ SiOH 的羟基提供 H 形成复合物 c; H_2O 提供 H, $(CH_3)_3$ SiOH 的羟基提供 O 形成复合物 d。与游

d——H₂O 提供 H,(CH₃)₃SiOH 提供羟基 O 形成的复合物((CH₃)₃SiOH—H₂O complex in which H₂O is proton donator)

表 1 $(CH_3)_3$ SiOH, H_2O 的优化结构参数、原子电荷布居、键重叠布居和分子能量

Table 1 Geometrical parameters, atomic charges, bond overlap populations and energies for (CH₃)₃SiOH and H₂O

分子 (Molecule)	计算方法 (Computation	键长(Bond lengths)/nm		键角(Bond angles)/ (°)	10 ²⁰ 房	夏子电荷(Charge	s)/ C	分子能量(键重叠布居 (Bond overlap populations)			
(Molecule)	methods)	Si-O1	$O_1 - H_1$	∠H ₁ -O ₁ -Si	H_1	O_1	Si	$E_{ m e}$	$E_{\rm ZPE}$	E_{t}	$O_1 - H_1$	$Si-O_1$
(CH ₃) ₃ SiOH	I HF/3-21G	0.168 1	0.096 0	127.648	6.488 8	-16.0218	29.976 7	-1 262 125.904 3	350.356 1	-1 261 775.548 2	0.270 1	0.352 6
	HF/6-311G++**	0.165 7	0.093 9	121.818	4.598 2	-8.972 2	13.586 5	-1 269 081.473 9	344.3577	-1 268 737.116 2	0.262 3	0.166 3
	MP2/6-311G++**	0.168 0	0.095 9	117.480	4.406 0	-8.795 9	13.522 4	-1 271 110.751 3	330.281 1	-1 270 780.470 2	0.255 1	0.175 0
分子 (Molecule)	计算方法 (Computation	键长 length	(Bond s)/nm	键角(Bond angles)/ (°)	10 ²⁰ 房	夏子电荷(Charge	s)/ C	分子能量	(Energies)/(kJ	• mol ⁻¹)	键重叠布 overlap po	居(Bond pulations)
HF/6 MP2/6 分子 (C (Molecule) 1 H2 0 日	计算方法 (Computation methods)	键长 length O ₂ —H ₂	(Bond s)/nm O ₂ —H ₃	键角(Bond angles)/ (°) ∠H ₂ -O ₂ -H ₃	10 ²⁰ 房 H ₂	夏子电荷(Charge O ₂	s)/ C H ₃	分子能量(<i>E</i> e	(Energies)/(kJ E _{ZPE}	• mol ⁻¹) <i>E</i> _t	键重叠布 overlap po O ₂ —H ₂	居(Bond pulations) O ₂ 一H ₃
分子 (Molecule) H ₂ O	计算方法 (Computation methods) HF/3-21G	键长(length O ₂ —H ₂ 0.096 7	(Bond s)/nm O ₂ —H ₃ 0.096 7	键角(Bond angles)/ (°) ∠H ₂ -O ₂ -H ₃ 107.724	10 ²⁰ 房 H ₂ 5.864 0	5子电荷 (Charge O ₂ —11.744 0	s) / C H ₃ 5.864 0	分子能量の <u> </u>	(Energies)/(kJ <u>E_{ZPE}</u> 57.132 9	• mol ⁻¹) E_t -198 393.785 0	键重叠布 overlap po O ₂ —H ₂ 0.264 0	i居(Bond pulations) O ₂ —H ₃ 0.264 0
分子 (Molecule) H ₂ O	计算方法 (Computation methods) HF/3-21G HF/6-311G++**	键长 length O ₂ —H ₂ 0.096 7 0.094 1	(Bond s)/nm O ₂ —H ₃ 0.096 7 0.094 1	键角(Bond angles)/ (°) ∠H ₂ -O ₂ -H ₃ 107.724 106.159	10 ²⁰ 房 H ₂ 5.864 0 4.117 6	○子电荷 (Charge O ₂ -11.744 0 -8.235 2	s) / C H ₃ 5.864 0 4.117 6	分子能量(<u> </u>	(Energies)/(kJ <u>E_{ZPE}</u> 57, 132 9 60, 477 8	• mol ⁻¹) E_t -198 393.785 0 -199 617.766 4	键重叠布 overlap po O ₂ —H ₂ 0.264 0 0.341 1	i居(Bond pulations) O ₂ —H ₃ 0.264 0 0.341 1

表 2 复合物 c 的优化结构参数、原子电荷布居、键重叠布居和分子能量

计算方法 (Computation	键长(Bond lengths)/nm			键角(Bond angles)/(°)			10 ²⁰ 原子电荷(Charges)/ C			分子能量(Energies)/	键重叠布居(Bond overlap populations)			
methods)	Si-O1	$O_1 - H_1$	0 ₂ -H ₁	H ₁ -O ₁ -Si	∠O ₁ -H ₁ -O ₂	$\angle H_1$ -O ₂ -H ₂	H_1	O_1	Si	$E_{ m e}$	$E_{\rm ZPE}$	$O_1 - H_1$	$Si-O_1$	$O_2 - H_1$
HF/3-21G	0.166 2	0.097 5	0.172 6	129.824	175.714	113.286	4.518 1	-8.507 6	12.865 5	-1 460 630.559 6	417.945 6	0.237 5	0.379 0	0.063 7
HF/6-311G++**	0.164 7	0.094 4	0.203 4	121.761	179.980	119.937	1.794 4	-6.4888	3.380 6	-1 468 780.447 3	411.935 1	0.210 1	0.208 7	-0.0890
MP2/6-311G++**	0.166 9	0.096 6	0.1914	115.653	174.674	118.233	1.650 2	-6.873 3	2.964 0	-1 471 399.256 1	395.093 7	0.216 9	0.219 9	-0.0957
	键长(Bond lengths)/nm 键													
计算方法 (Computation	键长(Bond	d lengths)/nm	键角 (B	ond angles)/(°)	10 ²⁰ 房	夏子电荷(Charge	es)/ C	分子	能量(Energies)/(kJ・n	$nol^{-1})$	键! over	重叠布居(Bon ·lap populatior	ıd 1s)
计算方法 (Computation methods) -	键长(Bond O ₂ —H ₂	d lengths)/nm O ₂ —H ₃	键角(B	ond angles I₃ ∠H)/(°) 	10 ²⁰ 虏 H ₂	原子电荷(Charge O ₂	es)/ C H ₃	分子	能量(Energies)/(kJ・n E _t	$E_{\rm int}$	键」 over O ₂ —H ₂	重叠布居(Bon lap populatior	d ns) O ₂ —H ₃
计算方法 (Computation methods) - HF/3-21G	键长(Bond O ₂ —H ₂ 0.096 6	d lengths)/nm O ₂ —H ₃ 0.096 6	键角 (B 	ond angles I ₃ ∠H 1)/(°) _2-O2-H3	10 ²⁰ 房 H ₂ 3.685 0	原子电荷 (Charge O ₂ — 9.260 6	es)/ C H ₃ 3.685 0	分子 	能量(Energies)/(kJ・n E _t 60 212.614 0 -	E_{int}	键 over O ₂ —H ₂ 0.263 2	重叠布居(Bon ·lap populatior	d 1s) O ₂ —H ₃ 0.263 2
计算方法 (Computation methods) - HF/3-21G HF/6-311G++**	键长(Bond O ₂ —H ₂ 0.096 6 0.094 2	d lengths)/nm O ₂ -H ₃ 0.096 6 0.094 2	键角(B) ∠H ₁ -O ₂ -H 113.252 118.540	ond angles H ₃ ∠H 1 1)/(°) ₂ -O ₂ -H ₃ 09.280 06.557	H ₂ 3. 685 0 5. 046 9	原子电荷(Charge O ₂ -9.2606 -10.0937	es)/ C H ₃ 3.685 0 5.046 9	分子 	能量 (Energies)/(k J ・n <u>E</u> t 60 212.614 0 - 68 368.512 2 -	$\frac{E_{\text{int}}}{E_{\text{ort}}} = -53.7374$	键 over O ₂ —H ₂ 0.263 2 0.334 6	重叠布居(Bon ·lap populatior	d $O_2 - H_3$ 0. 263 2 0. 334 1

Table 2 Geometrical parameters, atomic charges, bond overlap populations and energies for complex c

表 3 复合物 d 的优化结构参数、原子电荷布居、键重叠布居和分子能量

Table 3 Geometrical parameters, atomic charges, bond overlap populations and energies for complex d

计算方法 (Computation	键长(Bond lengths)/nm			键角(Bond angles)/(°)			10 ²⁰ 原子电荷 (Charges)/ C			分子能量(Energies)/(kJ・mol ⁻¹)		键重叠布居(Bond overlap populations)		
methods)	$Si-O_1$	$O_1 - H_1$	$O_1 - H_2$	∠H1-O1-Si	∠H ₂ -O ₁ -Si	$\angle H_1$ -O ₁ -H ₂	H ₁	O1	Si	$E_{ m e}$	$E_{\rm ZPE}$	O ₁ -H ₁	$Si-O_1$	$O_1 - H_2$
HF/3-21G	0.170 6	0.096 1	0.179 9	124.544	100.908	131.797	4.069 5	-8.395 4	12.721 3	-1 460 631.931 9	420.271 4	0.269 4	0.293 9	0.038 6
HF/6-311G++**	0.167 1	0.094 0	0.201 2	120.227	124.881	109.740	4.245 8	-0.302 0	4.838 6	-1 468 781.106 1	412.667 7	0.268 8	0.141 9	-0.0599
MP2/6-311G++**	0.169 9	0.096 0	0.188 1	116.575	109.522	116.728	3.829 2	-4.6303	3.108 2	-1 471 401.486 1	395.500 0	0.246 6	0.164 3	-0.053 5
计算方法 (Computation	键长(Bon	d lengths)/nm	键角	角(Bond angles)/(°)	10 ²⁰ 原	子电荷(Charge	es)/ C	分子	能量(Energies)/(kJ・r	$nol^{-1})$	键重叠布居(Bond overlap populations)		nd ns)
methods)	$O_2 - H_2$	$O_2 - H_3$	∠01-	H₂-O₂ ∠H	2-O2-H3	H_2	O_2	H_3		E_{t}	E_{int}	$O_2 - H_2$		$O_2 - H_3$
HF/3-21G	0.097 5	0.096 6	147.	. 295 1	08.643	3.701 0	-8.5877	3.669 0	-1 4	60 211.660 5	-55.109 7	0.234 7		0.260 3
HF/6-311G++**	0.094 7	0.094 0	177.	. 749 1	06.120	4.165 7	-10.622 4	4.742 4	-140	68 368.438 4	-21.388 0	0.327 8		0.313 1

子关联使复合物 c 和 d 的结构参数、原子电荷布 居、总能量及键重叠布居均有显著变化。与游离 $(CH_3)_3$ SiOH 相反,添加极化使复合物 c 中 O_2 — H_1 键、复合物 d 中 O_1 — H_2 键键长增加,复 **合物** c 中 O₂—H₁ 键从 0. 172 6 nm(HF/3-21G) 增加到 0.203 4 nm(HF/6-311G++**),复合物 d中O₁—H₂ 键从 0.179 9 nm(HF/3-21G) 增加 到0.201 2 nm(HF/6-311G++**),造成上述现 象的原因是添加极化函数使复合物 c 中 H_1 的电 子密度向 $O_1 - H_1$ 键中心转移, O_2 的电子密度向 $O_2 - H_2$ 和 $O_2 - H_3$ 键中心转移。进行基组重叠 能校正后,在不同水平计算的形成复合物 c 的反 应热分别为 32.405 3(HF/3-21G), 18.016 1 (HF/6-311G + $+\,^{*\,*}$), 20. 046 5 (MP2/6-311G++**) kJ/mol,形成复合物 d 的反应热分 别为 15.4107 (HF/3-21G), 18.8166 (HF/6-311G++**), 21, 630 7 (MP2/6-311G++**) kJ/mol,表明形成复合物是个放热 反应,复合物较游离分子更稳定。通过表 1-3 还 可看出,形成复合物 c(HF/6-311G + + **) 使 (CH₃)₃SiOH 中 O₁—H₁ 键长从 0.093 9 nm 增 加到 0.094.4 nm,因而使— H_1 得到一定活化。形 成复合物 d (HF/6-311G++**) 使(CH₃)₃SiOH 中 O₁—Si 键长从 0.165 7 nm 增到 0.167 1 nm, 因而使—O₁H₁得到一定活化。键重叠布居也表 明,形成复合物 c(HF/6-311G + +**)使 $(CH_3)_3$ SiOH 中 O₁—H₁ 键的键重叠布居从 0.262 3降低到 0.210 1, 形成复合物 d(HF/6-311G++**) 使(CH₃)₃SiOH 中 O₁—Si 键的键 重叠布居从 0.166 3 降低到 0.141 9,进一步说明 形成复合物 c 使— H_1 得到活化,形成复合物 d 使 — O_1H_1 得到活化。键重叠布居分析还表明复合 物 c 的 H_1 原子与 O_2 原子间、复合物 d 的 H_2 原 子与 O_1 原子间无显著的成键迹象。

2.2 H 交换反应

应用 Gaussian03 中的 QST-3 方法搜寻了通 过复合物 c 和复合物 d 进行 H 交换反应的过渡 态 TS1 和 TS2 的结构(图 2)。频率分析表明两 个过渡态均仅有一个虚频: TS1, $-1~329.58~{
m cm}^{-1}$ (HF/6-311G + +**), $-2 153.77 \text{ cm}^{-1} (MP2/6-311G + + **); TS2,$ -1 015. 07 cm⁻¹ (HF/6-311G + +**), -693.83 cm⁻¹ (MP2/6-311G++**)。TS1 结 构表明,形成复合物 c 时, O_1 , H_1 , O_2 和 H_2 形成 一个四元环过渡态结构,然后 O₂—H₂ 键和 $O_1 - H_1$ 键断裂, $O_2 = H_1$, $O_1 = H_2$ 成键形成新 的 H_2O 和(CH₃)₃SiOH 分子。TS2 结构表明,形 成复合物 d 时, O_1 , H_2 , O_2 和 Si 形成一个四元 环过渡态结构,然后 O_2 — H_2 键和 O_1 —Si 键断 裂, O_2 与 Si, O_1 与 H₂ 成键形成新的 H₂O 和 (CH₃)₃SiOH 分子。图 3(a)和图 3(b)分别描述 了通过形成复合物 c 和通过复合物 d 的 H 交换 反应过程。图 4(a)和图 4(b)为水与三甲基硅烷 醇羟基的氢发生交换反应的能垒。从图 4 可看 出,无论是采用 HF 计算方法还是采用 MP2 计算 方法,复合物 d 均比复合物 c 稳定,而且通过复合 物 d 进行反应需要的活化能比经过复合物 c 进行 反应需要的活化能低,提示图 3(b)是有利的反应 途径。

Fig. 2 Optimized structures for the transition state TS1 and TS2 at HF/ 6-311G++** level

Fig. 3 Hydrogen exchange reaction paths between hydrogen of H₂O and hydroxy hydrogen of (CH₃)₃SiOH (a)——通过形成复合物 c,经 TS1 过渡态进行(Path via complex c and transition state TS1);
(b)——通过形成复合物 d,经 TS2 过渡态进行(Path via complex d and transition state TS2)

3 结 论

(1) 可形成 2 种形式的(CH₃)₃SiOH—H₂O 复合物,一是 H₂O 的 O 原子与(CH₃)₃SiOH 羟 基的 H 原子作用形成的复合物,另一种是 H₂O 的 H 原子与(CH₃)₃SiOH 羟基的 O 原子作用形 成 的 复 合 物。HF/6-311G + +** 和 MP2/6-311G++** 水平上,形成上述 2 种复合物的反应 热 分 别 为 18.016 1, 18.816 6 kJ/mol 和 20.046 5, 21.630 7 kJ/mol。

(2) 有利的氢交换反应路径为:首先由 H_2O 的 H 原子与(CH₃)₃SiOH 羟基的 O 原子作用形 成复合物,然后 H_2O 提供 1 个 H 原子、1 个 O 原 子,(CH₃)₃SiOH 提供 1 个 O 原子、1 个 Si 原子 形成由 O, H, O, Si 四个原子构成的四元环过渡 态,最后 H_2O 的 O 原子与(CH₃)₃SiOH 的 Si 原 子成键(同时 H_2O 的 1 个 O—H 键断裂)形成新 的(CH₃)₃SiOH,而(CH₃)₃SiOH 的 Si—O 键断 裂,由(CH₃)₃SiOH 的羟基和 H_2O 的 1 个 H 原 子形成新的 H_2O 分子, HF/6-311G + +** 和 MP2/6-311G++** 水平上,此路径的反应活化 能分别为 232.905 3, 186.898 4 kJ/mol。

参考文献:

- [1] Narisato Y, Munakata K, Koga A, et al. Enhancement of Isotope Exchange Reactions Over Ceramic Breeder Material by Deposition of Catalyst Metal[J]. J Nucl Mater, 2004, 329-333: 1 370-1 373.
- [2] Munakata K, Yokoyama Y, Baba A, et al. Tritium Release From Catalytic Breeder Materials[J]. Fusion Eng Des, 2001, 58-59: 683-687.
- [3] Nishikawa Y, Oyaidzu M, Yoshikawa A, et al. Correlation Between Tritium Release and Thermal Annealing of Irradiation Damage in Neutron-Irradiated Li₂SiO₃ [J]. J Nucl Mater, 2007, 367-370: 1 371-1 376.
- [4] Abramenkovs A A, Tiliks J E, Vasiljev V G. Tritium Extraction From Lithium Containing Ceramics by

Thermal Annealing in Out-of-Reactor Experiments[J]. Fusion Eng Des, 1991, 17: 61-64.

- [5] Munakata K, Koga A, Yokoyama Y, et al. Effect of Water Vapor on Tritium Release From Ceramic Breeder Material[J]. Fusion Eng Des, 2003, 69(1-4): 27-31.
- [6] Schauer V, Schumacher G. Study of Adsorption and Desorption of Water on Li₄SiO₄[J]. J Nucl Mater, 1989, 167: 225-230.
- [7] Nakazawa T, Yokoyama K, Noda K. Ab Initio MO Study on Hydrogen Release From Surface of Lithium Silicate [J]. J Nucl Mater, 1998, 258-263: 571-575.
- [8] Nakazawa T, Yokoyama K, Grismanovs V. Ab Initio Molecular Orbital Calculations on Chemical Nature of Hydrogen on Surface of Lithium Silicate[J]. J Nucl Mater, 2000, 279(2-3): 201-206.
- [9] Minkwitz R, Schneider S. Die Tieftemperaturkristallstruktur von Trimethylsilanol[J]. Z Naturforsch, 1998, 53B(4): 426-429.
- [10] Ignatyev I S, Partal F, López González J J, et al. Vibrational Spectra of Trimethylsilanol-The Problem of the Assignment of the SiOH Group Frequencies[J]. Spectrochimica Acta Part A, 2004, 60(5): 1 169-1 178.
- [11] Earley C W. Use of Effective Core Potentials for ab Initio Calculations on Molecular Siloxanes and Silicates[J]. J Comput Chem, 1993, 14 (2): 216-225.
- [12] Wiberg K B, Hadad C M, LePage T J, et al. Analysis of the Effect of Electron Correlation on Charge Density Distributions[J]. J Phys Chem, 1992, 96 (2): 671-679.
- [13] Mortier W J, Sauer J, Lercher J A, et al. Bridging and Terminal Hydroxyls, A Structural Chemical and Quantum Chemical Discussion [J]. J Phys Chem, 1984, 88(5): 905-912.
- [14] Senchenya I N, Kazansky V B, Beran S. Quantum Chemical Study of the Effect of the Structural Characteristics of Zeolites on the Properties of Their Bridging Hydroxyl Groups. Part 2 [J]. J Phys Chem, 1986, 90(20): 4 857-4 859.