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Abstract 

Use of microarrays to analyze drug responses has mainly been restricted to comparing treated versus 
untreated samples at a few time points. In order to decipher the complex expression interactions and 
their biological implications, we need to account for the temporal evolution of expression profiling over 
a number of time points. This paper analyzes data obtained from an extended microarray time series (rat 
liver) for the in vivo responses to a single dose of methylprednisolone (Almon, DuBois et al. 2003). We 
propose a framework that identifies, in an unsupervised, exact and rigorous manner, distinct expression 
patterns and furthermore, assigns a critical subset of informative genes to each of these expression 
motifs. The biological relevance of the identified groups of informative genes is evaluated within the 
context of known biological mechanisms of corticosteroids and potential mechanisms suggested by 
analysis of gene promoter sequences. 
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It has been hypothesized that expression profiling using 
gene arrays can be used to distinguish temporal patterns of 
changes in gene expression in response to a drug in vivo, 
and that these patterns can be used to identify groups of 
genes regulated by common mechanisms. With the high 
throughput sequencing of the complete genomes of a 
variety of species almost complete, experimental strategies 
combined with enhanced advances in modeling and 
computing have allowed biologists to accelerate the pace 
of understanding gene expression and transcriptional 
regulation in a systematic manner. Using DNA 
microarrays patterns of similar expression profiles have 
been linked to shared regulatory mechanisms (Wei, Liu et 
al. 2004). The next challenge thus becomes to elucidate 
the function of these genes and to discover how they 
interact to perform specific biological processes, 
especially for the large fraction of genes in the genome 
whose functions are currently unknown (Stuart, Segal et 

al. 2003). A common approach is to exploit relationships 
among co-expressed genes as these may provide strong 
evidence for the involvement of new genes in known 
biological functions. Of paramount importance in 
elucidating the functionality of genes and their overall 
contribution in biological functions is the fundamental 
understanding of the intricate and precise regulatory 
process that provides living cells with their remarkable 
properties. Therefore, charting gene regulatory networks is 
a major focus of interest in modern biology; that is 
assessing the information transfer from regulatory genes to 
structural genes whose products account for the 
phenotypic response of the gene. Therefore, the 
compendia of available gene expression experiments and 
the totality of possible co-expressed genes, are being 
augmented by considering the entirety of the regulatory 
networks affecting the transcription process (Wasserman 
and Sandelin 2004; Dohr, Klingenhoff et al. 2005). 



  
 

For such an analysis two critical questions need to be 
addressed:  
i. How to establish the exact link between genes that 

exhibit strong correlation in terms of their expression 
patterns and their underlying regulatory architecture 
(Qian, Lin et al. 2003) . 

ii. How to establish the potentially complete patterns of 
co-expression and their non-intuitive temporal 
relations (Qian, Dolled-Filhart et al. 2001) 
 
The subject of this paper is to explode an alternative 

approach towards the analysis of temporal expression data 
in an attempt to better characterize the nature of 
expression patterns. We also present some preliminary 
analysis in our attempt to establish relations among gene 
in terms of both their transcriptional profiles as well as 
their underlying regulatory architecture. In this work we 
focus on the work of (Almon, DuBois et al. 2003), 
analyzing the corticosteroid effects on rat liver. 

Temporal Patterns of Drug response 

Corticosteroids are a common group of drugs used to 
treat a variety of pathologies requiring anti-inflammatory 
intervention.  A prerequisite to understanding the 
complexities of drug treatment is a broader identification 
of both genes affected by steroid treatment and the 
temporal patterns of transcriptional changes that occur 
(Almon, DuBois et al. 2003). Thus two issues become 
important: gene selection and identification of their 
associated major expression motifs. 

(Almon, DuBois et al. 2003) 43 animals received a 
single 50-mg/Kg dose of methylprednisolone (MPL) 
sodium succinate (a corticosteroid). Two to three rats were 
sacrificed at the following time points after MPL 
administration: 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 6, 7, 8, 12, 
18, 30, 48 and 72 h. Four animals were used as controls 
and were sacrifices untreated. RNA extracted from liver 
tissue at each time point was analyzed. The temporal 
expression patterns of 8799 genes at all time points were 
collected. Particular emphasis was placed on 197 
corticosteroid responsive probe sets representing 143 
different genes. Using a combination of supervised 
methods, self-organizing maps and k-means clustering, the 
expression patterns were classified into six patterns. In a 
subsequent work (Jin, Almon et al. 2003) pharmacokinetic 
models were derived for each of the six clusters to 
describe possible inhibitory and stimulatory mechanisms 
defining the transcription process. 

A critical component in this, and other similar studies, 
is how to establish the relationship between the available 
transcriptional profiles and how to extract in a systematic 
and unsupervised manner significant expression motifs 
and the key gene subsets associated with each pattern. In 
this work we propose a very efficient algorithm for 
extracting significant patterns of expression (motifs), 
evaluate the groups proposed by (Almon, DuBois et al. 
2003) and begin the assessment of the the relationships 

between gene characterized by similar expression motifs 
and their underlying regulatory architectures.   

Clustering Temporal Gene Expression Data 

Clustering of time series data, of which a subset is the 
transcriptional data from large-scale microarray 
experiments, is a very active area of research and a variety 
of problems have been discussed in the open literature. 
The fact that this problem persists, in particular as it 
related to genomic data, is just an indication of the many 
complexities both computational and interpretational. 
Among the leading candidates for clustering expression 
profiles are distance-based methods, with k-means 
clustering being one of the leading candidates. However, it 
has been argued recently that distance based methods 
generate local solutions that are not necessarily 
meaningful (Lin and Keogh 2004). Furthermore, 
identifying a priori the number of necessary clusters 
remains, in general, an open problem. However, 
significant successes have been identified in the open 
literature.  

The purpose of this study is to explore alternative 
ways that attempt to characterize, in an unsupervised 
manner, the raw expression data in an attempt to identify 
leading “motifs” within the expression data. Our main 
motivation is to define identifiers that uniquely 
characterize each transcriptional profile. Our goal is to 
identify those transcripts that share significant components 
of their expression patterns. 

Finding motifs in time series and proximity preserving 
hashing 

The goal of our approach is to concurrently achieve a 
characterization of the transcriptional data as well as a 
significant dimensionality reduction in order to assess the 
qualitative characteristics of the expression data. In order 
to do so, we explore the idea proposed by (Lin, Keogh et 
al. 2002). The algorithm transforms the time series data 
into a sequence of symbols, which are subsequently 
hashed to unique (motif-dependent) identifiers. The 
hashing function explores the concept of proximity 
preserving hashing (Chin 1994), that is similar structures 
hashing to similar values. The steps of the algorithm are 
1. Let { }i,tE , i 1, , N; t 1, ,T= =… … be the expression 
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5. Discretize the piecewise linear approximation based 
on break points according to a normal distribution. 



  

Break points are defined as the equi-probability 
partitions of the N(0,1) distribution. The normalized 
time series is transformed to a symbolic representation 

as follows: 
i,t
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symbolic representation using α=3 symbols {1,2,3} 
would be such that 

otherwise. 
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6. Assign a unique hash value (motif identifier) to each 
sequence using the following (Lin, Keogh et al. 
2002):                  

, α is the size 

of the alphabet used in the symbolic representation 
(Step 5). This hash functions assigns to each symbolic 
representation an integer in the interval [1, w
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7. The hash values (motifs) can now be sorted and 

similar motif values correspond to similar 
transcriptional profiles. 
The overall process is illustrated in Figure 1 using as 

example one of the transcriptional profiles of our dataset. 

Analysis of the (Almon, DuBois et al. 2003) Data 

The dataset contains 8,799 probes, 17 times points 
with multiple repeats for each point. In total there are 47 
measured values for each probe. As a first approximation, 
the repeats are average at each time point and the temporal 
transcriptional data contain 17 values per probe. The 
aforementioned analysis is extremely fast (about 1.5s). 
The following is a short summary of the computational 
results: 
1. The original work of (Almon, DuBois et al. 2003) 

through a combination of supervised and k-means 
algorithms hypothesized the existence of 6 clusters. 
Our analysis identifies a potentially significant 
number of expected motifs. This is a further proof of 
the necessity of approaches such as the one proposed 

in this paper. If the actual number of expected motifs 
were unknown, distance-based algorithms that assume 
a knowledge of the potential number of clusters 
would essentially produce results that meet the user 
criteria.  

2. Figure 2 depicts the “homogeneity” of each motif in 
terms of their corresponding values. Based on this we 
argue that cluster 1 forms a well defined 
neighborhood, and clusters 4 and 6 are very close in 
terms of their corresponding motifs and the actual 
transcriptional profiles are very hard to distinguish 

3. We focused out analysis on the six clusters proposed 
by (Almon, DuBois et al. 2003). Based on our 
analysis, we confirm the existence of significant 
patterns (including clusters 1, 2, 3 and 5) with the 
most uniform distribution of motif values within the 
classes and also providing the strongest signatures of 
symbol distribution as shown in Figure 3. Clusters 4 
and 6 are harder to distinguish 

Conclusions 

In this paper we have illustrated the application of a 
novel way for representing the information content of 
transcriptional profiles. We attempted to develop emerging 
motifs of the expression profiles and by analyzing those 
identify probes with persistent and overpopulated 
expression patterns. These in turn can be used to postulate 
tentative significant expression motifs characteristic of the 
transcriptional profiles. We are currently in the process of 
developing the associations between emerging stable 
expression profiles, participating genes and their possible 
common elements of regulatory elements. Based on the 
hypothesis that co-expressed genes are co-regulated based 
on the presence of common regulatory elements (or 
combinations thereof), we attempted to identify and 
characterize the gene promoter regions from clusters of 
co-expressed genes.  For each of the clusters identified in 
(Almon, DuBois et al. 2003) we attempted to identify the 
promoter region; this was not possible in all cases.  For 
those genes whose promoters could be identified, we 
analyzed the promoters for the presence of regulatory 
elements using the ModelInspector utility of the 
Genomatix software suite (http://www.genomatix.de).  
The 374 DNA-protein binding matrices (models) analyzed 
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Figure 1: The representation scheme 

Figure 2: Motifs and corresponding clusters 



  
 
were collapsed onto 142 families (functionally related 
binding sites). We are in the process of analyzing the 
possible correlations between genes belonging to similar 
motif families and the corresponding regulatory 
architectures. Preliminary results indicate possible 
relations between genes of similar motif and their 
regulatory network but the relations need to be further 
explored  
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Figure 3: Distribution of motif values within the 6 clusters  


