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Abstract

Microarray experiments are emerging as one of the main driving forces in modern 

biology. By allowing the simultaneous monitoring of the expression of the entire 

genome for a given organism, array experiments provide tremendous insight into the 

fundamental biological processes that translate genetic information. One of the major 

challenges is to identify computationally efficient and biologically meaningful analysis 

approaches to extract the most informative and unbiased components of the microarray 

data. In this paper we introduce a framework that integrates machine learning and 

optimization techniques for the selection of maximally informative genes in microarray 

expression experiments. The proposed approach provides tremendous reduction in the 

number of informative genes, compared to similar analyses by generating biologically 

relevant minimal subsets of genes. 
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1. Microarray experiments: Brief introduction and major limitations

The goal of modern biology is to bridge the gap between the genetic information at its 

most elementary level and the collective expression of behaviour. The successive steps 

for translating sequence to structure to function are highly complex and cannot be 

modelled strictly from first principles. Experimental techniques have been developed 

that have revolutionized the way we look at complex biological systems since they 

allow to monitor changes during the process of transforming genetic information.  

The genetic information is stored in the DNA. In order for the genome to direct, or 

affect, changes in the cell a transcriptional program must be activated dictating all 

biological transformations. This program is regulated temporarily according to an 

intrinsic program or in response to changes in the environment. The expression of the 

genetic information, stored in DNA, takes places in two stages: transcription, during 

which DNA is transcribed into mRNA, and translation, during which mRNA provides 
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the blue-print for the production of specific proteins. Measuring the level of production 

of mRNA, thus measuring the expression levels of the associated genes, provides a 

quantitative assessment of the levels of production of the corresponding proteins. 

Innovative approaches such as cDNA and oligonucleotide microarrays were recently 

developed to extract genome-wide information related to gene expression (Brown and 

Botsein, 1999; Cheung et al., 1999; Dudoit et al., 2000). A number of experiments can 

thus be designed to address a variety of issues. For instance: 

1. Diversion from normal physiology is frequently accompanied by changes in gene 

expression patterns. Therefore, genes inappropriately transcribed cause diseases 

like cancer. Comparison of the expression profiles of such cells provides the basis 

for the understanding of the genetic causes of a disease.  

2. By monitoring the changes in the expression levels of a genome in the presence of 

environmental changes provides the beginning for a fundamental understanding of 

the causes of the response in the presence of an environmental stimulus.  

One of the major challenges is to extract in a systematic and rigorous way the 

biologically relevant components from the array experiments in order to establish 

meaningful connections linking genetic information and cellular function. Because of 

the significant amount of experimental information that is generated (expression levels 

of thousands of genes) computer-assisted knowledge extraction processes are the only 

realistic alternative for managing such an information deluge. Array experiments are 

characterized by a number of inherent limitations, which have to be well understood 

before any analysis attempts are made. Given the complexities of biological functions, it 

is not necessary that co-expressed genes be also co-regulated.  In array experiments the 

generated data are interpretations of measurements rather than hard data. Furthermore, 

tremendous variability and uncertainty exists not only because of biological 

fluctuations, but also as a result of the processing of the experiment itself. Finally, 

although a large number of genes are monitored during the experiment we must also 

realize that, in general, we have a very limited number of cells that are analyzed and an 

even smaller, if any, number of repeats to statistically validate the robustness of the 

measurement. Simply put, we have a much larger number of independent (input) 

variables that we measure compared with the number of experiments (output variables) 

that we generate. In principle, when the ratio of experiments/variables is very small it is 

highly unlikely that we can correctly capture the inherent non-linear structure of the 

experiments and the relationship between input and output variables.  

A number of excellent publications have focused on different aspects of gene expression 

experiments, primarily for clustering of cells and genes (Alizadeh et al., 2000; Alon et 

al., 2000; Golub et al., 1999). The development of novel computational approaches that 

exploit large warehouses of gene expression data have been identified as major enablers 

for realizing fully the potential of this technology (Basset et al., 1999). Even though 

these approaches were very successful at, implicitly, reducing the number of putative 

genes with significant signature characteristics the resulting models still involve a 

significant number of genes, often in the hundreds. In our prior work (Androulakis, 

2004) we presented a framework that identifies the minimum subset of informative 

genes while imposing the maximum possible simplicity of the model describing the 



data. The approach will be briefly summarized in the following section. In this paper we 

extend the proposed model to describe the topology of the distribution of data that (1.1)

results from the selection of the maximally informative genes. We demonstrate how the

incorporation of explicit topological complexity measures identifies not only robust but

also highly biologically relevant solutions.

2. An integrated Optimization Machine Learning approach for the 

selection of informative features 

In a recent publication (Androulakis, 2004) a model was presented which is based on 

classification trees (Breinman et al., 1984, Quinlan, 1993) as well as a thorough review

of the basic principles characterizing the feature selection problem and its complexities

in the context of machine learning literature in general and in selecting informative

genes in particular. The fundamental assumption of the approach is that the minimum

set of maximally informative genes is the one that produces the least complex decision

tree. The complexity of the decision tree is determined according to the number of 

genes used for the classifier and the number of rules that comprise the tree. The issue of 

simplicity in classification trees has long been advocated as a rule for building robust

classifiers (Fayyad, 1990). The framework is put together in a large non-linear

combinatorial optimization problem as follows:

i

N
i G

i i

i=1 i G

min C C'

subject to:

C T( , i 1,..., N)

min Complexity = Number of Rules

1,g I G
min ,

0,g I G

(1)

The objective in (1) measures the accuracy of the classifier. C and C’ are vectors 

containing the class assignment of the samples. C' denotes the actual assignment

whereas C is the assignment derived based on the classifier. The latter depends of the

number of features and the particular decision tree that is derived and is implicitly

defined via the use of the classifier, denoted in our formulation as C=T ( i, i=1...N). The 

"norm" ||C-C'|| can be defined in a number of different ways: count of the number of 

erroneous predictions, percent of erroneous prediction, etc. Once the classifier has been

applied to a given set of features its complexity, in terms of the number of classification

rules required, is identified and is denoted as "Complexity" in (1). This defines another

level of optimization as we search for the minimum possible complexity in the

classifier. Finally, feature selections are modelled through the use of appropriate binary

variables. The value of the binary variable is 1 if the particular gene is to be 

incorporated in the classifier, 0 otherwise. The set of informative genes, IG, is a subset

of the original set of genes.  The details of the solution methodology are presented in

(Androulakis, 2004). It should be pointed out that the fundamental hypothesis defining



the relationship between informative features and the complexity of the classification 

rules does not dependent on the classification algorithm.

3. Incorporating the complexity of the classification problem 

Formulation (1) deals only with the complexity of the classification model, i.e., number

of features used and number of rules in the model. However, these conditions do not

capture the geometric characteristics of the space partitioning achieved by the 

distribution of the feature values. What we would like to incorporate is also a “method-

independent” metric of complexity. For that reason we have explored the concept of

“separating boundaries” (Ho, 2002). A measure of the complexity of the boundary

separating the classes is given by the “boundary length” defined as the percent points on

an edge connecting two opposite classes in the minimum spanning tree (MST)

connecting all samples (Friedman and Rafksy, 1979). For multi-class problems we 

introduce as our geometric complexity metric (GCM) the following quantity:

i j

i j i j

MST
GCM

min d
. According to this definition, we evaluate the MST of our

data, based on the particular selection of genes, and for each pair of classes (i,j) we

determine the separating boundary (arcs of the tree connecting i and j) and normalize

with respect to the minimum arc between the two classes. The case where no arc 

between two classes exists is appropriately taken into account. The goal is to achieve a

spatial partitioning of the data that generates the least number of inter-class MST arcs 

whereas the class separability is maximized. Thus, our formulation incorporates one

extra level in order to minimize the geometry complexity metric as well. 

3.1 Computational Results

The aforementioned formulation has been successfully applied to a variety of problems

described in Table 1. Our proposed methodology outperforms any other method in its

ability to significantly reduce the number of “informative” genes. The key points will be

illustrated using the "Small Round Blue Cell Tumours" (SRBCT) as our motivating

example. It will be demonstrated how the ”computationally” informative features are

also biologically relevant. SRBCt is a descriptive category encompassing a large

number of malignant tumours that tend to occur in childhood. They are united by their

similar histo-pathological appearance. However, subtle clues may be present to

distinguish between the tumours. For proper characterization pathologists often employ

immunohistochemistry, electron microscopy, and molecular analysis for chromosomal

abnormalities.  The SRBCTs include neuroblastoma (NB), rhabdomyosarcoma (RMS), 

non Hodgkin lymphoma (NHL/Burkitt Lymphoma), and the Ewing family of tumours

(EWS). Currently no single biological or chemical test exists that can detect SRBCTs.

Khan et al. (2001) presented a comprehensive study in which a large number of genes 

were monitored. Their analysis includes a training set of 63 samples and a blind set of

20 samples for testing. Overall they identified a sub-set containing 96 most informative

genes by performing an exhaustive sensitivity analysis with a model combining PCA 

and artificial neural networks. Our approach however has the ability to explicitly

incorporate the various complexity metrics thus leading to an optimal solution that has



capture the essence of the experimental data. We identified that the minimum numbed 

of informative genes is indeed 3. However, the analysis has to be parametric in terms of 

geometric complexity. The parametric analysis is easily incorporated by replacing the 

inner optimizations by equality constraints, i.e., setting the desired levels of complexity 

and number of genes. We have performed numerous parametric analyses. For 

illustration purposes we discuss the two “simpler” models. The optimal solution with 9 

rules gives a more complex separating boundary (GCM = 12.0) than the optimal 

solution with 11 rules (CM = 5.4), both solution use 3 genes. The reason is that the 

second solution selects variables that have a wider range of distribution values. What is, 

however, far more significant is the analysis of the solutions that we generated.  

Specifically:

1. Solution 1: 3 genes, 9 rules, complexity metric 12.0, active genes: MIC2, FGF4, 

CTNNA1. No misclassified samples in the training test, 1/20 misclassified testing 

samples. 

2. Solution 2: 3 genes, 11 rules, complexity metric 5.4, active genes: MIC2, IGF2, 

MAP1B. No misclassified samples in the training test, 2/20 misclassified testing 

samples. 

Table 1. Data sets employed in the analyses 

Data Set Data Source Genes Samples Samples/Genes Classes Informative 
genes

SRBCT1 Nat. Med, 7:673(2001) 2303 63(20)2 0.04 4 3

Colon Cancer PNAS, 96:6745(1999) 2000 62 0.03 2 3

CMM3 Nature, 406:536(2000) 8067 31 0.04 2 1

GIST4 Can. Res., 61:8624(2001) 1987 18 0.01 2 1

Leukemia Science, 286:531(1999) 2000 38(34)5 0.04 2 2

Breast Cancer NEJM, 8:539(2001) 3226 22 0.01 3 2

HPC6 Can. Res., 61:4663(2001) 6500 25 0.01 2 1

(1) Small Round Blue Cell Tumours, (2) 63 training samples, 20 testing samples, (3) Cutaneous

Malignant Melanoma, (4) Gastrointestinal Stromal Tumour, (5) 38 training samples, 34 testing 

samples, (6) Human Prostate Cancer 

According to the rule sets we have generated, FGF4 is mostly responsible for 

classifying EWS samples, whereas MIC2 for EWS samples. Even though this is a 

purely computational observation, MIC2 is indeed used to diagnoses EWS, whereas 

FGF4 is known to be actively related to myogenesis (Khan et al., 2001). Furthermore, 

IGF2 has been reported in RMS is various studies. Our computational results, in terms 

of variables that discriminate between RMS and EWS are very consistent with the 

leading biological hypotheses regarding these two classes. The two remaining genes in 



our respective models, CTNNA1and MAP1 are known to be abnormally expressed in 
cancerous cells. Both solutions are depicted in Figure 1. 
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Figure 1: Distribution of expression data points for solutions 1 (left) and 2 (right). Also depicted 
are the intra-class minimum spanning tress connections. 

4. Conclusions and future work 
We have demonstrated how our novel methodology for informative gene selection has 
not only produced minimal sets of maximally informative genes that build accurate 
classifiers, but also we proved that the genes that were selected are also biologically 
relevant and can be used as potential targets. Currently we are exploring more efficient 
solution methodologies as well as extensions of the approach to temporal gene 
expression data. 
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