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Abstract 
 

Microarray experiments are emerging as one of the main driving forces in modern biology. 
Via simultaneous monitoring of the expression of the entire genome for a given organism, array 
experiments provide tremendous insight into the fundamental biological processes that 
translate genetic information. We explore the relationship between computational complexity, 
robustness, and biological relevance. We formulate the problem of identifying maximally 
informative genes as a combinatorial optimization problem and demonstrate how the 
combination of integer optimization and machine learning approaches produces biologically 
interpretable sets of informative genes with strong biological implications. We suggest how to 
analyze the complexity of the model and how to incorporate complexity issues in the selection 
process. We demonstrate our methodology using numerous publicly available microarray 
datasets. Finally, we comment on the computational complexity of our approach and on 
necessary algorithmic and computational developments for achieving optimal efficiency. 
 
1. Microarray experiments: a brief introduction and major limitations 
 

The goal of modern biology is to bridge the gap between genetic information at its most 
elementary level and the collective expression of behavior. For the genome to direct changes in 
the cell, activated transcriptional programs intrinsically dictate all biological transformations. 
Expression of the genetic information, stored in DNA, takes places in two stages: transcription 
and translation. Measuring mRNA production level, i.e., measuring gene expression levels 
provides a possible quantitative assessment of corresponding levels of protein production. 
Innovative approaches were recently developed to quantify genome-wide gene expression [1]. 
One major challenge is to extract in a systematic and rigorous way the biologically relevant 
components needed to establish meaningful connections linking genetic information and 
cellular function. Because of the amount of experimental information generated, computer-
assisted knowledge extraction processes are the only realistic alternative for managing such an 
information deluge. However, a number of inherent limitations need to be analyzed before 
attempting any analysis. In array experiments, the generated data are interpretations of 
measurements rather than hard data. Tremendous variability and uncertainty exist, not only 
because of biological fluctuations but also because of the processing of the experiment. 
Although a large number of genes are monitored during the experiment, we must also realize 
we have a very limited number of analyzed cells, and an even smaller, if any, number of repeats 
to statistically validate the robustness of the measurements. We measure a much larger number 
of independent (input) variables compared to the number of experiments (output variables) we 
generate. In principle, with a small ratio of experiments to variables, it is highly unlikely that 



{ }
classes

i, j

CA GCM

i, j
i, j

Classifier
Accuracy

(CA) Geometric Complexity Metric
(CGM

arci, j
N arc MST

min C C'
min di 1 j i arc

arc MST

)
subject to:

C T(

 
 
 
 

∈  ω − + ω 
 = ≠
 ∈
 
 
  

= λ

∑

∑ ∑

G

G

i G

, i 1,..., N)i
CCM CCM                                          (1)t arg et
N

Ni
i=1

1,g I Gi
i 0,g I G

=
=

λ =

∈ ⊆λ =  ∉ ⊆

∑

we can correctly capture the inherent non-linear structure of the relationship between input and 
output variables. 

Publications have focused on different aspects of gene expression experiments, primarily 
clustering of cells and genes [2, 3]. Development of novel computational approaches that 
exploit large warehouses of gene expression data significantly enables the realization of the full 
potential of this technology. Even though previous approaches were successful at implicitly 
reducing the number of putative genes with significant signature characteristics, the resulting 
models still involve a significant number of genes, often hundreds. We will present a 
framework that identifies the minimum subset of informative genes while imposing maximum 
possible simplicity of the model describing the data. We summarize the approach in the 
following section. In this paper, we extend the model to describe the topology of the data 
generated from the maximally informative genes. We demonstrate how by incorporating 
topological complexity measures we identify robust and biologically relevant solutions. 
 
2. Integrating optimization and machine learning to select informative genes 
 

Our proposed methodology addresses simultaneously a number of design issues. In a recent 
publication [4], we presented a model based on classification trees [5] and a thorough review of 

the basic principles characterizing the feature 
selection problem and its complexities in the 
context of machine learning and selection of 
informative genes. A fundamental assumption 
is that the minimum set of maximally 
informative genes is the set of genes producing 
the least complex decision tree. The decision 
tree’s complexity is determined according to the 
number of genes used for the classifier and the 
number of rules comprising the tree. The issue 
of simplicity in classification trees has been 
advocated as a way to build robust classifiers 
[6]. Formulation 1 shows our framework as a 
large non-linear combinatorial optimization 
problem. C and C’ are vectors containing 
classifier-derived class assignments and actual 

class assignments, respectively, of the samples. The former depends on number of features and 
is implicitly defined via the classifier, denoted C=T(λi, i=1...N). The “error” term resulting from 
applying the specific classifier model used, or ||C-C’||, can be defined in a number of different 
ways. Binary variables model the features selected. The binary variable equals 1 if a particular 
gene is incorporated in the classifier, and 0 otherwise. The set of informative genes, IG, is a 
subset of the original set of genes.  

Minimizing the number of features (genes) in the model. The obvious way to simplify the 
complexity of our classifier is to minimize the number of degrees of freedom used for building 
the model. A widely used approach in microarray analysis is feed-forward or backward feature 
selection process [3]. However, the problem is synergistic effects are not properly captured, and 
it is often difficult to conclude the actual number of informative features. Therefore, a search 
algorithm must explicitly account for the actual number of features used. For linear 
discriminant models, concepts such as Akaike and Bayesian Information Criteria (AIC, BIC) 
have been used, albeit in a stepwise fashion. In either case, the maximum likelihood estimation 



is augmented to account for the number of features (variables) used in the model. We also treat 
the total number of features used in the model explicitly as one of our complexity criteria. 

Minimizing model complexity (Classifier Complexity Metric, CCM). The definition of 
complexity in a model is not an easy task. When the decision boundary is a hyperplane, it is 
rather straightforward to require a minimum number of non-zero coefficients (e.g., AIC and 
BIC). In many other cases outside of a hyperplane, it is not obvious how to decide which model 
is “simpler” since simplicity is ill defined. We choose to adopt “axis parallel decision trees” as 
our classifier because they (i) have been shown to be very robust models and (ii) provide a 
simple way for describing the “complexity” of the classifier by monitoring the number of rules 
(terminal nodes) in the decision tree. Therefore, we consider explicitly the number of terminal 
nodes as part of our optimization objectives. A general introduction for decision trees and 
details of the specific implementation of C4.5 decision tree used in this study are accessible [5]. 
Our fundamental hypothesis defining the relationship between informative features and the 
complexity of the classification does not depend on classification algorithm. 
 
3. Incorporating the complexity of the classification problem 
 

So far, we have discussed only the complexity of the classification model. This does not 
capture the geometric characteristics of the space partitioning achieved by the data’s 
distribution in the reduced space defined by the selected subset of features. We would like to 
incorporate a “method-independent” metric of complexity characterizing the data’s geometric 
“layout”; in other words, identify features rendering the classification problem simpler. Thus, 
we have explored the concept of “separating boundaries” [7]. A measure of the complexity of 
the boundary separating the classes is the “boundary length,” the percentage of edges 
connecting two different classes in the minimum-spanning tree (MST) built from all samples. 
This measure is an extension of the independence test of samples from two univariate 
distributions, FX and FY. In this case, standard methods, the Wald-Wolfowitz and Smirnov non-
parametric two-sample tests, evaluate the null hypothesis (H0: FX = FY) by sorting the data and 
collecting statistics on the total number of runs. For multivariate case, these tests are extended 
by using the concept of the MST in order to “sort” the data. In the multivariate case, runs are 
defined as the sub-graphs of the MST containing points from the same distribution. The concept 
was extended to characterize inherent separability of two class problems and proved the 
correlation between complexity metric and ability to build accurate classifiers [7]. 

For multi-class problems, Equation 2 shows our geometric complexity metric (GCM). 
According to Equation 2, we determine the MST of 
the data, based on a particular selection of genes, and 
for each pair of classes (i,j), we determine the 
separating boundary (arcs connecting class i and 
class j), and normalize by the minimum or average 

arc between the two classes. We appropriately take into account when no arc between two 
classes exists. Thus, our formulation incorporates one extra level in order to minimize the 
geometry complexity metric. We desire to minimize complexity either by minimizing MSTij, 
the MST boundary length or by minimizing GCM. This complexity metric determines how 
elaborate the expected classifier will be or how challenging it will be to classify the data in the 
reduced space. The GCM determines the spacing that occurs between multiple classes. By 
including the GCM, we can characterize various solutions individually and determine the best 
solution from multiple solutions found. We discovered a direct linear relationship between 
MST boundary length and the ratio between average intra-class-nearest neighbor (NN) and 
average inter-class-NN. 
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Table 1: Data sets used in the analyses 

 
4. Computational results 
 

The aforementioned formulation has been successfully applied to the variety of problems in 
Table 1. SRBCT stands for small round 
blue cell tumours. Melanoma stands for 
cutaneous malignant melanoma. GIST 
denotes gastrointestinal stromal tumor. 
NCI60 represents 60 samples from the 
National Cancer Institute’s cancer cell 
lines. Samples in parentheses denote 
number of testing samples; otherwise, 
samples denote training samples. Our 
methodology significantly outperforms 
any other method in the reduction to a 
small number of “informative” genes. 

SRBCT Data Set: SRBCT is a category encompassing a large number of malignant tumors 
that tend to occur in childhood. SRBCTs include neuroblastoma (NB), Burkitt Lymphoma 
(BL), the Ewing family of tumours (EWS), and rhabdomyosarcoma (RMS). Currently, no 
single biological or chemical test can detect SRBCTs. The original analysis included a training 
set of 63 samples and a blind set of 20 samples for testing. A sub-set of 96 most informative 

genes was identified by performing 
sensitivity analysis by combining 
principal component analysis (PCA) and 
artificial neural networks [8]. Our 
approach, however, has the ability to 
explicitly incorporate various complexity 
metrics leading to a solution capturing the 
essence of the experimental data. We 
identified 18 solutions with three genes, 
the least number of informative genes. 
More important however is the 
observation that the vast majority of these 
18 solutions contain the same pair of 
genes: MIC2 and FGFR4, and thus define 
a conserved pattern of informative genes. 

Figure 1 shows a solution with RMS (triangles), NB (circles), EWS (squares), and BL 
(diamonds). NCI60 Data Set: NCI60 contains were nine classes of cancers: central nervous 
system (CNS), renal (RE), ovarian (OV), leukemia (LE), colon (CO), breast (BR), melanoma 
(ME), prostate (PR), and non-small-lung (NS). Our analysis found the minimum number of 
genes was six. A significant portion of six-gene rule sets generated contain a quartet of genes: 
IL11, GNAI2, CD24, and GLG1. The fifth gene involved has a GenBank accession number of 
X99393. These five genes are commonly present together in six-gene rule sets.The five genes 
form a conserved pattern much like MIC2 and FGFR4 did for the SRBCT data set. We found 
83 six-gene solutions with these five genes. The decision trees formed by the six-gene 
combinations are quite similar to one another; hence, we believe further analysis is necessary 
into this emerging pattern. According to the rule sets we generated, IL11 segregates NS from 
CO, CD24 distinguishes CN from RE and LE from OV, and GLGL1 discriminates between BR 
and ME. In many solutions, GNAI2 separates NS from RE and CO from PR. 

Data Set Genes/Samples/Classes IG 
SRBCT [8] 2303/63(20)/4 3 
Colon [2] 2000/62/2 3 
Melanoma [9] 8067/31/2 1 
GIST [10] 1987/18/2 1 
Leukemia [3] 2000/38(34)/2 2 
Breast Cancer [11] 3226/22/3 2 
Prostate [12] 6500/25/2 1 
NCI60 [13] 7129/60/9 6 

Figure 1: SRBCT three-gene solution with 
minimum CCM with intra-class connections 

in MST depicted with lines 



We have shown our proposed methodology finds (i) a set of maximally informative genes 
accurately classifying the data and exhibiting minimum classifier and geometric complexity and 
(ii) multiple solutions, useable as valid biological hypotheses, providing accurate classification 
and minimum model complexity in terms of CCM and the number of genes used. Our 
framework found NCI60 and SRBCT data sets have a conserved pattern of five and two genes, 
respectively, in multiple solutions, which demonstrates the robustness of our solutions. Two 
key genes found in our solutions to the SRBCT data set: FGFR4 and MIC2, also known as 
CD99. FGFR4 is a tyrosine kinase inhibitor expressed during myogenesis and prevents terminal 
differentiation in myocytes [14]. It is currently a therapeutic target due to its high expression in 
RMS. This is highly consistent with the associated rule identified stating high values of FGFR4 
primarily characterize RMS. The second most frequent gene, MIC2, is currently used to 
diagnose EWS [15]. This is consistent with our decision tree which identified high expression 
values of MIC2 characterize EWS. For the NCI60 data, IL11, GNAI2, CD24, and GLG1 were 
four of the five genes we found in a set of solutions forming a six-gene emerging pattern. 
Previous literature supports our selection of these genes as potentially being involved in cancer 
development. Breast cancer cells stimulate the production of IL11 [16]. Deletions in the region 
of the GNAI2 gene have been associated with lung cancer [17]. CD24 is predictive of prostate-
specific antigen relapse and was over-expressed in 38.5% of patients with prostate carcinomas 
[18] and has been linked with ovarian carcinomas [19]. Atypical expression of GLG1 has been 
associated with pancreatic adencarcinoma [20]. Genes involved in a significant majority of our 
minimal-gene rule sets have been previously associated with abnormal expression patterns 
linked to cancer. 
 
6. Conclusions and future work 
 

We have demonstrated that biologically relevant interpretations of large-scale gene 
expression experiments are plausible if we look at the interpretation problem not from an 
accuracy point of view but also from a complexity point of view. We formulated the problem of 
informative gene selection as a large-scale combinatorial optimization problem demonstrated 
the development of a number of complexity criteria that need to be optimized. We have 
demonstrated further that novel combinations of machine learning and optimization algorithms 
provide insightful leads for addressing the pressing problems of modern biology. Using our 
methodology, we found multiple solutions for use as biological hypothesie and which could be 
further distinguished by additional analyses. These multiple solutions had a conserved pattern 
of genes, providing robustness in our methodology and our proposed models. The 
computational tasks from our novel combination of machine learning and optimization 
algorithms are daunting. Solution of nonlinear combinatorial optimization problems requires 
not only the development of novel algorithms but also the support of advanced computer 
architectures. One main advantage of a mathematical programming formalism, like the one we 
presented, is the ability to incorporate seamlessly additional biological knowledge as constraints 
and to integrate diverse sources of biological information. 
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