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ABSTRACT

Knowing the subcellular location of a protein is critical to
a full understanding of its function, and automated,
objective methods for assigning locations are needed as
part of the characterization process for the thousands of
proteins expressed in each cell type. Fluorescence
microscopy is the most common method used for
determining subcellular location, and we have previously
described automated systems that can recognize all major
subcellular structures in 2D fluorescence microscope
images. Here we show that 2D pattern recognition
accuracy is dependent on the choice of the vertical
position of the 2D slice through the cell and that
classification of protein location patterns in 3D images
results in higher accuracy than in 2D. In particular,
automated analysis of 3D images provides excellent
distinction between two Golgi proteins whose patterns are
indistinguishable by visual examination.

1. INTRODUCTION

The understanding of protein function in mammalian cells
is critically dependent upon knowledge of protein
subcellular location because the function of a protein is
affected by the biochemical environment of the
compartment in which it is located. Fluorescence
microscopy is the method of choice for obtaining protein
subcellular location information in large-scale protein
discovery experiments that utilize various gene tagging
methods [1-3]. In order to make sense of the image data
generated by such approaches, automated interpretation
methods are needed because protein location patterns are
highly complex. Due to extensive cell-to-cell variability
of subcellular patterns it is not possible to compare images
pixel by pixel. Therefore automated analysis of protein
subcellular location must rely on concise numerical
descriptors of the patterns in the images. We have
previously developed numerical features (termed SLF for
Subcellular Location Features) computed from 2D
fluorescence microscope images [4]. We have shown the
SLF to accurately represent the complexity in such images
by using them successfully for automated classification of

protein location patterns [4-6], statistical comparison of
imaging experiments [7] and objective choice of
representative images [8]. The classifiers developed were
shown to be capable of distinguishing all major protein
subcellular location patterns and to be able to distinguish
between pairs of very similar patterns indistinguishable by
eye.

It has become common in biological research to
collect 3D images of cells using optical sectioning
techniques such as laser scanning microscopy. Having
shown the feasibility of using numerical features to
describe and interpret protein location patterns in 2D
images we asked whether the same approach could be
applied to 3D images of cells and perhaps more
importantly, whether there would be any advantage to
doing so. One might expect that 2D images would not
capture sufficient information about protein location in
some cell types (referred to by biologists as polarized
cells) that exhibit a specific orientation in three
dimensions. For example in epithelial cells (e.g. those
forming the boundary between the gastrointestinal tract
and the bloodstream), the apical surface typically has a
different composition from that on the basal and lateral
surfaces. One would anticipate that in this kind of a cell
type it may be necessary to use 3D pattern recognition
methods because 2D images can only capture information
from one of these surfaces. Unpolarized cells on the other
hand are sufficiently flat that a 2D image (i.e. a single
optical section through the cell) can capture most, but
perhaps not all of the protein location information.
However, even for unpolarized cells, 3D images may
contain additional information beyond that in 2D images.
For example, even though F-actin in HeLa cells is found
throughout the cell, it is often more concentrated above
the nucleus than below it. The opposite is true for tubulin,
which is preferentially located near the bottom of the cell.

2. RESULTS

2.1. 3D Image Datasets

As a first step toward evaluating the feasibility of 3D
subcellular pattern recognition, a database of 3D images
of ten different subcellular patterns with 50 to 52 images
per class was created. To maintain the maximum
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comparability to previous 2D work [4], the same ten
classes of probes and the same cell line (HeLa) were used.
Images were acquired using a three-laser confocal laser
scanning microscope capable of imaging three
independent channels of fluorescence. Each specimen
was labeled with three different fluorescent probes (Figure
1) that bind to: a specific organelle or structure (e.g.,
tubulin for microtubules), DNA, and all cellular proteins.
The DNA probe was used to provide a common frame of
reference for protein distribution in the cell, allowing
some numeric features to be calculated relative to the
DNA image. The total protein distribution was used for
automated segmentation of individual cells in fields
containing more than one cell. The segmentation was
performed using a watershed algorithm and using the
DNA channel to define seed regions (because there is
exactly one nucleus per cell). After discarding partial cell
images at the edges of the images, the segmentation
resulted in generating between 50 and 58 individual cell
images per class. As with the 2D HeLa cell images
described earlier [4,6] this image set was designed to
include most major organelles and to include closely
related patterns (Golgi proteins giantin and gpp130) to test
the sensitivity of the features.

2.2. Features for 3D Classification

The SLF used in previous 2D work [4,6] consist of three
major subsets of features: those based on image texture,

those resulting from decomposition using polynomial
moments, and those derived from morphological and
geometric image analysis. The last of these (SLF2) had
been found to be the most useful single subset. Therefore
the initial effort to extend the SLF features to work with
3D images was begun by implementing a 3D version of
SLF2. These features were based on the division of the
fluorescence intensity distribution in each image into
objects. In 2D, an object had been defined as a contiguous
group of above-threshold pixels in an 8-connected
environment, where diagonally touching pixels as well as
horizontally and vertically touching pixels were
considered connected. In 3D, an analogous definition of
object was used: a group of contiguous, above-threshold
voxels in a 26-connected environment. First, 14 of the
SLF2 features (SLF1.1-1.8 and SLF2.17-2.22) were
converted to their 3D equivalents by simply replacing area
with volume and 2D Euclidean distance with 3D
Euclidean distance in the definition of those features (note
that SLF2.17-2.22 require a parallel DNA image).
Second, in order to exploit the inherently greater amount
of information present in 3D images as compared to 2D
images, some extra features were defined. The most
obvious advantage of using 3D images is being able to
analyze the vertical distribution of the protein. The
vertical (basal or apical) position of a protein within a cell
is often functionally important while its horizontal ("left"
or "right") location does not have any significance. This
is especially true of polarized epithelial cells, for instance,

Figure 1. An example image from the 3D data set collected with a laser scanning confocal microscope. Each image
in the data set consisted of three channels corresponding to a specific protein label (A) which is tubulin in this
example, a DNA label (B), and an all-protein label (C). The images shown represent horizontal (top) and vertical
(bottom) slices through the middle of the cell, chosen from the full 3D images so as to intersect the center of
fluorescence (COF) of the specific-protein channel.
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where a protein localizing to the apical membrane can
have a totally different function from a protein localizing
to the basal membrane. To a lesser extent this is also true
for unpolarized cells. The 3D-SLF2 features so far
defined contain features that measure the positioning of
the protein distribution relative to the nucleus or relative
to the center of fluorescence (COF) of the protein
distribution itself. Yet none of these features
distinguished vertical distance from horizontal distance or
apical location from basal. Therefore 14 extra features
were created by defining two new features for each of the
seven features that were based on a measure of distance
(3D-SLF2.6, 2.7, 2.8, 2.17, 2.18, 2.19 and 2.20). This was
done by separating out the vertical (z-dimension) and
horizontal (combined x- and y-dimensions) components of
distance in the definition of each of those features. The
resulting set of 28 3D features was termed 3D-SLF9.

2.3. Classification with the New 3D Features

The 28 3D-SLF9 features were computed for the ten
classes of 3D images, and single-hidden-layer back-
propagation neural networks (BPNN) with 20 hidden
nodes and 10 output nodes were trained with these
features. To estimate classification accuracy on unseen
images 50 cross-validation trials were used. For each
trial, from the 50 to 58 images in each class 35 were
randomly chosen for the training set, 5 for the test set and
the remainder used for the stop set. The networks were
trained until the error on the stop set reached a minimum.
The overall accuracy on the test set images, averaged over
all trials, was 91% (Table 1). Note that the two Golgi
proteins, Giantin and gpp130 can be distinguished with
high accuracy. This 3D classification result is better than
the 83-84% classification accuracy previously achieved on
2D images [4,6]. However, those 2D images were
collected with a different type of microscope at a different
resolution, the fluorescent labeling was done using a
different protocol, and the features used for classification

were different. This means that in trying to evaluate
whether 3D classification has any advantage over 2D
classification one cannot simply compare the results to the
previous 2D experiments.

Instead, since 3D images consist of stacks of 2D
images, it is possible to make a comparable set of 2D
images by selecting appropriate horizontal slices from the
3D images. A potential problem with this approach is that
2D classification accuracy may be dependent on the
choice of the vertical position of the slice. This has been
addressed previously by choosing the “most informative”
slice defined as the one containing the largest amount of
above-threshold pixels [9]. Here a systematic approach
was taken to determine which slice to use based on
simulating how an investigator would choose the slice
when using a microscope to acquire 2D images. It was
hypothesized that the investigator would choose a slice
containing the center of either the DNA distribution or the
protein distribution. Six different 2D image sets were
created with slices containing either the center of
fluorescence (COF) of the nucleus or the COF of the
specific-protein distribution, as well as two slices above
and below each of the centers. Each of these methods
might be a valid way to simulate how an investigator
would choose the vertical position when using a
microscope to acquire 2D images of cells. 2D slice
classification was performed using the 14 SLF2 features
that had been used as the basis for 3D-SLF9, and using the
same training/testing procedures as used for 3D images.
Of the methods tried, choosing the slice containing the
COF of the specific-protein distribution was empirically
found to give the best classification accuracy of 86%
(Table 2). For comparison, the classification accuracy
was 81% for the set consisting of images two slices above
the COF of the specific-protein distribution and 84% for
images two slices below the COF. When using the DNA
distribution as a reference for choosing the slices, the
accuracy was 80% for slices containing the COF of the

Output of Classifier
True Class DN ER Gia gpp LA Mit Nuc Act TfR Tub

DNA 100 0 0 0 0 0 0 0 0 0
ER 0 85 0 0 0 0 0 1 2 12

Giantin 0 0 80 8 7 3 2 0 0 0
gpp130 0 0 6 81 5 0 7 0 0 0
LAMP2 0 0 4 2 86 1 0 0 6 0
Mitoch. 0 0 0 0 2 94 0 2 2 0

Nucleolin 1 0 0 0 0 0 98 0 0 0
Actin 0 1 0 0 0 3 0 91 3 2
TfR 0 1 0 0 9 8 0 8 69 4

Tubulin 0 14 0 0 0 2 0 0 6 78
Table 2. Classification results for 2D optical sections
chosen from the 3D stacks so as to include the COF of
the specific-protein channel. With the 14 SLF2 features,
the BPNN classifiers achieved an overall accuracy of
86% across all 10 classes.

Output of Classifier
True Class DN ER Gia gpp LA Mit Nuc Act TfR Tub

DNA 99 0 0 0 0 0 0 0 0 0
ER 0 89 0 0 0 0 0 2 2 7

Giantin 0 0 90 3 2 4 1 0 0 0
gpp130 0 0 5 81 9 0 0 0 4 0
LAMP2 0 0 1 4 90 2 0 1 2 0
Mitoch. 0 1 1 0 0 96 0 1 1 0

Nucleolin 1 0 0 0 0 0 98 0 0 0
Actin 0 2 0 0 0 2 0 92 3 0
TfR 0 1 0 0 4 3 0 2 85 5

Tubulin 0 5 0 0 0 0 0 0 4 91
Table 1. Classification results for 3D confocal images
using the 28 3D-SLF9 features. The BPNN classifiers
achieved an overall accuracy of 91% across all 10
classes.
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DNA distribution, 83% for images two slices above the
COF and 85% for images two slices below the COF. This
leads to the conclusion that 2D classification accuracy is
dependent on the choice of the vertical position of the 2D
slice through the specimen. Also, the results show that
classification of full 3D images works significantly better
than classification of 2D optical sections. After carefully
reviewing and comparing the confusion matrices in Tables
1 and 2, it appears that the 3D classifier performed better
than the 2D classifier for most classes. Notably, the 3D
classification accuracies of Giantin, TfR and tubulin are
improved by 10%, 16% and 13% respectively compared
to the 2D results.

3. CONCLUSIONS

We have shown in previous work that protein subcellular
locations can be determined automatically with reasonable
accuracy from 2D fluorescence microscope images based
on numeric descriptors. Danckaert et al. [9] have also
described classifiers capable of determining protein
subcellular location with reasonable accuracy from 2D
optical section images selected from 3D confocal stacks.
In this work we have shown that calculating features on
the entire 3D image results in better classification
accuracy. It should be noted that for most cases, 2D
imaging is presently preferable from a practical
perspective. This is due to the considerably longer time
required to acquire 3D images and the fact that 2D
classification gives reasonably accurate results. However,
even though the acquisition time required for 3D images
has until recently been a limiting factor, improvements in
imaging technology such as the development of the
spinning disc confocal microscope are likely to remove
that limitation. One can therefore predict that 3D imaging
will be the norm in the near future, especially since
automated analysis of imaging experiments works better
on 3D images.

Since the SLF features have been validated by using
them to achieve good classification accuracy for
subcellular location patterns, it is possible to use them as a
basis for a systematics of protein subcellular location. By
calculating measures of similarity between protein
distributions, it will be possible to create for the first time
a grouping of proteins into classes that share a single
location pattern. It is also possible to use the SLF for
other automated analyses of fluorescence microscope
images, such as automated selection of representative
images from a set [8] and rigorous statistical comparison
of imaging experiments [7]. An important challenge for
the future is to bring the methods for interpretation of
protein location patterns that work well on individual cells
to bear on tissue images.
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