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Kerem Pekkan

Ajit Yoganathan

Georgia Institute of Technology,
Atlanta, GA 30332

Three-Dimensional Velocity Field
Reconstruction
The problem of inter-slice magnetic resonance (MR) image reconstruction is encoun
often in medical imaging applications. In such scenarios, there is a need to approxi
information not captured in contiguously acquired MR images due to hardware sam
limitations. In the context of velocity field reconstruction, these data are required
visualization and computational analyses of flow fields to be effective. To provide
complete velocity information, a method has been developed for the reconstruction o
fields based on adaptive control grid interpolation (ACGI). In this study, data for rec
struction were acquired via MRI from in vitro models of surgically corrected pedia
cardiac vasculatures. Reconstructed velocity fields showed strong qualitative agree
with those obtained via other acquisition techniques. Quantitatively, reconstruction
shown to produce data of comparable quality to accepted velocity data acquisition m
ods. Results indicate that ACGI-based velocity field reconstruction is capable of pro
ing information suitable for a variety of applications demanding three-dimensional in
velocity data.@DOI: 10.1115/1.1824117#
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1 Introduction
Flow within the cardiovascular system has historically receiv

much attention in the field of biomedical engineering due to
paramount importance of cardiovascular function in sustain
life. A greater understanding of cardiovascular flow conditions
been provided by many previous studies@1–4#. Such studies de-
pend on the acquisition of high-quality in vivo data for succes

Limitations associated with the acquisition of in vivo veloci
data have hindered efforts to effectively analyze blood flow in
past. Previously, most analyses of in vivo conditions have
quired invasive procedures such as catheterization to obtain ve
ity and pressure measurements. These procedures expose pa
to high levels of risk and discomfort. Accordingly, the develo
ment of noninvasive methods to acquire in vivo flow data is
sirable. Previous efforts aimed at reconstructing velocity fie
from MR data have addressed the problem with limited succ
Most inter-slice MR reconstruction schemes are suited to ha
morphological data rather than velocity information@5–11#. Here,
a novel approach based on adaptive control grid interpola
~ACGI! is presented for the reconstruction of velocity fields fro
MR images.

2 Background

2.1 Motivation. The surgical treatment of single ventric
congenital heart defects~CHD’s! in children is one area in which
fluid flow analyses have made a significant contribution. T
problem is frequently observed, affecting two newborns out
every thousand@12#. Congenital Heart Defects are treated pall
tively with the total cavopulmonary connection~TCPC!, one va-
riety of the Fontan operation. This operation allows the atypi
heart found in these children to function more effectively. Ch
dren with single ventricle anatomies have a mixing of oxygena
and deoxygenated blood, which when left untreated leads to
merous problems. A simplified depiction of the communicati
between the right and left heart that facilitates mixing is illustra
in Fig. 1~a!. The TCPC procedure results in a complete bypas
the right heart with the single ventricle driving blood through t
entire circulatory system. The resultant anatomy is character
by a reconnection of the pulmonary arteries~PAs! to both the

Contributed by the Bioengineering Division for publication in the JOURNAL OF
BIOMECHANICAL ENGINEERING. Manuscript received July 23, 2003; revised man
script received July 13, 2004. Associate Editor: C. Ross Ethier.
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superior vena cava~SVC! and inferior vena cava~IVC!, which
have been detached from the right atrium~RA!. An illustration of
the modified anatomy is shown in Fig. 1~b!.

Much of the power produced by the single ventricle pump
consumed in systemic circulation. Accordingly, minimizing pow
loss in the modified vasculature is imperative for successful
sults. It is within this framework that an effective analysis of flu
flow within the TCPC becomes extremely valuable as it can p
vide the information necessary to evaluate power loss. Furt
more, this information can be used to correlate efficient flows w
specific anatomical characteristics imparted to the modifi
anatomy. This in turn can provide surgeons with fundamen
goals to pursue in executing future operations that when achie
facilitate successful surgical outcomes.

Historically, the surgeon’s experience has been the primary
tor in determining surgical design with little attention paid to flu
dynamics. In order to focus connection design on minimizi
power loss, surgical evaluation tools are under development a
Georgia Tech Cardiovascular Fluid Dynamics Laboratory. Th
tools will aid the surgeon in creating efficient vascular structu
that contribute to longer and higher quality lives for patients.

2.2 Power Loss Estimation. One method of evaluating the
efficiency of fluid flow is via power loss estimation. Simply put,
flow through a given morphology is efficient, little power is di
sipated. In the context of the Fontan, a direct relationship has b
observed between inefficient flow and poor surgical outcomes.
this reason, the prospect of quantifying power loss in vivo,
order to identify advantageous anatomical characteristics, is
tractive. The question is thus posed, how can power loss be
mated in vivo? The answer depends on the inputs available
power loss to be calculated.

One technique that has been used extensively in power
quantification is control volume analysis. In order to execute c
trol volume analysis, both pressure and velocity data are requ
as described by Eq.~1!.

ĖLoss52R R R
CS

Fp1
1

2
ruiui GujnjdS (1)

Here p represents pressure,r represents density, theu variables
represent respective components of velocity, andn represents a
normal vector. The subscripts with each vector variable indic
Einstein notation. Obtaining the data required to satisfy this eq
-
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tion can be problematic in vivo in that pressure information
difficult to extract. For cardiovascular cases, pressure data is
ally gathered via catheterization, which is highly invasive a
subjects the patient to risk and discomfort. Alternatives to ca
eterization are desirable primarily for these reasons and bec
of the 20% error margin generally associated with the proces

One alternative for generating pressure data is computatio
fluid dynamics~CFD! simulation @13#. The inputs required for
CFD are a geometric structure and boundary conditions for
structure in the form of velocity profiles. A completed CFD sim
lation yields detailed pressure and velocity data throughout
specified geometry. Control volume analysis can be used follo
ing CFD simulation to estimate power loss. With respect to
surgical evaluation scenario, geometric structures can be der
from MR imaging followed by morphological reconstruction. Ac
cordingly, this mechanism for estimating power loss can be
plied to address the problem described in Section 2.1. Howe
such power loss estimates are based on simulated velocity
pressure data, one step removed from real in vivo data like
used to derive the geometric input and boundary conditions
CFD. Implementation of this process has been successful for
merous researchers, but from a theoretical standpoint power
quantification based directly on in vivo data would be preferr
@14,15#.

Another method for estimating power loss that has been
plored more recently makes use of the viscous dissipation fu
tion @16#. Here, local fluid power losses produced by viscous d
sipation are computed based on velocity gradients. Although th
values are generally small in the local sense, the total power
can be calculated as the integral of the dissipation function o
the selected volume of interest. Expressions for the dissipa
function and associated fluid dynamic power losses are descr
by Eqs.~2! and ~3!, respectively.

F5
1

2 S ]ui

]xj
1

]uj

]xi
D 2

(2)

ĖLoss5mE E E
CV

F dV (3)

In these equations,F is the dissipation function,u represents ve-
locity as before, andx is used to represent Cartesian direction
Subscripts in the first equation again indicate Einstein notati
CV represents the control volume over which power loss calcu
tions are performed, anddV represents the differential volum

Fig. 1 Illustration of a human heart with a single ventricle CHD
„a…. The communication between the two ventricles indicated
by the arrows facilitates the mixing of oxygenated and deoxy-
genated blood. The anatomical modification performed to pal-
liate this condition, the TCPC, is shown in „b….
728 Õ Vol. 126, DECEMBER 2004
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element within the control volume. Equations~2! and ~3! reveal
the important fact that the viscous dissipation function can
calculated with velocity gradients alone. For this reason a pur
velocity-based pathway for accomplishing power loss estimat
is possible with respect to clinical medicine. All of the power lo
quantification methodologies discussed thus far have been der
and covered more extensively in a recent publication@16#.

Accurately quantifying power loss via the viscous dissipati
function requires the measurement of all three velocity com
nents in all three spatial dimensions. Furthermore such data m
be sufficiently resolved near the boundaries of flow where vel
ity gradient magnitudes are high. Ultrasound has proven valua
in a variety of velocity imaging scenarios, but fundamental lim
tations associated with the modality prohibit the acquisition of
three components of velocity and make it poorly suited for th
application. Phase-encoded MR velocity images provide hi
resolution velocity information, but only in two spatial dimen
sions. In order to use this information for viscous dissipation fun
tion power loss quantification, reconstruction into thre
dimensions is demanded. Toward this end, a method to recons
MRI velocity data has been developed so that the reconstru
data can then be used to estimate power loss with the visc
dissipation function.

2.3 Initial Results. Previous studies by Healy et al. an
Sharma et al. have provided results pertaining to the accurac
the dissipation function with respect to alternatives@16,17#. Spe-
cifically, control volume analysis following CFD simulation wa
compared to viscous dissipation function analysis using the sa
CFD simulated data. These results were insightful as they
played the capability of the dissipation function by compari
results from the two methods based on a common data sourc

To relate the two power loss estimation techniques to the F
tan scenario, the Sharma et al. and Healy et al. studies emplo
a phantom TCPC connection. The phantom geometry is displa
in Fig. 2 where the TCPC configuration from Fig. 1~b! is revisited
for comparison. The TCPC configuration displayed in Fig. 2~a! is
an artist’s rendition of the anatomy that shows an idealized c
nection lacking some of the subtleties of the most popular curr
implementation. The phantom shown in Fig. 2~b! was designed to
include these subtleties, specifically connection site flaring a
caval offset, in order to better simulate the in vivo conditions th
are most common today.

A variety of flow splits and cardiac outputs were simulated
compare the power loss estimation techniques under different c
ditions. Flow splits here are described as the percentage of
total flow departing the model from the LPA and RPA condui
while total cardiac output~TCO! represents the total flow enterin
both the IVC and SVC conduits. Total cardiac output and to
flow rate are used interchangeably in this text. For all experime
in the Healy et al. and Sharma et al. studies, the IVC/SVC fl
split was held constant at 60/40 for a total cardiac output o
L/min. These values and LPA/RPA flow split values were bas

Fig. 2 Illustrations of the TCPC configuration „a… and the
phantom geometry „b… used to simulate it. The dashed line in
„b… is present for a later discussion.
Transactions of the ASME
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on in vivo MR velocity measurements from pediatric CHD p
tients under resting conditions. In addition to control volum
analysis and dissipation function analysis, power losses were
calculated in the Sharma et al. study based on direct meas
ments from an in vitro phantom with the same geometric prop
ties as the CFD model. These experimental power loss va
were calculated based on IVC, SVC, LPA, and RPA pressu
measured using high fidelity pressure transducers and on inle
outlet flow rates measured with rotometers@17,18#. The results
from all three power loss analyses conducted in the Healy e
and Sharma et al. studies are displayed in Fig. 3.

Power loss values estimated with control volume analysis
the viscous dissipation function showed strong agreement ove
entire range of LPA/RPA flow splits explored. The errors betwe
these two approaches were less than 10% in all cases, ran
from 3.2% to 9.9%. Differences between the results from both
these methods and the experimental results were likely cause
poorly regulated boundary conditions in the Sharma et al. stu
However, these results indicate that, based on the same data
viscous dissipation function is capable of providing power lo
estimations with accuracy comparable to control volume analy
In the context of using reconstructed velocity fields to quan
power loss, one more question remains. Specifically, it has
previously been shown that reconstruction can generate velo
data with sufficient accuracy to estimate power loss well. T
validations in Section 3 are aimed at addressing this point.

3 Methods

3.1 Data Acquisition. A flow loop similar to that used by
Sharma et al. was constructed to circulate fluid through the TC
phantom under steady flow conditions. A blood analog fluid co
posed of water and glycerine with a viscosity of 3.5 cP and
density of 1.1 g/cm3 was used. Entrance lengths sufficient to e
sure fully developed flows were connected to the phantom inl
Total flow rates of 2 and 4 L/min were explored for a consta
IVC/SVC flow split of 60/40 and LPA/RPA flow splits rangin
from 40/60 to 60/40 in 10% increments. A contiguous set
phase-encoded velocity images were acquired as the initial ste

Fig. 3 Results from different power loss estimation tech-
niques. Control volume analysis and viscous dissipation func-
tion analysis show strong agreement for all flow splits.
Journal of Biomechanical Engineering
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the reconstruction process presented here. MRI data for this w
were acquired using a Philips 1.5 Tesla Gyroscan scanner. Spe
parameters relating to data acquisition are given in Table 1.

3.2 Data Reconstruction. To reconstruct velocity fields as
a precursor to power loss estimation, a new reconstruction m
odology has been developed based on adaptive control grid in
polation~ACGI!. ACGI has previously been employed in addres
ing video coding and tracking problems, as well as d
reconstruction@19#. The extension of the technique to reconstru
ing velocity data is a new concept. ACGI is a hybrid motio
estimation scheme that has features of both block-based and
cal flow-based methods. These techniques, previously develo
for frame prediction in movies and camera video, provide a fo
dation for MRI reconstruction algorithms. For the purpose of co
text and perspective, this section provides a brief overview
motion estimation.

3.2.1 Motion Estimation. The goal of ACGI, and any othe
motion estimation scheme for that matter, is to link the pix
from a pair of images such that when the differences between
pairs of linked pixels are summed, a minimum value results. T
collective difference is more easily conceptualized considerin
matrix of vectors pointing every pixel in one image to a corr
sponding location in a second image. For each pixel, there is s
difference between its intensity and the intensity at the co
sponding location in the second image. The summation of th
differences, for a pair of images and a corresponding motion fi
yields insight into how well that motion field links the image pa
This ‘‘image difference’’ quantity can be determined based
several traditional formulations; here a squared error measure
erenced later as Eq.~5!, is employed. The ‘‘image difference’’ in
general will be referred to throughout this section in defining
new methodology.

Two conventional methods of estimating motion are blo
matching and optical flow. Both techniques describe the mo
ment of pixels from one image frame to another. Although th
address the same problem, these two methods approach it
very different perspectives.

Block matching in its simplest form consists of comparison a
search steps. Blocks of pixels from one image are compare
blocks from a second image to determine the region in that sec
image most similar to the chosen region in the first. Here again
goal is to minimize the image difference defined earlier. The d
placement of all pixels within a block is governed by a sing
motion model, the simplest and most common example being
form displacement. The similarity between blocks is evaluated
an error function that quantifies the image difference, or collect
intensity discrepancy, between two regions. In the search s
allowable model parameters are searched to find optimal va
@19#. Block-based approaches have the advantage of a com
pixel displacement representation and a simple search proce
for simple models. These search techniques become computa
ally expensive when the model order, and consequently the se

Table 1 Parameters associated with MR data acquisition

MR system type Philips
Pulse sequence type Gradient echo
Acquisition plane Transverse
Images acquired ;15
Slice thickness 5 mm
Field of view 200 mm3200 mm

Flip angle 35°
Repetition time 23 ms

Echo time 6.2 ms
Averaged signals 2

Matrix size 2563256
VENC 70 cm/s
DECEMBER 2004, Vol. 126 Õ 729
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space, are increased. These increases are likely to be req
when complex motion is present and high-accuracy estimates
needed.

The other conventional approach is optical flow, which allo
each pixel to follow a unique path from frame to frame. T
flexibility of this technique leads to a less compact motion fie
representation and requires more computation. Unlike the sim
block matching approach where motion is estimated for en
local neighborhoods, optical flow determines a unique motion
every pixel. This is accomplished by satisfying the optical flo
constraint equation~OFCE!,

]I ~x,y,t !

]x

]x* ~ t !

]t
1

]I ~x,y,t !

]y

]y* ~ t !

]t
1

]I ~x,y,t !

]t
50 (4)

whereI (x,y,t) represents the intensity function for a given imag
andx* (t) andy* (t) denote the true trajectory of each point@20#.
A unique solution to Eq.~4! is found by assuming motion field
smoothness, a constraint which is imposed in conjunction w
minimizing the OFCE error. The OFCE error, or its differen
from zero, provides another measure of the previously defi
image difference. Imposing the smoothness constraint is just
in the context of this work because it is consistent with the smo
variations of flow morphologies obtained when data sets are
quired with contiguous MR slices.

The concept of motion estimation relates well to inter-slice
construction when fluid structures at different positions in diff
ent MR slices are considered as objects moving from frame
frame. That is to say, similar flow features are viewed mathem
cally as a single structure undergoing motion. With respec
applying optical flow, the transition from one image plane to
ther adjacent one can be considered analogous to the trans
from time t to time t11 in a temporal image sequence.

3.2.2 The New Approach.The limitations associated with
traditional approaches motivate the combination of block and
tical flow-based methods into a superior hybrid. The ACGI a
proach used in this work can be considered both block-based
optical flow-based. ACGI estimates displacement with an itera
search based on the optical flow equation, but the image is p
tioned into regions as in the block-based approach.

The execution of ACGI begins with an initial image partitio
ing. A quad-tree grid structure is used to divide an image first i
four regions of equal size, then into sub-regions as neces
Following the initial partitioning, motion fields for each of th
four sub-regions of the image are determined. Each motion fie
defined based on the motion vectors associated with the corne
the region, which are referred to as control points. Specifically,
motion vector for any point on the interior of a sub-region
related to the four control points that bound it via bilinear inte
polation. Given this relationship, the motion field for an ent
region can be defined based on four parameters, those bein
displacement vectors associated with each of the four con
points.

The process used to derive the motion field varies these
parameters iteratively in order to minimize the error associa
with the OFCE for a given block. A conjugate gradient method
employed to optimize the motion field efficiently. Within this op
timization framework, the constraint is motion field smoothne
imposed as in the optical flow solution defined earlier, and
expression to be minimized is the error function, defined explic
for a regionR as,

E~ ā,b̄ !5( (
nPR

~ I @n,k#2I @n11āTū~n!,n21b̄Tf̄~n!,k

1dk# !2 (5)

In this expression,ā and b̄ represent vectors composed of th
respective row and column components of the control point
placements,I @n,k# represents an image where the vectorn
730 Õ Vol. 126, DECEMBER 2004
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5(n1 ,n2) denotes coordinates within that image, andū and f̄
represent basis functions that implement the bilinear interpola
mentioned earlier. Relating this expression to the previous c
ceptual discussion, the summation corresponds to the image
ference between one image and the motion corrected versio
another. Here it is clear that this quantity can be minimized ba
on the control point vectors (ā and b̄) given that the basis func-

tions ū and f̄ are explicitly defined. In summary, the process f
determining the motion field for each region is characterized
the block diagram shown in Fig. 4.

Several other characteristics of the resultant motion field
noteworthy. Because this motion model is of the connected v
ety, the displacements for a given region’s control points are
same for each of those control points with respect to other regi
that they bound. This makes the motion field continuous a
whole. So for the entire image, the ACGI motion vector field
guaranteed to be piecewise smooth and globally continuous.

In terms of reconstructing fluid flow well, global continuity i
especially significant because it guarantees that the motions fo
regions are linked and that no local estimation is carried out
dependently of the motion information pertaining to adjacent
gions. This characteristic allows the algorithm to perform acce
ably in the case that a fluid structure is present in one slice t
gone in the next. The problem of estimating motion is ill-posed
this scenario, but assuming that the majority of the image is co
posed of features that span the image pair, the solutions in
well-posed regions will dominate and shape the results in
poorly conditioned area. Under these circumstances, and for
cases truly speaking, a perfect solution is unattainable, but a
solution given constraints is still achieved. For this best solut
to be of useful quality, sampling must take place at a sufficien
fine rate. Given the results presented here, slices 5 mm thick
pear to fall below the upper bound on slice thickness correspo
ing to the minimum acceptable spatial sampling rate.

The quad-tree grid structure generated via the adaptive pro
used here can take many forms. One example of a course s
metric quad-tree, superimposed on an image from the pair use
generate it, is shown in Fig. 5. The image here is a modulus im
from the velocity scan, indicating signal strength, and correspo
to the plane indicated by the dashed red line in Fig. 2~b!. Images
of this type are well-suited to establish appropriate interpolat
vectors as the image intensity is a function of fluid moving in a
out of the imaging plane. Accordingly, the criteria for vector d
termination are based, at least in part, on all three velocity co
ponents to be reconstructed. By exploiting this information simi
fluid structures can be correlated well via the ACGI methodolo

In Fig. 5 the blue lines represent the initial image partitionin
and the green and red lines define sub-regions where grid re
ment is advantageous. When further subdivision is not perform
in these regions, the bilinear model approximates motion poo
Successive refinement decreases the area that the model is

Fig. 4 Block diagram illustrating the ACGI motion field deriva-
tion process
Transactions of the ASME
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posed over in each partition and decreases overall error sig
cantly. As this figure indicates, the most subdivided regions of
image correspond to areas of the phantom within which fluid
flowing and high motion field resolution is desired to facilita
accurate reconstruction. Progressive subdivision, like the mo
parameter determination phase itself, is performed based on
image difference value. When successive subdivision and the
sociated motion field refinement are not accompanied by a s
cient decrease in the image difference, a further subdivision
foregone. This was determined to be the case in practice wh
subdivision produced less than a 5% decrease in error. These
chanics partition the image into sub-blocks of appropriate size
capture characteristics of transition and further subdivide regi
where error remains large. They enable the algorithm to han
both simple and complex displacements within the optical fl
framework. These characteristics are important as they allow u
obtain an accurate and dense representation of the displace
field at a reasonable computational cost. There is a tradeoff
tween the computation time and the error associated with the
sultant displacement field when the block size bounded by con
points is varied. Smaller block sizes lead to a more accurate
placement field, but are more computationally expensive. If la
errors remain, a further subdivision is performed to improve
resolution of the motion field. Ultimately, the motion field can b
calculated with a specified degree of sub-pixel accuracy. In or
to maximize efficiency, subdivision and the accompanying co
putation are confined to regions where nonuniform motion
present as in Fig. 5. Further details describing the characteris
of the motion model implemented here can be found in a rec
publication@21#.

3.2.3 Algorithm Description. The starting point for the over-
all reconstruction process is a set of transverse contiguous ph
encoded MR velocity images acquired with a breath-hold grad
echo pulse sequence as described in Section 3.1. Phase ve
mapping has been explored extensively in other research and
tablished as an accurate means of extracting flow data@22#. Fields
of displacement vectors are calculated describing the motion
pixels from one image slice to another via the ACGI methodolo
outlined in the previous section.

From a dense displacement field and the associated pair of
images, intermediate frames are reconstructed. By following
of the displacement vectors a portion of the way from one slice
the next, a linear approximation of where a given pixel would
found in an intermediate slice can be made. Repeating this pro
for all pixels in a given slice allows the reconstruction of an ent
intermediate image. Pairs of these reconstructed images are
combined in a spatially weighted sum to form a single interp

Fig. 5 Example of a coarse symmetric quad-tree structure
generated via the ACGI motion estimation process
Journal of Biomechanical Engineering
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lated slice. This process is repeated and multiple interpolated
ages are stacked between known images to produce a th
dimensional enhanced data set. The out-of-plane spatial resolu
of the enhanced data is determined by the number of interpola
frames, and can be varied although it is generally advantageou
achieve an out-of-plane resolution close to the in-plane value
sociated with the originally acquired data. Adding interpolat
frames beyond this point is analogous to computing a value w
greater precision than the inputs it is based on, and offers
further benefit.

4 Results
The improvement produced by ACGI in comparison to an ori

nal MR data set is displayed in Fig. 6. Here the sparse origina
sampled data is displayed in~a! and the reconstructed velocity
data set in~b!. The total cardiac output for these data was 4 L/m
the IVC/SVC flow split was 60/40, and the LPA/RPA flow spl
was 40/60.

The immediate focus of the validations associated with t
work was to demonstrate the accuracy of reconstructed data.
accuracy of the dissipation function for power loss estimati
based on velocity data from other sources has already been
plored and was described by the data provided in Sec. II. Acco
ingly, the important question to answer in the context of usi
reconstructed data to estimate power loss relates directly to
accuracy of those data. However, the ultimate aim of resea
along these lines is to use reconstructed MR data to quan
power loss. For this reason, initial results obtained by applying
viscous dissipation function to these data are included in this s
tion as well.

In order to evaluate the quality of reconstructed velocity da
reconstructions were compared to velocity planes from ident
locations in the same phantom acquired with particle image
locimetry ~PIV! and computational fluid dynamics~CFD!. PIV
and CFD methodologies have been extensively explored by
vious research@23,24#. Planes for comparison were taken from th
coronal perspective, out-of-plane with respect to the original M
scan. The coronal planes reconstructed from MR contain alm
exclusively reconstructed data since the images used to de
them were taken from the axial perspective. Accordingly, the co
parison of these reconstructed planes to ones natively acquire
the coronal perspective with other modalities offers valuable
sight into the quality of reconstruction.

Although there is no absolute gold standard for correct veloc
data, fluid physics dictate that the divergence of any velocity fi
must equal zero,

du

dx
1

dv
dy

1
dw

dz
50 (6)

whereu, v, andw represent the three orthogonal components
velocity andx, y, and z again represent Cartesian directions. T
demonstrate that the data reconstructed with the proposed a
rithm are realistic, divergence errors for the symmetry plane of
TCPC phantom were calculated for the most common set o

Fig. 6 Coronal view of an originally acquired phase encoded
MRI velocity data set „a… and the same view of the correspond-
ing three-dimensional velocity field reconstruction „b…
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vivo flow conditions: the total cardiac output 2 L/min, IVC/SV
flow split 60/40, and LPA/RPA flow split 50/50. The root mea
square divergence error values were evaluated for five diffe
data sources: CFD, PIV, ACGI reconstructed MRI, cubic interp
lated MRI, and raw MRI. The L2 norms of divergence error v
ues varied greatly in some cases because differing numbe
points were examined, but the root mean square values,

RMS5
A(

i PD
~Ei !

2

n
(7)

offered greater comparative insight. In Eq.~7!, Ei denotes the
individual divergence errors, their difference from zero,D repre-
sents the fluid domain, andn represents the number of points ov
which the divergence errors were summed. Divergence va
have the unit 1/s, which interestingly is also the unit associate
with the OFCE once variables have been transformed to m
those of the data it is applied to in this scenario. The results of
divergence error calculations are presented in Table 2.

The divergence errors associated with CFD were expected t
small, as upholding divergence is one of the criteria used to
termine the solution within the framework of CFD. Furthermo
the greater levels of noise present in the reconstructed MRI
were expected to contribute to errors in divergence. Neverthe
the divergence errors for the ACGI-reconstructed MRI data w
well within an order of magnitude with respect to the RMS valu
The number of points examined for the ACGI-reconstructed M
and PIV data sources were approximately equal. Although
ACGI-reconstructed MRI data showed greater divergence er
than PIV, the proximity of those errors to the corresponding val
from PIV is encouraging as the PVI data were actually acquire
the plane that was analyzed, whereas 87.5% of the data in
reconstructed MRI plane were interpolated values. ACGI-ba
MRI reconstruction showed an enormous improvement over
raw MRI data with respect to divergence, and a significant
provement, 10.23%, over cubic interpolation. The infinity norm
the ACGI-reconstructed data was also better than that assoc
with cubic interpolated data by greater than 10%. In the ongo
effort to enable reconstructions of the highest quality, one al
rithmic development underway involves the incorporation o
divergence term in the error expression that is minimized to
termine the optimal motion field. This should facilitate the reco
struction of data characterized by even lesser divergence erro

In a second data comparison, velocity magnitudes were ev
ated on a point-by-point basis. This comparison reflects the a
racy of data in a different way as there are an infinite numbe
zero-divergence velocity fields that can occupy a volume,
clearly only one of them is correct for this flow phantom and t
given inputs. Intensity values representing the magnitude of
locity at each pixel location were compared between MR rec
struction and both PIV and CFD. The magnitudes of the diff
ences between these values were then summed for all p
locations and averaged. PIV and CFD were compared as well.
goal of this analysis was to evaluate ACGI reconstruction w
respect to an established acquisition technique and an establ
simulation technique. Including the raw MRI data in this analy
would be inappropriate as the large gaps between the orig
slices make coronal planes incomplete. Cubic interpolated

Table 2 Results from divergence error analysis

Data set RMS divergence error

CFD 2.9
PIV 14.4
ACGI reconstructed MRI 17.6
Cubic interpolated MRI 19.4
Raw MRI 57.1
732 Õ Vol. 126, DECEMBER 2004
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were also omitted from this comparison as visual inspect
clearly demonstrates that they are distorted~Fig. 9!. The error
evaluation methodology employed in this stage is frequently u
for image-based comparisons, and was selected here as there
two images, each from a different modality, to be compared
every case@25#. Details describing the CFD and PIV methodolo
gies can be found in recent publications from the Georgia Te
Cardiovascular Fluid Mechanics Laboratory@16,23#.

A variety of flow conditions similar to those explored by Hea
et al. and Sharma et al. were examined to validate the effect
ness of ACGI reconstruction under different circumstances. LP
RPA flow splits ranging from 40/60 to 60/40 were explored f
both 2 and 4 L/min. This set of flow parameters covers the ran
encountered in vivo under normal and exercise conditions for
diatric CHD patients. Results from the error comparisons ass
ated with each set of flow parameters are displayed in Figs. 7
8. To provide perspective, the errors are represented as a per
age relating the modality specific scaled velocity error to a co
mon flow velocity. The average velocity discrepancy for each i
age pair was compared to the theoretical maximum veloc
present within the model to determine the percentage. The m
mum value was derived by dividing the largest entering flow ra
by the cross-sectional area of the model inlet, to obtain an aver
value, and then multiplying by two to get the theoretical max

Fig. 7 Comparative errors for velocity magnitude acquisitions
at a total cardiac output of 2 L Õmin. The values indicate the
percentage formed by dividing the average error for each mo-
dality comparison by the theoretical maximum flow velocity
within the phantom.

Fig. 8 Comparative errors for velocity magnitude acquisitions
at a total cardiac output of 4 L Õmin. The values indicate the
percentage formed by dividing the average error for each mo-
dality comparison by the theoretical maximum flow velocity
within the phantom.
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mum velocity present at the given flow rate under the assump
of parabolic flow. For 2 liters/min the theoretical maximum velo
ity in this model was 30.14 cm/s; for 4 liters/min it was 60.2
cm/s.

The similarity between reconstructed velocity planes and th
from CFD and PIV can be observed directly from the data as w
Velocity magnitude plots for PIV, MR reconstruction, CFD, an
bicubically interpolated MR data are displayed in Fig. 9. Bicub
interpolation is currently the most popular technique used to co
teract sparse sampling in multi-planar reconstruction applicati
@26#.

In Fig. 10, velocity vector plots for the same flow condition
are shown for all three modalities. For these data the total car

Fig. 9 „a… PIV, „b… MR reconstruction, „c… CFD, and „d… MR
„bicubic interpolation … velocity magnitude contour plots. TCO:
4 LÕmin, IVC ÕSVC flow split: 60 Õ40, LPA ÕRPA flow split: 60 Õ40.

Fig. 10 „a… PIV, „b… MRI reconstruction, and „c… CFD velocity
vector plots. TCO: 4 L Õmin, IVC ÕSVC flow split: 60 Õ40, LPA ÕRPA
flow split: 60 Õ40.
Journal of Biomechanical Engineering

loaded 25 Oct 2008 to 130.49.198.6. Redistribution subject to ASME lic
tion
c-
7

ose
ell.
d
ic
un-
ons

s
iac

output was 4 L/min, the IVC/SVC flow split was 60/40, and th
LPA/RPA flow split was 60/40. The results in Fig. 8 are consiste
with the vector plot in Fig. 10, where it appears that SVC flow
more vertically aligned for PIV in comparison to CFD and MR
which show SVC flow tending more toward the RPA. The CF
and MRI plots also show connection region vorticity and flo
redirection from the IVC to the RPA, characteristics which a
absent from, or less prevalent in, the PIV representation.

Reconstructed velocity data in the sagital plane correspon
well to those from CFD also. Figure 11 shows half-planes fro
CFD and reconstructed MR data just outside the connection
gion of the TCPC model. PIV data from this plane was unava
able due to limitations associated with the modality. It is no
worthy that the original MR data set contained only four ax
image samples through the region of the model shown here, wh
account for only four horizontal lines of vectors in thes
illustrations.

When comparing reconstructed MRI data to MRI data native
acquired in the coronal plane, similar fluid structures were ag
observed. Figure 12 shows vector plots from a coronal MRI ima
and from reconstructed MRI data. Originally acquired MRI da
and PIV data were included in this study for thoroughness, but
authors feel that the similarities between reconstructed MRI a

Fig. 11 „a… CFD and „b… MRI reconstruction LPA cross-section
half-plane velocity vector plots. TCO: 2 L Õmin, IVC ÕSVC flow
split: 60 Õ40, LPA ÕRPA flow split: 50 Õ50.

Fig. 12 Originally acquired coronal MRI data „a… and the cor-
responding coronal plane from the reconstructed MRI data set
„b…. Similar fluid structures including redirection of IVC flow to
the RPA and the low-velocity offset region are apparent. TCO: 2
LÕmin, IVC ÕSVC flow split: 60 Õ40, LPA ÕRPA flow split: 40 Õ60.
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CFD data are most telling, as these are the only two data sou
that provide all three components of velocity in three spa
dimensions.

Initial power loss figures obtained by applying the viscous d
sipation function to reconstructed MR velocity planes show
similar trends to the power losses calculated in the Sharma e
and Healy et al. studies for the same in vitro phantom. Spec
cally, a minimum power loss value was observed at an LPA/R
flow split of 50/50. Increased power losses were observed w
the flow split was varied in either direction. The power loss valu
for the center planes examined by the error comparisons in
section are displayed in Fig. 13.

As with any calculation based on acquired data, the accurac
power loss figures here is directly related to the quality of t
originally acquired MR information. One issue inherent to reco
structed MR velocity data, in contrast to the other velocity da
acquisition modalities, is the relatively high level of noise in th
original MR images. Figures 9 and 10 show clearly that the
constructed MR data are much noisier than either CFD or P
data. The noise in the reconstructed data, resulting from nois
the original images, can be alleviated by applying a median fil
Using a 33 3 median filter resulted in decreased viscous dis
pation power losses. These median filtered power loss values
included in Fig. 13. Median filtering is not presented here a
recommended path for arriving at more accurate power loss
ues, as it certainly blurs the information near the boundaries th
imperative for accurate power loss measures. Rather, it is
sented to support that noise is a factor with the MR data. I
probable that this noise contributes to the greater than expe
power loss values for the center planes when compared to
global power losses presented by Sharma et al. and Healy e
Because noise in the original data is a likely cause for
reconstruction-based power losses being overestimated,
reasonable to conclude that the techniques presented here w
able to provide even higher-quality results as MR technolo
advances.

For the plane-to-plane comparisons conducted here to be
nificant, it is clear that planes used in comparison must have or
nated from the same locations within the model. For CFD d
resolution is extremely high, making it simple to select the cen
plane accurately. The 200 mm field of view used in MR da
acquisition allowed a selection of the center plane from these d
sets with sub-millimeter accuracy. Likewise PIV affords the e
perimenter high-precision control over the laser sheet that defi
the plane of data acquisition well into the sub-millimeter doma
Given these facts, it is reasonable to conclude that the respe
center planes do come from similar enough locations within
model to make the data presented here significant.

Fig. 13 Initial viscous dissipation power loss results for cen-
ter planes based on reconstructed MR data at a total cardiac
output of 2 L Õmin.
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5 Discussion
In addition to power loss estimation, there are a variety of ot

applications for which reconstructed velocity data would be w
suited. Many vascular pathologies such as polycystic kidney
ease~PKD! are characterized by decreased arterial blood fl
@27#. The evaluation of disease progression in PKD cases is o
based on in vivo flow measurements from MRI. For diagnose
be accurate based on traditional two-dimensional images,
important that sampling take place at precise locations. Rec
structed velocity data offers a complete flow field from whi
more global information is available. Accordingly, reconstructio
could provide physicians with more information for diagnoses

Fluid dynamics within the carotid artery are evaluated with
trasound over 10,000 times each day in the U.S., with the aim
identifying plaque regions via the observation of flow@26#. How-
ever, the dimensionally limited and relatively low resolution da
provided by ultrasound, coupled with its high operator dep
dency, result in operations that are unnecessarily performed
of the time@26#. MR reconstruction would be well-suited to im
prove analysis and diagnosis in this scenario because of the m
complete description of three-dimensional in vivo fluid dynam
that it provides.

Another application in which reconstructed velocity data cou
be useful is the quantification of shear stress at vessel walls. S
stress is known to play a role in atherosclerosis and other vasc
pathologies. As comprehensive in vivo data are required for qu
tification, reconstructed velocity fields would offer a non-invasi
alternative acquisition method to provide the necessary infor
tion. Given that reconstructed velocity data can be obtained
any number of different phases within the cardiac cycle, the
cillatory shear stress index could also be calculated in vivo.

Although the reconstruction of MRI velocity images has be
the focus of research thus far, the ACGI methodology is also w
suited for application to velocity data acquired via other mea
The PIV data that have been discussed in this paper repres
valuable source of in vitro velocity information but provide on
two-dimensional spatial samples of two-dimensional velocity v
tors. ACGI could be used to enhance the out of plane resolutio
standard two-dimensional PIV data sets, and to reconstruct th
dimensional data sets of three-dimensional velocity vectors gi
the availability of PIV data from multiple perspectives. Both
these options will be investigated in future research.

Regardless of future applications, the validations presented
have demonstrated that ACGI is capable of reconstructing
tailed, high quality velocity data. This methodology has an inh
ent advantage over techniques that simply place acquired pl
of velocity data into a common three-dimensional space becau
takes an intelligent approach to the approximation of unacqu
data. Other techniques for accomplishing this, including line
cubic, and sinc function interpolation, suffer because interpola
is carried out between points that are unrelated with respect to
fluid structures to which they belong. In comparison to nat
methods of obtaining three-dimensional fields of thre
dimensional velocity vectors, such as volumetric MR imagin
reconstruction requires substantially less acquisition time mak
it practical for a variety of clinical applications that volumetr
acquisition techniques cannot address.

6 Conclusions
Qualitatively, reconstructed MR velocity fields displayed sim

lar flow characteristics in comparison to both PIV and CFD. Mo
insight into the quality of reconstruction was provided by a qua
titative comparison. For both 2 L/min and 4 L/min total flow rate
errors between CFD and reconstructed MR velocity data w
lower than errors between either CFD and PIV or MR reconstr
tion and PIV. This may indicate that the CFD and reconstruc
velocity fields are more similar to each other than either is to P
The absolute evaluations of any one of these modalities are
hibited by the fact that a gold standard is unavailable. It is for t
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reason that the divergence errors were examined and
comparison-based methods were used in this work. Results
both analyses indicate that velocity fields reconstructed from
with the proposed ACGI technique are comparable in quality
those from the other data sources examined here.

Considering that MR reconstruction is the only one of the
modalities capable of directly capturing in vivo information, th
results support that the acquisition of complex three-dimensio
in vivo velocity fields may now be possible. The implications
this would be widespread, but in the context of this work su
velocity fields could be used to provide in vivo power loss es
mations from the TCPC using the viscous dissipation function.
exploration of this prospect is underway and is one focus of
going research. This methodology is envisioned as an integral
of the surgical evaluation tool currently in development.

The development effort is based upon a number of fluid
namic evaluation techniques including CFD, PIV, MR reconstr
tion, flow visualization, studies in theory, and experimental st
ies like those conducted by Sharma et al. Through the use o
these varied techniques with their respective strengths and w
nesses, the identification of the elusive gold standard in fluid
namic data acquisition becomes more feasible. Moreover, eac
these tools contributes to a system of checks and balances
validates and ensures the effective use of every other tool,
ultimate goal being a comprehensive system capable of provi
physicians with accurate and clinically valuable in vivo fluid d
namic data.

The proposed ACGI algorithm performs well in the veloci
reconstruction application, as the validations indicate. Through
exploitation of both gradient and intensity information, ACGI
adept at reconstructing data near boundaries. This point is e
cially significant in the velocity data context as accurate val
near boundaries are imperative when reconstructions are t
used for power loss estimation via the viscous dissipation fu
tion. Fluid dynamic theory and both in vitro and in vivo observ
tions indicate that the highest magnitude velocity gradients
found near fluid boundaries. These gradients are the largest
tributors to the power loss values estimated with the dissipa
function. Accordingly, the characteristics of ACGI make the p
posed algorithm well suited for the reconstruction of data to
used with the viscous dissipation function, and in virtually a
other application requiring high-quality three-dimensional velo
ity information from MR.

The viscous dissipation function has been investigated pr
ously, and data supporting its accuracy in estimating power
were presented in Section 1. Combining the velocity reconst
tion technique proposed here with the viscous dissipation func
provides the first established methodology for noninvasively e
mating power loss based completely on in vivo data. Within t
framework, the application of ACGI to velocity field reconstru
tion creates a valuable tool for the evaluation of executed op
tions, aimed ultimately at producing successful surgical outcom
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