Three-Dimensional Velocity Field
oaid Frakes | RECONStruction

Mark Smith The problem of inter-slice magnetic resonance (MR) image reconstruction is encountered
. often in medical imaging applications. In such scenarios, there is a need to approximate
Diane de Zelicourt information not captured in contiguously acquired MR images due to hardware sampling
limitations. In the context of velocity field reconstruction, these data are required for
Kerem Pekkan visualization and computational analyses of flow fields to be effective. To provide more
.. complete velocity information, a method has been developed for the reconstruction of flow
A]II Yoganathan fields based on adaptive control grid interpolation (ACGI). In this study, data for recon-
struction were acquired via MRI from in vitro models of surgically corrected pediatric
Georgia Institute of Technology, cardiac vasculatures. Reconstructed velocity fields showed strong qualitative agreement
Atlanta, GA 30332 with those obtained via other acquisition techniques. Quantitatively, reconstruction was

shown to produce data of comparable quality to accepted velocity data acquisition meth-
ods. Results indicate that ACGI-based velocity field reconstruction is capable of produc-
ing information suitable for a variety of applications demanding three-dimensional in vivo
velocity data.[DOI: 10.1115/1.1824117

1 Introduction superior vena cavaSVC) and inferior vena cavalVC), which

Flow within the cardiovascular system has historically receive?gave been detached from the right atrid®»). An illustration of

much attention in the field of biomedical engineering due to th ?\Ar&wgﬁlgfctihina;c\),vn;)r/ 'Srsggzver:j"g Flt%(é)léin le ventricle bump is
paramount importance of cardiovascular function in sustainin nsumed in s gtemic ?:irculation chordingl minimizinp ovF\)/er
life. A greater understanding of cardiovascular flow conditions h Y ) gy, 9p

. - . ss in the modified vasculature is imperative for successful re-
Bgﬁg gaorﬁgegcgﬁi;?t?c?g cg‘r?]\i/gl;%-];usatllijt?/[?r?-ji]\./fgZ?asl‘gjflsiscg:s:ssults' It is within this framework that an effective analysis of fluid

Y : - - P - “flow within the TCPC becomes extremely valuable as it can pro-
Limitations associated with the acquisition of in vivo velocity . . -

; . .~ 2vide the information necessary to evaluate power loss. Further-
ggtsatl hg‘f’:\/mﬂg@re%gg{) gi;?y:g:cg;'?:]y agilyggnzligggg%v;\'/g t:]ne]ore, this information can be used to correlate efficient flows with
quired invasive procedures such as catheterization to obtain velie-eCIfIC anatomical characteristics imparted to the modified

; Agtomy. This in turn can provide surgeons with fundamental
'ttg ﬁin?l ?é?,ifsurgf r:?gf;ﬁg”&ﬁggm@figgf;gulr estﬁ:p(;):\?e%atééﬁé to pursue in executing future operations that when achieved
9 ' g, Pfacilitate successful surgical outcomes.

Qgg g f S?g\'/?gf; '\gff Oththa?g]Seéo ;c?;clgenlsrt]rx::\;i?w ﬂo\\ll\élgzit? I?i eclie- Historically, the surgeon’s experience has been the primary fac-
. 9 y qgr in determining surgical design with little attention paid to fluid

]lc\;I%r:t ,;/rlli{egsltiiehﬁ/lvlg idc(gr?:tsrsgtitc?ne gﬁgﬁ?sv:rtg th';%dtguﬁgﬁ ‘/namics. In order to focus connection design on minimizing
wer loss, surgical evaluation tools are under development at the

morphological data rather than velocity informatid+11]. Here, . . . ;
a novel approach based on adaptive control grid interpolat’if(?eorgla Tech Cardiovascular Fluid Dynamics Laboratory. These
t

i . o ols will aid the surgeon in creating efficient vascular structures
'(\,/Tg?nlj)alsezresented for the reconstruction of velocity fields fro at contribute to longer and higher quality lives for patients.

2.2 Power Loss Estimation. One method of evaluating the
efficiency of fluid flow is via power loss estimation. Simply put, if
2 Background flow through a given morphology is efficient, little power is dis-
L . ) . sipated. In the context of the Fontan, a direct relationship has been
2.1 Motivation. The surgical treatment of single ventriclegpseryed between inefficient flow and poor surgical outcomes. For
congenltal heart defect€HD’s) in chllqren_ls one area m_wthh this reason, the prospect of quantifying power loss in vivo, in
fluid flow analyses have made a significant contribution. Thgqger 1o identify advantageous anatomical characteristics, is at-
problem is frequently observed, affecting two newborns out gfactive. The question is thus posed, how can power loss be esti-
every thousand12]. Congenital Heart Defects are treated palliagmated in vivo? The answer depends on the inputs available for
tively with the total cavopulmonary connectighCPQO), one va- power loss to be calculated.
riety of the Fontan operation. This operation allows the atypical one technique that has been used extensively in power loss
heart found in these children to function more effectively. Chilgyantification is control volume analysis. In order to execute con-

dren with single ventricle anatomies have a mixing of oxygenatggh| yolume analysis, both pressure and velocity data are required
and deoxygenated blood, which when left untreated leads to R4k gescribed by Eq1).

merous problems. A simplified depiction of the communication

between the right and left heart that facilitates mixing is illustrated )

in Fig. 1(a). The TCPC procedure results in a complete bypass of Eloss= — 35 3€ %
the right heart with the single ventricle driving blood through the

entire circulatory system. The resultant anatomy is characterized cs
by a reconnection of the pulmonary arterig®As) to both the

ujn;ds Q)

1
P+ 5 pUil;

Here p represents pressurg,represents density, the variables
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(b)

Fig. 2 lllustrations of the TCPC configuration (a) and the
phantom geometry (b) used to simulate it. The dashed line in
(b) is present for a later discussion.

(k)

element within the control volume. Equatiof® and (3) reveal

Fig. 1 lllustration of a human heart with a single ventricle CHD . . NP .
the important fact that the viscous dissipation function can be

(a). The communication between the two ventricles indicated

by the arrows facilitates the mixing of oxygenated and deoxy- calculated with velocity gradients alone. For this reason a purely
genated blood. The anatomical modification performed to pal- velocity-based pathway for accomplishing power loss estimation
liate this condition, the TCPC, is shown in  (b). is possible with respect to clinical medicine. All of the power loss

quantification methodologies discussed thus far have been derived
and covered more extensively in a recent publicafibsy.

tion can be problematic in vivo in that pressure information is Accurately quantifying power loss via the viscous dissipation
difficult to extract. For cardiovascular cases, pressure data is u§inction requires the measurement of all three velocity compo-
ally gathered via catheterization, which is highly invasive anfiénts in _aII three spatial dimensions. Furt_hermore such data must
subjects the patient to risk and discomfort. Alternatives to catRe sufficiently resolved near the boundaries of flow where veloc-
eterization are desirable primarily for these reasons and becali%eédradient magnitudes are high. Ultrasound has proven valuable
of the 20% error margin generally associated with the processin a variety of velocity imaging scenarios, but fundamental limi-
One alternative for generating pressure data is computatiof@jions associated with the modality prohibit the acquisition of all
fluid dynamics(CFD) simulation[13]. The inputs required for three components of velocity and make it poorly suited for this
CFD are a geometric structure and boundary conditions for thfplication. Phase-encoded MR velocity images provide high-
structure in the form of velocity profiles. A completed CFD simutesolution velocity information, but only in two spatial dimen-
lation yields detailed pressure and velocity data throughout t#NS. In order to use this information for viscous dissipation func-
specified geometry. Control volume analysis can be used follofion power loss quantification, reconstruction into three
ing CFD simulation to estimate power loss. With respect to tHéimensions is demanded. Toward this end, a method to reconstruct
surgical evaluation scenario, geometric structures can be deriMdR! velocity data has been developed so that the reconstructed
from MR imaging followed by morphological reconstruction. Ac-data can then be used to estimate power loss with the viscous
cordingly, this mechanism for estimating power loss can be afissipation function.
plied to address the problem described in Section 2.1. However 3 Initial Results. Previous studies by Healy et al. and

such power loss estimates are based on simulated velocity rma et al. have provided results pertaining to the accuracy of
pressure data, one step removed from real in vivo data like thah qissipation function with respect to alternatiyes,17. Spe-
used to derive the geometric input and boundary conditions f@fea iy control volume analysis following CFD simulation was
CFD. Implementation of this process has been successful for Ny nared to viscous dissipation function analysis using the same

merogfs re.seark;:herz, 5’.“ frlom althe(‘)retié:al standl?joi)nt povxf/er ' simulated data. These results were insightful as they dis-
quantification based directly on in vivo data would be preferrgGayeq the capability of the dissipation function by comparing

(14,15, results from the two methods based on a common data source.

Another method for estimating power loss that has been eX-14 1ojate the two power loss estimation techniques to the Fon-
plored more recently makes use of the viscous dissipation fung:

X . X .tan scenario, the Sharma et al. and Healy et al. studies employed
tion [16]. Here, local fluid power losses produced by viscous dig; hantom TCPC connection. The phantom geometry is displayed
sipation are computed based on velocity gradients. Although thqﬁ

values are generally small in the local sense, the total power Iq8§ '9. 2 where the TCPC configuration from Figblis revisited
. e 8 mparison. The TCP nfiguration displ in Fi
can be calculated as the integral of the dissipation function ov, comparso e TCPC configuration displayed in Figy 25

&h artist's rendition of the anatomy that shows an idealized con-

the selected volume of interest. Expressions for the dissipatigiction |acking some of the subtleties of the most popular current
function and associated fluid dynamic power losses are describ lementation. The phantom shown in FigbPwas designed to
by Egs.(2) and(3), respectively. include these subtleties, specifically connection site flaring and

1{au; oy, 2 caval offset, in order to better simulate the in vivo conditions that
b= > (5 + W) (2) are most common today.
] ! A variety of flow splits and cardiac outputs were simulated to
. compare the power loss estimation techniques under different con-
ELoss:Mf f f ® dv (3) ditions. Flow splits here are described as the percentage of the
-y total flow departing the model from the LPA and RPA conduits,

while total cardiac outpufTCO) represents the total flow entering
In these equationgb is the dissipation functiory represents ve- both the IVC and SVC conduits. Total cardiac output and total
locity as before, and is used to represent Cartesian directionglow rate are used interchangeably in this text. For all experiments
Subscripts in the first equation again indicate Einstein notatioim. the Healy et al. and Sharma et al. studies, the IVC/SVC flow
CV represents the control volume over which power loss calculsplit was held constant at 60/40 for a total cardiac output of 2
tions are performed, andV represents the differential volumeL/min. These values and LPA/RPA flow split values were based
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Power Loss Estimations Table 1 Parameters associated with MR data acquisition

% MR system type Philips
B ConnlYolume - CFD (Healy) Pulse sequence type Gradient echo
1o, —E=DissipationFunction - CFD (Heak) Acquisition plane Transverse
! =d—Expenmental (Sharma) Images acquired ~15
Slice thickness 5mm
Field of view 200 mmx200 mm
i Flip angle 35°
Repetition time 23 ms
& Echo time 6.2 ms
Averaged signals 2
e Matrix size 256<256
VENC 70 cm/s

Power Loss (mW)
(]
[=F]

o
I

the reconstruction process presented here. MRI data for this work
were acquired using a Philips 1.5 Tesla Gyroscan scanner. Specific

e parameters relating to data acquisition are given in Table 1.
3.2 Data Reconstruction. To reconstruct velocity fields as

1] T T T , a precursor to power loss estimation, a new reconstruction meth-
70430 G040 £0450 A0EN 20470 odology has been developed based on adaptive control grid inter-

LPARPA Flow Split polation(ACGI). ACGI has previously been employed in address-

ing video coding and tracking problems, as well as data

Fig. 3 Results from different power loss estimation tech- reconstructiorf19]. The extension of the technique to reconstruct-

niques. Control volume analysis and viscous dissipation func- ing velocity data is a new concept. ACGI is a hybrid motion
tion analysis show strong agreement for all flow splits. estimation scheme that has features of both block-based and opti-

cal flow-based methods. These techniques, previously developed
for frame prediction in movies and camera video, provide a foun-

on in vivo MR velocity measurements from pediatric CHD pagatlon for MRI reconstruction algorithms. For the purpose of con-

tients under resting conditions. In addition to control volumtrsexi. and i:t)_ers?_ectlve, this section provides a brief overview of
analysis and dissipation function analysis, power losses were afgglion estimation.

calculated in the Sharma et al. study based on direct measures 2.1 Motion Estimation. The goal of ACGI, and any other
ments from an in vitro phantom with the same geometric propegiotion estimation scheme for that matter, is to link the pixels
ties as the CFD model. These experimental power loss valugsm a pair of images such that when the differences between all
were calculated based on IVC, SVC, LPA, and RPA pressurggirs of linked pixels are summed, a minimum value results. This
measured using high fidelity pressure transducers and on inlet &aflective difference is more easily conceptualized considering a
outlet flow rates measured with rotometeﬁﬂs?,lB]. The results matrix of vectors pointing every pixe| in one image to a corre-
from all three power loss analyses conducted in the Healy et ghonding location in a second image. For each pixel, there is some
and Sharma et al. studies are displayed in Fig. 3. ~ difference between its intensity and the intensity at the corre-
Power loss values estimated with control volume analysis aBflonding location in the second image. The summation of these
the viscous dissipation function showed strong agreement over Hiflerences, for a pair of images and a corresponding motion field,
entire range of LPA/RPA flow splits explored. The errors betwesfje|ds insight into how well that motion field links the image pair.
these two approaches were less than 10% in all cases, rangiigs “image difference” quantity can be determined based on
from 3.2% to 9.9%. Differences between the results from both gkveral traditional formulations; here a squared error measure, ref-
these methods and the experime_:rjtal rgsults were likely causeddp¥nced later as Eq5), is employed. The “image difference” in
poorly regulated boundary conditions in the Sharma et al. stueneral will be referred to throughout this section in defining the
However, these results indicate that, based on the same data,{8& methodology.
viscous dissipation function is capable of providing power 10Ss Two conventional methods of estimating motion are block
estimations with accuracy comparable to control volume analysjﬁatching and optical flow. Both techniques describe the move-
In the context of USing reconstructed VeIOCity fields to qUantifiyhent of pixe|s from one image frame to another. A|though they
power loss, one more question remains. Specifically, it has ngddress the same problem, these two methods approach it from
previously been shown that reconstruction can generate velogjgty different perspectives.
data with sufficient accuracy to estimate power loss well. The Bljock matching in its simplest form consists of comparison and
validations in Section 3 are aimed at addressing this point.  search steps. Blocks of pixels from one image are compared to
blocks from a second image to determine the region in that second
3 Methods image most similar to the chosen region in the first. Here again the
goal is to minimize the image difference defined earlier. The dis-
3.1 Data Acquisition. A flow loop similar to that used by placement of all pixels within a block is governed by a single
Sharma et al. was constructed to circulate fluid through the TCP@tion model, the simplest and most common example being uni-
phantom under steady flow conditions. A blood analog fluid confierm displacement. The similarity between blocks is evaluated via
posed of water and glycerine with a viscosity of 3.5 cP and an error function that quantifies the image difference, or collective
density of 1.1 g/crhwas used. Entrance lengths sufficient to erintensity discrepancy, between two regions. In the search step,
sure fully developed flows were connected to the phantom inletdlowable model parameters are searched to find optimal values
Total flow rates of 2 and 4 L/min were explored for a constarjfl9]. Block-based approaches have the advantage of a compact
IVC/SVC flow split of 60/40 and LPA/RPA flow splits ranging pixel displacement representation and a simple search procedure
from 40/60 to 60/40 in 10% increments. A contiguous set dbr simple models. These search techniques become computation-
phase-encoded velocity images were acquired as the initial stemby expensive when the model order, and consequently the search
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space, are increased. These increases are likely to be requ
when complex motion is present and high-accuracy estimates
needed.

The other conventional approach is optical flow, which allow
each pixel to follow a unique path from frame to frame. Thi
flexibility of this technique leads to a less compact motion fiel
representation and requires more computation. Unlike the simp
block matching approach where motion is estimated for enti
local neighborhoods, optical flow determines a unique motion fi
every pixel. This is accomplished by satisfying the optical flov
constraint equatiofOFCB),

Al(x,y,t) ax*(t al(x,y,t) ay*(t al(x,y,t
OOy ) o) A6y, dy* () Ay o 4
X at Ay ot at

wherel (x,y,t) represents the intensity function for a given imagé?'g' 4 Block diagram illustrating the ACGI motion field deriva-

andx* (t) andy*(t) denote the true trajectory of each padig0]. tion process

A unigue solution to Eq(4) is found by assuming motion field

smoothness, a constraint which is imposed in conjunction with

minimizing the _OFCE error. The OFCE error, or |_ts dlf'feren_ce:(nlynz) denotes coordinates within that image, afdind ¢

from zero, provides another measure of the previously _def'_n_%resent basis functions that implement the bilinear interpolation
image difference. Imposing the smoothness constraint is justififgtentioned earlier. Relating this expression to the previous con-
in the context of this work because it is consistent with the smoo#eptual discussion, the summation corresponds to the image dif-
variations of flow morphologies obtained when data sets are derence between one image and the motion corrected version of
quired with contiguous MR slices. another. Here it is clear that this quantity can be minimized based

The concept of motion estimation relates well to inter-slice reon the control point vectorsa{ and 8) given that the basis func-

construction when fluid structures at different positions in d'ﬁeaglénsgandgb are explicitly defined. In summary, the process for

Vary Control Point Displacements
to Minimize Error for Region
Motion Field [Optimization via
Conjugate Gradient Approach)

Subdivision .-lm

Is Error Below

Threshold or Evaluate Error
Has Minimum  —— g,,nc1ion for Block

Block Size
Been Reached?

Finish
(Motion
Field)

ent MR SI'CeS are con_su_jered as objects moving from frame termining the motion field for each region is characterized by
frame. That is to say, similar flow features are viewed mathemagie pjock diagram shown in Fig. 4.

cally as a single structure undergoing motion. With respect t0 Several other characteristics of the resultant motion field are
applying optical flow, the transition from one image plane to ehoteworthy. Because this motion model is of the connected vari-
ther adjacent one can be considered analogous to the transi@p the displacements for a given region’s control points are the
from timet to timet+1 in a temporal image sequence. same for each of those control points with respect to other regions

3.2.2 The New Approach.The limitations associated with that they bound. This makes the motion field continuous as a
traditional approaches motivate the combination of block and off"°le- So for the entire image, the ACGI motion vector field is
tical flow-based methods into a superior hybrid. The ACGI apluaranteed to be piecewise smooth and globally continuous.
proach used in this work can be considered both block-based andf? terms of reconstructing fluid flow well, global continuity is

optical flow-based. ACG| estimates displacement with an iterati\?épeda”y significant because it guarantees that the motions for all

search based on the optical flow equation, but the image is pafﬁgions are linked and that no local estimation is carried out in-
tioned into regions as in the block-based approach.

ependently of the motion information pertaining to adjacent re-
gions. This characteristic allows the algorithm to perform accept-
ﬂply in the case that a fluid structure is present in one slice then
ne in the next. The problem of estimating motion is ill-posed in
ths scenario, but assuming that the majority of the image is com-

Following the initial partitioning, motion fields for each of the 4 of f h he i i th ut i th
four sub-regions of the image are determined. Each motion fieldi@S€d Of features that span the image pair, the solutions in the
gfl-posed regions will dominate and shape the results in the

defined based on the motion vectors associated with the cornerd¥

the region, which are referred to as control points. Specifically, the°rly conditioned area. Under these circumstances, and for all
motion vector for any point on the interior of a sub-region jcases truly speaking, a perfect solution is unattainable, but a best

related to the four control points that bound it via bilinear inter2°ution given constraints is still achieved. For this best solution
polation. Given this relationship, the motion field for an entin%\0 be of useful quality, sampling must take place at a sufficiently

region can be defined based on four parameters, those being .

four regions of equal size, then into sub-regions as necess

Ipg rate. Given the results presented here, slices 5 mm thick ap-
displacement vectors associated with each of the four contf§iar © fall below the upper bound on slice thickness correspond-

points Ing to the minimum acceptable spatial sampling rate.
The process used to derive the motion field varies these four! '€ duad-tree grid structure generated via the adaptive process
ed here can take many forms. One example of a course sym-

parameters iteratively in order to minimize the error associat ) : . .
with the OFCE for a given block. A conjugate gradient method 21€UIC quad-tree, superimposed on an image from the pair used to
generate it, is shown in Fig. 5. The image here is a modulus image

employed to optimize the motion field efficiently. Within this op- ; R .
timization framework, the constraint is motion field smoothnes&0M the velocity scan, indicating signal strength, and corresponds
imposed as in the optical flow solution defined earlier, and tH8 the plane indicated by the dashed red line in Fig).2mages

expression to be minimized is the error function, defined explicit@ this type are weII-swted o .establlsh. appropriate |n'§erpplat|on
for a regionR as, ectors as the image intensity is a function of fluid moving in and

out of the imaging plane. Accordingly, the criteria for vector de-
termination are based, at least in part, on all three velocity com-

E(a,8)=2, 2, (I[nk]=I[n;+a"6(n),n,+BTd(n) k ponents to be reconstructed. By exploiting this information similar
neR fluid structures can be correlated well via the ACGI methodology.
+6k])2 (5) In Fig. 5 the blue lines represent the initial image partitioning,

- _ and the green and red lines define sub-regions where grid refine-
In this expressiong and B represent vectors composed of thanent is advantageous. When further subdivision is not performed
respective row and column components of the control point dig: these regions, the bilinear model approximates motion poorly.
placements,I[n,k] represents an image where the vector Successive refinement decreases the area that the model is im-
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i)

Fig. 6 Coronal view of an originally acquired phase encoded
MRI velocity data set (a) and the same view of the correspond-
ing three-dimensional velocity field reconstruction (b)

lated slice. This process is repeated and multiple interpolated im-
ages are stacked between known images to produce a three-
dimensional enhanced data set. The out-of-plane spatial resolution
Fig. 5 Example of a coarse symmetric quad-tree structure of the enhanced data is determined by the number of interpolated
generated via the ACGI motion estimation process frames, and can be varied although it is generally advantageous to

achieve an out-of-plane resolution close to the in-plane value as-

sociated with the originally acquired data. Adding interpolated
ames beyond this point is analogous to computing a value with
eater precision than the inputs it is based on, and offers no
grther benefit.

posed over in each partition and decreases overall error signﬂE
cantly. As this figure indicates, the most subdivided regions of t
image correspond to areas of the phantom within which fluid
flowing and high motion field resolution is desired to facilitate
accurate reconstruction. Progressive subdivision, like the motidn Results
parameter determination phase itself, is performed based on thqhe improvement produced by ACGI in comparison to an origi-
Image dlﬁere.nce _value. When successive SUblelSlQn and the ﬂ§f MR data set is d|sp|ayed in F|g 6. Here the sparse Origina”y
sociated motion field refinement are not accompanied by a suampled data is displayed i) and the reconstructed velocity
cient decrease in the image difference, a further subdivision dgta set in(b). The total cardiac output for these data was 4 L/min,
foregone. This was determined to be the case in practice whefha |VC/SVC flow split was 60/40, and the LPA/RPA flow split
subdivision produced less than a 5% decrease in error. These {gs 40/60.
chanics partition the image into sub-blocks of appropriate size toThe immediate focus of the validations associated with this
capture characteristics of transition and further subdivide regiofgrk was to demonstrate the accuracy of reconstructed data. The
where error remains large. They enable the algorithm to handgcuracy of the dissipation function for power loss estimation
both simple and complex displacements within the optical flofased on velocity data from other sources has already been ex-
framework. These characteristics are important as they allow usgired and was described by the data provided in Sec. II. Accord-
obtain an accurate and dense representation of the displacenyggit, the important question to answer in the context of using
field at a reasonable computational cost. There is a tradeoff hgconstructed data to estimate power loss relates directly to the
tween the computation time and the error associated with the &:‘Curacy of those data. However, the ultimate aim of research
sultant displacement field when the block size bounded by contigbng these lines is to use reconstructed MR data to quantify
points is varied. Smaller block sizes lead to a more accurate digower loss. For this reason, initial results obtained by applying the
placement field, but are more computationally expensive. If larggscous dissipation function to these data are included in this sec-
errors remain, a further subdivision is performed to improve th@yn as well.
resolution of the motion field. Ultimately, the motion field can be In order to evaluate the quality of reconstructed velocity data,
calculated with a specified degree of sub-pixel accuracy. In ordeiconstructions were compared to velocity planes from identical
to maximize efficiency, subdivision and the accompanying conpcations in the same phantom acquired with particle image ve-
putation are confined to regions where nonuniform motion igcimetry (PIV) and computational fluid dynamic&CFD). PIV
present as_ in Fig. 5. _Further details describing the Cha_lracteristg;ﬁj CFD methodologies have been extensively explored by pre-
of the motion model implemented here can be found in a recafbus researcf23,24. Planes for comparison were taken from the
publication[21]. coronal perspective, out-of-plane with respect to the original MR
3.2.3 Algorithm Description. The starting point for the over- scan. The coronal planes reconstructed from MR contain almost

all reconstruction process is a set of transverse contiguous phdgge/usively reconstructed data since the images used to derive

encoded MR velocity images acquired with a breath-hold gradiefe™ Were taken from the axial perspective. Accordingly, the com-

echo pulse sequence as described in Section 3.1. Phase vel json of these reco_nstru_cted planes to ones natively acquire_d in
mapping has been explored extensively in other research and _cqronal perspective with other_modalltles offers valuable in-
tablished as an accurate means of extracting flow @& Fields S9Nt into the quality of reconstruction. _
of displacement vectors are calculated describing the motion Ithou_lgh ther_e IS no absolute goI(_:i standard for correct \(elo_c:lty
pixels from one image slice to another via the ACGI methodolog%ta’ fluid physics dictate that the divergence of any velocity field
outlined in the previous section. ust equal zero,

From a dense displacement field and the associated pair of MR du dv dw
images, intermediate frames are reconstructed. By following one &+ d—+ E=O (6)
of the displacement vectors a portion of the way from one slice to y
the next, a linear approximation of where a given pixel would b&hereu, v, andw represent the three orthogonal components of
found in an intermediate slice can be made. Repeating this procesbcity andx, y, andz again represent Cartesian directions. To
for all pixels in a given slice allows the reconstruction of an entirdemonstrate that the data reconstructed with the proposed algo-
intermediate image. Pairs of these reconstructed images are thigim are realistic, divergence errors for the symmetry plane of the
combined in a spatially weighted sum to form a single interpoFCPC phantom were calculated for the most common set of in
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Table 2 Results from divergence error analysis Average Velocity Error - TCO 2 litersfmin

P s i
Data set RMS divergence error 2 00, || W LPRURF, 4060 l
B LRAFFA 350 |
CFD 2.9 T.00% u | PR Y I
PIV 14.4 R |
ACGI reconstructed MRI 17.6 ﬁ,
Cubic interpolated MRI 194 i E 500 |
Raw MRI 57.1 @
p &0
If 1005 1
200% 1
1.1007%
vivo flow conditions: the total cardiac output 2 L/min, IVC/SVC 0.00%
flow split 60/40, and LPA/RPA flow split 50/50. The root mear CFOVMR CFOVPIY PIVIMR
square divergence error values were evaluated for five differe Recorstruction Reconstruction
data sources: CFD, PIV, ACGI reconstructed MRI, cubic interpc Madality Compari sons

lated MRI, and raw MRI. The L2 norms of divergence error val-- _ _ _ o
ues varied greatly in some cases because differing numbersFigk 7 Comparative errors for velocity magnitude acquisitions

points were examined, but the root mean square values at a total cardiac output of 2 L /min. The values indicate the
' ’ percentage formed by dividing the average error for each mo-
> (E)?

dality comparison by the theoretical maximum flow velocity
ieD

within the phantom.
7
. U]

offered greater comparative insight. In E{), E; denotes the were also omitted from this comparison as visual inspection
individual divergence errors, their difference from zePorepre- clearly demonstrates that they are distort€dy. 9). The error

sents the fluid domain, amdrepresents the number of points oveevaluation methodology employed in this stage is frequently used
which the divergence errors were summed. Divergence valui@s image-based comparisons, and was selected here as there were
have the unit B, which interestingly is also the unit associatedwo images, each from a different modality, to be compared in
with the OFCE once variables have been transformed to mate¥ery cas¢25]. Details describing the CFD and PIV methodolo-
those of the data it is applied to in this scenario. The results of tgées can be found in recent publications from the Georgia Tech
divergence error calculations are presented in Table 2. Cardiovascular Fluid Mechanics Laboratgi6,23.

The divergence errors associated with CFD were expected to bé\ variety of flow conditions similar to those explored by Healy
small, as upholding divergence is one of the criteria used to det-al. and Sharma et al. were examined to validate the effective-
termine the solution within the framework of CFD. Furthermorg)ess of ACGI reconstruction under different circumstances. LPA/
the greater levels of noise present in the reconstructed MRI d&tRA flow splits ranging from 40/60 to 60/40 were explored for
were expected to contribute to errors in divergence. NevertheleBsth 2 and 4 L/min. This set of flow parameters covers the range
the divergence errors for the ACGI-reconstructed MRI data wegsicountered in vivo under normal and exercise conditions for pe-
well within an order of magnitude with respect to the RMS valudliatric CHD patients. Results from the error comparisons associ-
The number of points examined for the ACGI-reconstructed MRited with each set of flow parameters are displayed in Figs. 7 and
and PIV data sources were approximately equal. Although tiBe To provide perspective, the errors are represented as a percent-
ACGlI-reconstructed MRI data showed greater divergence err@ge relating the modality specific scaled velocity error to a com-
than PIV, the proximity of those errors to the corresponding valu#son flow velocity. The average velocity discrepancy for each im-
from PIV is encouraging as the PVI data were actually acquired #ge pair was compared to the theoretical maximum velocity
the plane that was analyzed, whereas 87.5% of the data in fesent within the model to determine the percentage. The maxi-
reconstructed MRI plane were interpolated values. ACGIl-basstlm value was derived by dividing the largest entering flow rate
MRI reconstruction showed an enormous improvement over thy the cross-sectional area of the model inlet, to obtain an average
raw MRI data with respect to divergence, and a significant imyalue, and then multiplying by two to get the theoretical maxi-
provement, 10.23%, over cubic interpolation. The infinity norm of
the ACGl-reconstructed data was also better than that associated
with cubic interpolated data by greater than 10%. In the ongoir~

RMS=

Average Velocity Emor - TCO 4 litersimin

effort to enable reconstructions of the highest quality, one alg 0% |
rithmic development underway involves the incorporation of 4 50% 1| LPAFFA 4070 {
divergence term in the error expression that is minimized to d 400 | LFARPA SY5D '
termine the optimal motion field. This should facilitate the recor ey | RO

struction of data characterized by even lesser divergence err0r§ 2 0% |
In a second data comparison, velocity magnitudes were eva#
ated on a point-by-point basis. This comparison reflects the ac(g i
racy of data in a different way as there are an infinite number &
zero-divergence velocity fields that can occupy a volume, b
clearly only one of them is correct for this flow phantom and th
given inputs. Intensity values representing the magnitude of v
locity at each pixel location were compared between MR reco B
struction and both PIV and CFD. The magnitudes of the diffe I iag CroFlY IV
ences between these values were then summed for all pi RErLTECIn Fecorstuction
locations and averaged. PIV and CFD were compared as well. Tiie Mically Complacns
goal of this anaIyS|§ was to e\_/a_I!,late ACQI reconstruction Witsy 8 Comparative errors for velocity magnitude acquisitions
respect to an established acquisition technique and an established o4 cardiac output of 4 L /min. The values indicate the
Slmu|atI0n teChanue. InClUd|ng the raw MR' data. |n thIS analys|§ercentage formed by d|v|d|ng the average error for each mo-
would be inappropriate as the large gaps between the origirlity comparison by the theoretical maximum flow velocity
slices make coronal planes incomplete. Cubic interpolated datihin the phantom.

Z50%
200% 1
1.50% 1
1.00% 1
CL50% 1
0.00%
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(@) (b)
Reference Vector: 24 cm/s

Fig. 11 (a) CFD and (b) MRI reconstruction LPA cross-section
i half-plane velocity vector plots. TCO: 2 L  /min, IVC/SVC flow
split: 60 /40, LPA/RPA flow split: 50 /50.

Fig. 9 (a) PIV, (b) MR reconstruction, (c) CFD, and (d) MR
(bicubic interpolation ) velocity magnitude contour plots. TCO:

4 L/min, IVC/SVC flow split: 60 /40, LPA/RPA flow split: 60 /40. output was 4 L/min, the IVC/SVC flow split was 60/40, and the
LPA/RPA flow split was 60/40. The results in Fig. 8 are consistent

) ) ‘with the vector plot in Fig. 10, where it appears that SVC flow is

mum velocity present at the given flow rate under the assumptigiyre vertically aligned for PIV in comparison to CFD and MR,
_of p_arab_olic flow. For 2 liters/min the theor_etical ma>_<imum veloCyhich show SVC flow tending more toward the RPA. The CFD
ity in this model was 30.14 cm/s; for 4 liters/min it was 60.2%,4 MRI plots also show connection region vorticity and flow
cmis. ) redirection from the IVC to the RPA, characteristics which are

The similarity between reconstructed velocity planes and thogggsent from, or less prevalent in, the PIV representation.
from CFD and PIV can be observed directly from the data as well. Reconstructed velocity data in the sagital plane corresponded
Velocity magnitude plots for PIV, MR reconstruction, CFD, anqye|| to those from CFD also. Figure 11 shows half-planes from
bicubically interpolated MR data are displayed in Fig. 9. BicubigFp and reconstructed MR data just outside the connection re-
interpolation is currently the most popular technique used to cOUgkon of the TCPC model. PIV data from this plane was unavail-
teract sparse sampling in multi-planar reconstruction applicatioBgje due to limitations associated with the modality. It is note-
[26]. ) . .. worthy that the original MR data set contained only four axial

In Fig. 10, velocity vector plots for the same flow conditiongmage samples through the region of the model shown here, which
are shown for all three modalities. For these data the total cardig&eount for only four horizontal lines of vectors in these
illustrations.

When comparing reconstructed MRI data to MRI data natively
acquired in the coronal plane, similar fluid structures were again
observed. Figure 12 shows vector plots from a coronal MRI image
and from reconstructed MRI data. Originally acquired MRI data
and PIV data were included in this study for thoroughness, but the
authors feel that the similarities between reconstructed MRI and

@ | (b)

Reference Vector: 24 cm/s

Fig. 12 Originally acquired coronal MRI data  (a) and the cor-
responding coronal plane from the reconstructed MRI data set
Fig. 10 (a) PIV, (b) MRI reconstruction, and (c) CFD velocity (b). Similar fluid structures including redirection of IVC flow to
vector plots. TCO: 4 L /min, IVC/SVC flow split: 60 /40, LPA/RPA  the RPA and the low-velocity offset region are apparent. TCO: 2
flow split: 60 /40. L/min, IVC/SVC flow split: 60 /40, LPA/RPA flow split: 40 /60.
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MR Viscous Dissipation Power Losses 5 Discussion

In addition to power loss estimation, there are a variety of other
—— applications for which reconstructed velocity data would be well
i . suited. Many vascular pathologies such as polycystic kidney dis-
a - Aeconstrcted MR Da1a] | €aSe(PKD) are characterized by decreased arterial blood flow
[27]. The evaluation of disease progression in PKD cases is often
03 o Median Fitersd based on in vivo flow measurements from MRI. For diagnoses to
Aeconslucled MR D3l o gecurate based on traditional two-dimensional images, it is

important that sampling take place at precise locations. Recon-
0t structed velocity data offers a complete flow field from which
0 . ) more global information is available. Accordingly, reconstructions
o 50 B0 could provide physicians with more information for diagnoses.
REA Outflow % Total Inflow) Fluid dynamics within the carotid artery are evaluated with ul-
trasound over 10,000 times each day in the U.S., with the aim of
Fig. 13 Initial viscous dissipation power loss results for cen- identifying plaque regions via the observation of flp26]. How-
ter planes based on reconstructed MR data at a total cardiac ever, the dimensionally limited and relatively low resolution data
output of 2 L /min. provided by ultrasound, coupled with its high operator depen-
dency, result in operations that are unnecessarily performed 24%
of the time[26]. MR reconstruction would be well-suited to im-
prove analysis and diagnosis in this scenario because of the more
complete description of three-dimensional in vivo fluid dynamics

CFD data are most telling, as these are the only two data sour8eat it provides. .
that provide all three components of velocity in three spatial Another application in which reconstructed velocity data could
dimensions. be useful is the quantification of shear stress at vessel walls. Shear
Initial power loss figures obtained by applying the viscous di§iress is _known to play a role_ in _ath(_eroscleross and (_)ther vascular
sipation function to reconstructed MR velocity planes showegfthologies. As comprehensive in vivo data are required for quan-
similar trends to the power losses calculated in the Sharma et tication, reconstructed velocity fields would offer a non-invasive
and Healy et al. studies for the same in vitro phantom. Speciglternapve acquisition method to provide the necessary informa-
cally, a minimum power loss value was observed at an LPA/RAQN. Given that reconstructed velocity data can be obtained for
flow split of 50/50. Increased power losses were observed wh@Ry number of different phases within the cardiac cycle, the os-
the flow split was varied in either direction. The power loss valuédllatory shear stress index could also be calculated in vivo.
for the center planes examined by the error comparisons in thiglthough the reconstruction of MRI velocity images has been
section are displayed in Fig. 13. the focus of re_sea_rch thus far, _the ACGI me_thodo_logy is also well
As with any calculation based on acquired data, the accuracy%f'ted for application to veIouty data acquweq via other means.
power loss figures here is directly related to the quality of theh€ PIV data that have been discussed in this paper represent a
originally acquired MR information. One issue inherent to reconf@luable source of in vitro velocity information but provide only

structed MR velocity data, in contrast to the other velocity dafy/0-dimensional spatial samples of two-dimensional velocity vec-
acquisition modalities, is the relatively high level of noise in thé0rs. ACGI COUl.d be u_sed to enhance the out of plane resolution of
original MR images. Figures 9 and 10 show clearly that the rStandard two-dimensional PIV data sets, and to reconstruct three-

constructed MR data are much noisier than either CED or pfimensional data sets of three-dimensional velocity vectors given
data. The noise in the reconstructed data, resulting from noisellf @vailability of PIV data from multiple perspectives. Both of

the original images, can be alleviated by applying a median filtdP€S€ options will be investigated in future research.
Using a 3x 3 median filter resulted in decreased viscous dissj- Regardless of future applications, the validations presented here

tion power losses. Th median filter wer loss val e de_monstre_lted that_ ACGI is (_:apable of reconstructing de-
pafion po osses. These media ed power loss values tg?l%(ad, high quality velocity data. This methodology has an inher-

included in Fig. 13. Median filtering is not presented here as g . : .
recommended path for arriving at more accurate power loss VGt advantage over techniques that simply place acquired planes
velocity data into a common three-dimensional space because it

ues, as it certainly blurs the information near the boundaries thafy . ’ 8 . A
kes an intelligent approach to the approximation of unacquired

imperative for accurate power loss measures. Rather, it is . “Fr T - .
P P P ta. Other techniques for accomplishing this, including linear,

sented to support that noise is a factor with the MR data. It ; . e ! . h
probable that this noise contributes to the greater than expecfetpic: and sinc function interpolation, suffer because interpolation
arried out between points that are unrelated with respect to the

power loss values for the center planes when compared to & ) ; X
global power losses presented by Sharma et al. and Healy et '.d structures to Wh'Ch they be_long. _In comparison 1o nafive
Because noise in the original data is a likely cause for tHBEthOds ?f ?bti'n'ng tthree-danensmnlal ft'e.ldSMROf. three-
reconstruction-based power losses being overestimated, it¢[§'€NSional VEIoCity Vectors, such as volumetric imaging,

reasonable to conclude that the techniques presented here wilf BgPnstruction requires substantially less acquisition time making
able to provide even higher-quality results as MR technolo pra_cppal for a variety of clinical applications that volumetric
advances cquisition techniques cannot address.

For the plane-to-plane comparisons conducted here to be sig- .
nificant, it is clear that planes used in comparison must have origi- Conclusions
nated from the same locations within the model. For CFD data Qualitatively, reconstructed MR velocity fields displayed simi-
resolution is extremely high, making it simple to select the centéar flow characteristics in comparison to both PIV and CFD. More
plane accurately. The 200 mm field of view used in MR datmsight into the quality of reconstruction was provided by a quan-
acquisition allowed a selection of the center plane from these dditative comparison. For both 2 L/min and 4 L/min total flow rates,
sets with sub-millimeter accuracy. Likewise PIV affords the exerrors between CFD and reconstructed MR velocity data were
perimenter high-precision control over the laser sheet that defifewer than errors between either CFD and PIV or MR reconstruc-
the plane of data acquisition well into the sub-millimeter domairion and PIV. This may indicate that the CFD and reconstructed
Given these facts, it is reasonable to conclude that the respectiedocity fields are more similar to each other than either is to PIV.
center planes do come from similar enough locations within thhe absolute evaluations of any one of these modalities are pro-
model to make the data presented here significant. hibited by the fact that a gold standard is unavailable. It is for this

]
@
]

Power Loss [l
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reason that the divergence errors were examined and that monary Connection,” IEEE Trans. Biomed. Engg, pp. 393-399.
comparison-based methods were used in this work. Results frorif] Bolzon, G., Pedrizzetti, G., Grigioni, M., Zovatto, L., Daniele, C., and
o . . D’Avenio, G., 2002, “Flow on the Symmetry Plane of a Total Cavo-
both analyses indicate that velocity fields reconstructed from MR pyimonary Connection,” 3. Biomect85, pp. 595-608.
with the proposed ACGI technique are comparable in quality to[3] de Leval, M. R., Dubini, G., Migliavacca, F., Jalali, H., Camporini, G., Red-
those from the other data sources examined here. ington, A., and Pietrabissa, R., 1996, “Use of Computational Fluid Dynamics
Considering that MR reconstruction is the onIy one of these N the l_)eS|gn of Surgical Procedures.ﬁ:ppllcatlon to thelStudy of Competitive
o . . . . . . Flows in Cavopulmonary Connections,” J. Thorac. Cardiovasc. Siitg, pp.
modalities capable of directly capturing in vivo information, the 5o, 513
results support that the acquisition of complex three-dimensionaja)] Amodeo, A., Grigioni, M., Oppido, P., Daniele, C., D'Avenio, G., Pedrizzet,
in vivo velocity fields may now be possible. The implications of  G., Giannico, S., Filippelli, S., and Di Donato, R. M., 2002, “The Beneficial
this would be widespread, but in the context of this work such \C’%rrt]i’é Cat‘i';?] ?gitr SPFa;'ra'C’g;’agr%faTE':a'r? I;Ost:;g'éﬁ"acazd;i‘c Easv"p“'mo”ary
velocity fields could be used to provide in vivo power loss esti- [5] Saber, N R Gog'man A [;3 Wood. N. B K“ner”gpj Ch_amer' C. L. and
mations from the TCPC using the viscous dissipation function. An" Firmin, b. N., 2001, “Computational Flow Modeling of the Left Ventricle
exploration of this prospect is underway and is one focus of on- Based on In Vivo MRI Data: Initial Experience,” Ann. Biomed. Eng9, pp.
going research. This methodology is envisioned as an integral parE3 575—383- 4 Wana WL 2000. “Morsholoav-Based Thiee.Di onal |
of the surgical evaluation tool currently in development. (6] pgf;ﬁo'r’] VIEEE Trans. Med ,;nag%rglgo Sgy}ﬁsfnl ree-Dimensional Inter-
The development eﬁort IS .baseq upon a number of fluid dy-[7] Higgins, W. E., Morice, C., and Ritman, E. L., 1993, “Shape-Based Interpo-
namic evaluation techniques including CFD, PIV, MR reconstruc- lation of Tree-Like Structures in Three-Dimensional Images,” IEEE Trans.
tion, flow visualization, studies in theory, and experimental stud- _ Med. Imaging,12, pp. 439-450. )
ies like those conducted by Sharma et al. Through the use of alf! Tree"el' G. M., Prager, R. W, Gee, A. H., and Berman, L., 2000, “Surface
h ied technigues with their respective strenaths and weak- Interpolation From Spa_rse Cross Sections Using Region Correspondence,
these varied nique 'SP gths ) IEEE Trans. Med. Imaging}9, pp. 1106—1114.
nesses, the identification of the elusive gold standard in fluid dy{9] Grevera, G. J., and Udupa, J. K., 1996, “Shape-Based Interpolation of Multi-
namic data acquisition becomes more feasible. Moreover, each of dimensional Gray-Level Images,” IEEE Trans. Med. Imagia§, pp. 881—
; 892.
th?%e ttOOIS (éontnbUtes ttf? a fsfysi.em of ChekaS and t?]alart]cels tt’E%] Raya, S. P., and Udupa, J. K., 1990, “Surface Shape-Based Interpolation of
Va_' ates an e_nsures e efrec I\_/G use or every other too v € Multidimensional Objects,” IEEE Trans. Med. Imaging, pp. 32—42.
ultimate goal being a comprehensive system capable of providingi) Grevera, G. J., and Udupa, J. K., 1998, “An Objective Comparison of 3-d
physicians with accurate and clinically valuable in vivo fluid dy- Image Interpolation Methods,” IEEE Trans. Med. Imaging, pp. 642—652.
namic data. [12] Reller, M., McDonald, R., Gerlis, L., and Thornburg, K., 1991, “Cardiac Em-

The proposed ACGI algorithm performs well in the velocity Zn;)orl)(.)%{:gli%sgi;.Review and Clinical Correlations,” J. Am. Soc. Echocardiogr,
reconstruction application, as the validations indicate. Through ifg3 s'chnchting H., 1979Boundary Layer TheoryMcGraw-Hill, New York.
exploitation of both gradient and intensity information, ACGI is[14] Migliavacca, F., Dubini, G., Pennati, G., Pietrabissa, R., Fumero, R., Hsia, T.,
adept at reconstructing data near boundaries. This point is espe- and de lLevaI, M. R., 2000, “Cot’npute_ltional Model of the Fluid Dynamics in
cially significant in the velocity data context as accurate values ggfég:ﬂ'(C:'_I‘X_Plg%‘)?:a'orsr’gﬁf’ 2. Blomecha, pp. B49 88 ical Planning
near boundaries are imperative when reconstructions are to D€ for Cardiovascular Disease: Visualization System Foundations,” Comput.
used for power loss estimation via the viscous dissipation func-  Aided Surg. 2, pp. 82—89.
tion. Fluid dynamic theory and both in vitro and in vivo observa-[16] Healy, T. M., Lucas, C., and Yoganathan, A. P., 2001, “Non-Invasive Fluid
tions indicate that the highest magnitude velocity gradients are ~PYNamc Power Loss Assessments for Total Cavopulimonary Connections Us-
found near fluid boundaries. These gradients are the largest con- El?g.,123 op. 317_3‘;4_ ' o S, ' '
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function. Accordingly, the characteristics of ACGI make the pro-  Fyfe, D., and Yoganathan, A., 1996, “In Vitro Flow Experiments for Determi-
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used with the viscous dissipation function, and in virtually any 57", 15641269,
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