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Abstract: The aim of this lecture note is to outline some basic concept, results, typical proofs and some recent progress on
Gorenstein homological algebras.
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Since the influential work [EM], [ABr], [AR1], and [EJ2], the Gorenstein homological algebra has been devel-
oped to an advanced level. The main idea is to replace projectives and injectives respectively by the Gorenstein projec-
tives and the Gorenstein injectives, introduced by Enochs and Jenda [ EJ1]. This concept also goes back to the work of
Auslander and Bridger [ ABr], where they introduced the G-dimension of finitely generated module M over a two-sided
noetherian ring: M is Goreinstein projective if and only if the G-dimension of M is zero (Theorem (4.2.6) in [Ch]; al-
so [AM]). Now it was widely used in the singularity, the Tate cohomology, representation theory, triangulated catego-
ries, and so on.

The aim of this lecture note is to outline some basic concept, results, typical proofs and some recent progress on this
subject. We omit the dual version, i.e., the ones for Gorenstein injectives. Main references are [ ABu], [ AR1],
[EJ2], [Holl], and [J1].

Throughout, R is an associative ring with 1; modules are left if not specified; R-Mod and R-mod are the categories of
R-modules and of finitely generated R-modules, respectively. Let R-Proj, or simply, Proj, be the full subcategory of
projective R-modules; and R-proj, or simply, proj, the full subcategory of finitely generated projective R-modules.
Note that R-Mod is an abelian category; and if R is a left noetherian ring then R-mod is abelian.

Throughout, .Z is an abelian category with enough projective objects. A subcategory of . Z always means closed under
isomorphisms. We often take .Z to be R-Mod, or R-mod with R left noetherian.

The following concept is fundamental. Let .2 be a full subcategory of .7, and M €. 7. Recall from [ AR1] (also
[EJ1]) that a right .2 - approximation (or, .2 -precover) of M is a morphism f: X —>M with X € .Z; such that the
induced map Hom ,( X’ , X)—>Hom , (X", M) is surjective for any X’ €.2. If every module M admits a right .2 -ap-

proximation, then .%"is called a coniravariantly finite subcategory in .#, or % is a precovering class in 7.
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By a Hom , (Z; — )-exact sequence £, we mean that £~ itself is exact, and that Hom , (X, E" ) remains to be
exact for any X € .2" Dually, we use the terminology Hom , (= ,.2)-exact sequence.

If every object M admits a surjective, right .2 -approximation, then every object M has a (left) .2 -resolution which
is Hom , (2", — )-exact. Such a resolution is called a proper (left) .Z"-resolution of M. Conversely, if every object
admits a proper (left) .2 -resolution, then every object admits a surjective, right .2 -approximation.

Dually, one has the concept of a lefi .%"-approximation (or, a .% -preenwelope) of M, a covariantly finite subcatego-
ry (or, a preenveloping class), and a coproper (right) .2 -resolution of M .

For a full subcategory .2 of 7, put

2= {ME 2B’ (M, X) =0, Y XE.2, Viz=1}.

1 Gorenstein projective modules

We recall some basic properties of Gorenstein projective modules.
1.1 Following Enochs-Jenda ([EJN], [ER2D), a complete projective resolution in .7 is a Hom , ( —, Proj)-exact se-

- d’! & 1! L . . . . T
quence (#°,d) =+=—>P '=—>pP" —p! > PP e of projective objects. An object M is Gorenstein projective in

% if there is a complete projective resolution (°°, d) such that M =1Im d -

Denote by R-GProj, or simply, GProj, the full subcategory of Gorenstein projective objects in R-Mod. Denote by R-
Gproj, or simply, Gproj, the full subcategory of Gorenstein projective objects in R-mod.
Remark 1.1 (| ) For a full subcategory w, Auslander—Reiten ([ AR1]) considered the following full subcategory

2o ={ME R-Mod| 3 an exact sequence 0——’M——’TO—(£>T1—£’"' , with T'"E w, Ker d'€"w, Vv i=0}.
Note that if w = R-Proj, then %, = R-GProj.

(i) If R is an artin algebra , then the Gorenstein projective objects in R-mod are also referred as the maximal Cohen-
Macaulay modules (see e. g. [B]).

Facts 1.2 (| ) If A is a quasi-Frobenius ring , then GProj = A-Mod.

(i ) A projective module is Gorenstein projective .

(i) If (277, d) is a complete projective resolution , then all Imd' are Gorenstein projective ; and *+—> pi—
Imd'—0,0 —Imd'—P"*'— - and 0—>Im d'—P'*'—>+--—> P'—>Imd’—>0, i < j are Hom( - ,Proj)—
exact .

(IV) If M is Gorenstein projective , then Exty(M,L) =0, Y i >0, for all modules L of finite projective dimension .

(V) A module M is Gorenstein projective if and only if M & ~(Proj) and M has a right Proj-resolution which is Hom
( = ,Proj)-exact ; if and only if there exists an exact sequence

0—>M—>T°i0> Tlil»--, with T" € Proj, Kerd' € {(Proj), V i=0.

. -1 d[)
(Vi) For a Gorenstein projective module M , there is a complete projective resolution +--—>F ~'—> F’—> F' —>...

consisting of free modules , such that M =1Imd " .

(Vi) The projective dimension of a Gorenstein projective module is either zero or infinite. So, if gl.dim R < o, then
R- GProj = R -Proj.

Thus , Gorenstein projective modules make sense only to rings of infinite global dimension .

(Vill) Let A be an artin algebra . Then the functor Hom, ( —, A) induces an equivalence A-Gproj= A" - Gproj with a
quasi-inverse Hom, ( —,A) .
Proof We include the proof of (Vi) and (Vii).

(Vi) There is a Hom( —, Proj)-exact sequence 0 —> M —>P" —> P' —>--- yith each P’ projective. Choose projec-
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tive modules Q°, Q', -+, such that F* = P°@® Q°, F' = P"® Q"' ® Q", n >0, are free. By adding

0—0Q' —i’Qi —>0 to the exact sequence in degrees i and i + 1, we obtain a Hom( —, Proj)-exact sequence of free
modules. By connecting a deleted free resolution of M together with the deleted version of this sequence, we get the de-
sired sequence.

(Vi) Let 0O—> P, —>P,_,—>-—>P, —> G —>0 be a projective resolution of a Gorenstein projective R-module
M, with n minimal. If n>1, then by Ext; (G, P,) =0 we know Hom(P,_,, P, )—>Hom( P, , P,) is surjective,
which implies 0—> P, —>P, _, splits. This contradicts the minimality of n .

1.2 A full subcategory .% of R-Mod is resolving, if ProjC.#; .2"is closed under extensions, the kernels of epimor-
phisms, and the direct summands.

Theorem 1.3  For any ring R, GProj is resolving , and closed under arbitrary direct sums .

Proof In fact, this is a special case of [ AR1], Proposition 5.1. We include a direct proof given by H. Holm in
[Holl].

Easy to see GProj is closed under arbitrary direct sums; and it is closed under extension by using the corresponding
Horseshoe Lemma. Let 0 —> M, —>M —>M, —>0 be a short exact sequence with M, M, Gorenstein projective. Then
M, € (Proj) . Construct a Hom( —, Proj)-exact, right Proj-resolution of M, as follows. Let M =0—>M —p’—
P, —and M, =0—>M, — Q" —> (Q, —> - be such resolutions of M and M,, respectively. By Hom( —,
Proj)-exactness of M, M —>M, induces a chain map M —>M, , with mapping cone denoted by C. Then C is exact,
and Hom( —, Proj)-exact by using the distinguished triangle and the induced long exact sequence. Consider a short exact

sequence of complexes

0 M, C D 0
|
0 0 0

0 M, M M, 0
|

0 P° M,®p —> M, —>0

0_’Q°@P1 =Q°@Pl —s0 ——0

Since C, D are exact, so is M. By a direct analysis on each row, we have an exact sequence of complexes 0 —>Hom
(D, P)—Hom(C, P)—Hom(M,, P)—>0 for every projective P . Since Hom(D, P) and Hom(C, P) are ex-
act, so is Hom(M,, P). This proves that M, is Gorenstein projective.

It remains to prove GProj is closed under arbitrary direct summands. Using Eilenberg’ s swindle. let X = Y& Z €
GProj. Put W=YDZOYDZDOYDZD--- Then WE GProj, and YO W= WE GProj. Consider the split exact se-
quence 0 —>Y —>Y@® W —>W —>0. Then Y € GProj since we have proved that GProj is closed under the kemel of

epimorphisms.
1.3 Finitely generated Gorenstein projective modules

The full subcategory of finitely generated, Gorenstein projective modules is GProj ()| R-mod. Denote by proj the full
subcategory of finitely generated projective R-modules; and by Gproj the full category of modules M isomorphic to

-1 adTl 0 4o A . . . i .
Imd ™", where --~—> P '—> P’ —> P! —> P> —>--- j5 a Hom( —, proj)-exact sequence with each P’ € proj.
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Proposition 1.4 Let R be any ring . Then Gproj C GProj() R-mod.
If R is left noetherian , then GProj() R-mod = Gproj.
Proof lLet M€ Gproj. Then there is a Hom( —, proj)-exact sequence

d*l d() dl
A e e e Gt

with each P' € proj, such that M =Imd~"'. So M is finitely generated. Since each P’ is finitely generated, it is clear
that 7" is also Hom( —, Proj)-exact, i.e., M & GProj() R-mod.
Let R be a left noetherian ring, and M € GProj() R-mod. By Facts 1.2( Vi) one can take an exact sequence 0 —>

M ‘f’F —>X —>0 with F free and X Gorenstein projective. Since M is finitely generated, one can write F = P°®

Q° with ImfC P°, and P’ finitely generated. Then we have an exact sequence 0 —>M i’PO —> M —>0 with X=

M @ (Q°, and hence M’ € GProj() R-mod by Theorem 1.3. Repeating this procedure with M’ replacing M, we get an
exact sequence 0 —>M —>P° —> P' —>--- yith all images in GProj() R-mod. Hence it is a Hom( —, proj)-exact se-
quence. Om the other hand, since R is left noetherian, M has a finitely generated projective resolution, which is Hom
( -, proj)-exact since ME (proj). So ME Gproj.
1.4 Strongly Gorenstein projective modules

fo, f f f

A complete projective resolution of the form +-~——>P ——>P ——>P —— -+ is said to be strong, and M =Ker f is called

a strongly Gorenstein projective module ([ BM]) . Denote by SGProj the full subcategory of strongly Gorenstein projective
modules. Then it is known in [ BM] that Proj & SGProj & GProj; and that a module is Gorenstein projective if and only if

it is a direct summand of a strongly Gorenstein projective module . So, a strongly Gorenstein projective module is an ana-

logue of a free module.

Denote by SGproj the full subcategory of all the modules M isomorphic to Ker f, where ‘f>P ‘/>P ‘f>P L is

a complete projective resolution with P finitely generated. Then for any ring R we have (SGProj) () R-mod = SGproj.

2 Proper Gorenstein projective resolutions

A basic problem in Gorenstein homological algebra is, given a ring R, when R-GProj is contravariantly finite in R-
Mod; or equivalently, when every module admits a proper Gorenstein projective resolution . Similarly, it is fundamental to
know when R-Gproj is contravariantly finite in R-mod; or equivalently, when every finitely generated module admits a
proper Gorenstein projective resolution , with each term in R-Gproj.

2.1 First, we recall a general result due to Auslander and Buchweitz [ ABu .

Let .Z be an abelian category, .#" be a full subcategory of . Z closed under extensions, direct summands, and isomor-
phisms. Let w be a cogenerator of .2, which means w is a full subcategory of .2 closed under finite direct sums and iso-
morphisms, and for any X € .2, there is an exact sequence 0 —> X —>B —>X’—>0 in .2 with B€ w. Denote by 2
the full subcategory of .7 consisting of all objects X of finite .2-dimension n, i.e., there is an exact sequence 0 —>
X, —X,_,——>X, — X —0 with X, €.2.

Theorem 2.1 ([ ABu], Theorems 1.1, 2.3, 2.5) (i ) Every object CE 4" has a surjective right .%-approximation .
More precisely , for any C€ 2 there is a Hom(.Z, — )-exact sequence 0 —>Y, —>X, —C —0 with X, € .%, Y, €
@3 and Y, € 2.

(i) Every object C €2 has a injective left & -approximation . More precisely , for any C € 4" there is @ Hom( —,
@ )-exact sequence 0—>C — YV X0 with X*E€EX,YE&; and X° € 1%

2.2 A proper Gorenstein projective resolution of an R-module M is a Hom( GProj, — ) -exact sequence & :---—>

G, —> Gy —>M —>0 with each G, Gorenstein projective. Note that Hom(GProj, — ) -exactness guarantee the unique-

ness of such a resolution in the homotopy category .
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2.3 The Gorenstein projective dimension , Gpd M, of R-module M is defined as the smallest integer n =0 such that M
has a GProj-resolution of length n .

Theorem 2.2 Let M be an R-module of finite Gorenstein projective dimension n. Then M admits a surjective right GProj-
approximation $: G —>M , with pd Ker¢ = n -1 (if n=0, then K=0).

In particular , a module of finite Gorenstein projective dimension n admits a proper Gorenstein projective resolution of
length at most n .

Proof This follows from Theorem 2.1( | ) by letting .2’= GProj, w = Proj. However, we include a direct proof given
by H. Holm in [ Holl |.

Recall the Auslander—Bridger Lemma ([ ABR], Lemma 3.12), which in particular showing that any two “minimal”
resolutions are of the same length.

Auslander —Bridger Lemma Let .4 be a resolving subcategory of an abelian category .7 having enough projective
objects. f0—>X, —X,_,—>—>X;,—>A—>0and 0—>Y, —Y,_,—>——>Y, —>A —>0 are exact se-
quences with X, V,€.2, O<i<n -1, then X, €.2"if and only if Y, €.2"

Coming back to the proof of Theorem 2.2. Take an exact sequence 0 —> K'—>P,_,—>+-—> Py, —> M —>0 with
P, projective. By the Auslander—Bridger Lemma, K’ is Gorenstein projective. Hence there is a Hom( —, Proj) -exact se-

quence 0 —>K'—>Q° —> Q' —>+-- Q"' G —>0, where Q' are projective, G is Gorenstein projective. Thus there

exist homomorphisms Qi —>P,_,_,fori=0,,n-1, and G—>M, such that the following diagram is commutative
0 K OO 01 e On -1 ¢ 0
O K’ P"_l P,,_2 M Po M 0.

Let C; and C, denote the upper and the lower row, respectively. Then we have a distinguished triangle in the homotopy

category C, f"Cz' —Con(f" )—C; [1]. Since H® is a cohomology functor, it follows that Con(f" ) is also ex-
act, i.e., we have exact sequence
0—K->0"®K—>Q'®P,_,—>—Q '®P—>CSP—>M—>0

n-1
with a splitting mono. It follows that we have exact sequence
00" Q' ®Q, QB QB PM 0

with G’ @ P, Gorenstein projective, pd Ker$ < n — 1 (then necessarily pd Ker$ = n — 1) . Since Ext' (H, Proj) =0 for
i =1 and Gorenstein projective module H, so in particular Ext'(H,Ker $) =0, and hence ¢ is a left GProj-approxima-
tion.
Corollary 2.3  [f 0—>G'—>G —>M —>0 is a short exact sequence with G’ , G Gorenstein projective , and Ext' (M,
Proj) =0, then M is Gorenstein projective .
Proof Since Gpd M <1, by the theorem above there is an exact sequence 0 —> Q —>FE —>M —>0 with E Goren-
stein projective and () projective. By assumption Ext' (M, Q) =0, hence M is Gorenstein projective by Theorem 1.3.
Theorem 2.4  Let R be a lefi noetherian ring , and M a finitely generated module with Gpd M = n < % . Then M has
a surjective lefi Gproj-approximation G —>M with kernel of projective dimension n — 1. Hence M has a proper finitely gen-
erated Gorenstein projective resolution of length at most n .
Proof The proof is same as the one of Theorem 2.2. Note that if R is left noetherian, then R-mod is again an abelian
category .
2.4 We list some facts on the Gorenstein projective dimension of modules.
Proposition 2.5 (1) ([Holl]) We have Gpd(D M, ) = sup{Gpd M, 1i € I} .

(2) ([Holl]) Let M be R-module of finite Gorenstein projective dimension , and n=0 be an integer . Then the follow-

ing are equivalent .
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(1) Gpd M<n.

(i) Ext(M, L) =0 for all i > n and modules L with finite pd L.

(i ) Ext'(M, Q) =0 for all i > n and projective modules Q.

(IV) For every exact sequence 0—> K™ "—>G~"*'—>-s-—> G '—> G —> M —>0 with all G' Gorenstein projec-
tive , then also K" is Gorenstein projective .

(3) ([Holl]) Let 0—>M'—>M —>M"—>0 be an exact sequence . If any two of the modules have finite Gorenstein
projective dimension , then so has the third .

(4) ([Hol2], Theorem 2.2) Ifid M < o, then Gpd M =pd M.
Proof We include the proof of (4) given by H. Holm in [Hol2]. It is clear Gpd M<pd M. It suffices to prove
Gpd M=pd M. We may assume that Gpd M = n < % .

First, assume that n =0, i.e., M is Gorenstein projective. Then we have an exact sequence 0 —>M —>P —>

d_ d d,
M’—>0 with P projective and M’ Gorenstein projective. So we have exact sequence 0 —> M ’——I’PO > pP,—
P, .~ Since idM < o, it follows that Ext' (M’ , M) = Ext’ (Imd,, M) =---=0. So M is also projective, and

hence the equality holds in this case.
Now assume that n > 0. Then by Theorem 2.2 we have an exact sequence 0 —> K —>G —>M —>0 with pd K =
n —1 and G Gorenstein projective. So we have an exact sequence 0 —> G —>H —>G'—>0 with H projective and G’

Gorenstein projective. Consider the following commutative diagram with exact rows and columns

0 0
0 K G M 0
0 K H H/K 0
G G
0 0

Since H is projective and pd K = n — 1, we get pd (H/K) < n by the second row. Since G’ is Gorenstein projective
and id M < %, with the same argument as before we have Ext' (G, M) =0. So the column on right splits, and hence
pd M < n. This completes the proof.

2.5 If M has a proper Gorenstein projective resolution G~ —>M —>0, then for any module N, the Gorenstein right
derived functor Ext&,mj( —,N) of Homy ( =, N) is defined as EXt[ﬁP,.Oj(M ,N):=H" Hom, (G ,N). Note that it is only
well-defined on the modules having proper Gorenstein projective resolutions. Dually, fix a module M, one has the
Gorenstein right derived functor Ext(y,, (M, — ) of Hom, (M, — ), which is defined on the modules having coproper
Gorenstein injective resolutions.

Theorem 2.6 ([ AM], [H3]) For all modules M and N with Gpd M <  and Gid ;N < %, one has isomorphisms
Ext('ép,.oj(M ,N) = Ext(";l,lj(M ,N), which are functorial in M and N; and if either pd M < % or id N < ®, then the
group above coincides with Ext"(M,N).

Remark 2.7 (i) If0O—M, — M, —>M; —>0 is a short Hom(GProj, — )-exact sequence, where all M, have
proper Gorenstein projective resolutions , then for any N, Extgpmj( -, N) induce a desired long exact sequence ([AM],
(VD).

(ii) f0o—N,—N, —>N; —0 is a short Hom(GProj, - )-exact sequence , and M has a proper Gorenstein
projective resolution , then Extgpmj (M, =) induce a desired long exact sequence ([EJ2], [AM], [V]).

(i) Over some special rings (e.g. the Gorenstein rings ), the Gorenstein Ext groups, the usual Ext groups, and the
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Tate cohomology groups can be related by a long exact sequence ([AM], [J2]).

3 Gorenstein rings

A Iwanaga- Gorenstein ring , or simply, a Gorenstein ring R, is a left and right noetherian ring, and id zR,id R ; <
w (see e.g. [EJ2], p- 211). A Gorenstein ring R is n- Gorenstein if id R < n. In this case id Rz < ® ([EJ2],
9.1.9). A k-algebra A is a Gorenstein algebra if A is a Gorenstein ring. Then a finite -dimensional k-algebra A is
Gorenstein if and only if id ,A < % and pd Hom, (A, , k) < .

3.1 Quasi-Frobenius rings are 0-Gorenstein rings; rings of finite global dimension are Gorenstein. The k-algebra given

Y a x
ORI

with relations x>, y*, ay — xa (the conjunction of paths is from right to left) is Gorenstein of infinite global dimension,

by the quiver

but not self-injective .

A A
Let A be an artin algebra ([ARS]), T,(A) = ( 0 A) with multiplication given by the one of matrices. Then A is
n-Gorenstein if and only if T,(A) is (n + 1)-Gorenstein (see [FGR]; also [Hap]) . Note that A® , B is Gorenstein

A M
if and only if A and B are Gorenstein ([AR2]); and that ( 0 : BB) is Gorenstein if and only if A and B are Goren-

stein, and pd ;M < ® and pd M, < % ([Chen2]). Also, cluster tilted algebras are Gorenstein ([KR]).
The following result gives an inductive construction of finitely generated Gorenstein projective modules over Gorenstein
artin algebras. For the description of T,(A)-mod we refer to [ARS] and [R].
X
Theorem 3.1 ([GZ]) Let A be a Gorenstein artin algebra . Then a finitely generated T, (A)-module ( Y) is Goren-
4
stein projective if and only if X, Y and Coker ¢ are finitely generated Gorenstein projective A-modules and ¢ : Y —>X is in-

Jective .

If A is self-injective, then every A-module is Gorenstein-projective. So we have

X
Corollary 3.2 ([GZ]) Let A be a self-injective algebra. Then ( Y) is a finitely generated Gorenstein projective
4

T, (A)-module if and only if $ is injective .
3.2  One has the following basic property of an n -Gorenstein ring.
Theorem 3 (Iwanaga, 1980) Let R be an n-Gorenstein ring , and M a lefi R-module . Then the following are equiva-

lent .
(i)idM< .
(ii)idM<n.
(i ) pd M < o .
(iv) pd M<n.
(V) IdM< .
(Vi) fdM<n.

Proof Before proving we recall some useful facts.
(A) If R is a left noetherian ring, id RR<n, then id zP < n for any left projective module P .
In fact, P may be a direct summand of an infinite direct sum R (Tt suffices to see id R < n. This follows from

the following result: a ring R is a left noetherian ring if and only if every direct sum of injective R-modules is injective
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(see e.g. Theorem 3.1.17 in [EJ2]).

(B) A module is flat if and only if it is a direct limit of finitely generated projective modules.

The sufficiency follows from Tor; ( X ,E}n N;) = E}n Tor, (X,N;), Yi=1, ¥ Xgz. The first proof of the necessity
was given by V.E. Govorov in [G]; and then also by D. Lazard in [1.]. See also [O], Theorem 8.16.

(C) If R is left noetherian, and id zR<n, then id zF < n, for any left flat module F.

In fact, by (B) we have id F =id lim P; . Since R is left noetherian, we have

Ext;;(M,E)nNiﬁgn Exty (M, N,)

for any finitely generated module M. It follows that id lim N, < suplid N;|. Now the assertion follows from (A).

(il )=C1i ): Since pd M < %, and id P < n for any projective module P by (A), it follows that id M<n.

(V)=(iIV): Let m=1fd M < o . Take a projective resolution of M

—»Pl ‘)Pl, —»—»PO —»M—)O

1
If m > n, then by dimension shift we see ¥ =Im(P, —>P, _,) is flat, and hence id F<n by (C). Then Ext" (M,
F) =0, which implies Hom(P,,_,, F)—Hom( F, F') is surjective, and hence F —P, _, splits, say P,_, = F®G.
Hence we have exact sequence
0—>G—P, ,—>——>P,—M—0
with G projective. If m — 1 = n then we are done. If m — 1> n then we repeat the procedure with G replacing F'. So
we see pd M<n.

If m<n, then we also have pd M < n. Otherwise d =pd M > n, then one can choose d’ < ©,n < d" < d. Note
that F/ = Im( P,—>P, _,) is again flat by dimension shift, and hence id F’ < n by (C). Then Ext (M, F') =0,
which implies Hom( P, _,, ' )—>Hom( F’, F’) is surjective, and hence F’ — P, _, splits, say P,_, = F' D G’
Hence we have exact sequence

0—>G'—>P, ,—>—>Py—>M—>0
with G’ projective. This contradicts d = pd M.

(1 )=(Vi): It suffices to prove fd /< n for any injective left R-module.

Note that /™ = Homg ([ ,Q/Z) is flat right R-module. Then by the right version of (C) one has id I'* <n, and
hence fd I** < n. However, [ is a pure submodule of /™", it follows that (for details see Appendix) fd I<fd ™" <
n.

Now we have ( 1 )=(vi)=(Vv)=(iv)=(iH)=Ci)=(1i).

3.3 As we will see, for an n-Gorenstein ring, the full subcategory of Gorenstein projective modules is exactly the left
perpendicular of projective modules.

Lemma 3.4 ([EJ2], Lemma 10.2.13) Let R be a Gorenstein ring . Then every module M has an injective lefi - ap-
proximation f: M —>L, where % is the full subcategory of R-modules of finite injective dimension .

Theorem 3.5 ([EJ2], Corollary 11.5.3)  Let R be a Gorenstein ring . Then GProj =" (Proj); and Gproj= | X € R-
mod | Ext'(X,R) =0,V i=1}.

Proof Note that GProjC ~(Proj). Assume M€~ (Proj). By Lemma 3.4 M has an injective left %-approximation f:

M —>L . Take an exact sequence 0 —> K —>P" —LL —>0 with P° projective. By Theorem 3.3 K has finite projective
dimension. It follows from this and the assumption M € ‘(Proj) that Ext' (M,K) =0 for i=1. In particular Ext' (M,
K) =0. Thus, 0 induces a surjective map Hom, (M, P°)—>Hom, (M, L) . Hence we get g: M —>P" such that f =
Og. Since f is an injective left % -approximation and P’ € %, we deduce that g is also an injective left % -approxima-
tion, and hence Ext' (P°/M, Proj) =0 for i=1.

Applying the same argument to P°/M and continuing this process, we obtain a long exact sequence 0 —> M —>
P’ —> P! —>--- which is Hom( —,Proj)-exact. Putting a (deleted) projective resolution of M together with ( the de-

leted version of) this exact sequence, we see M is Gorenstein projective. This proves GProj = - (Proj) .
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It remains to prove Gproj = { X€ R-mod | Ext' (X, R) =0,V i=1}. Since Gproj = GProj() R-mod = + (Proj) N R-
mod, it suffices to prove that if X € R-mod with Ext' (X,R) =0,V i=1, then Ext,’% (X,P)=0for i=1 and any pro-
jective module P. Since P is a direct summand of a direct sum RV (may be infinite), it suffices to prove Ext,é(X .
R =0 for i=1, while this true since X is finitely generated and Ext; (X, R = Ext; (X, R)" =0 for i=1.

Remark If R is in addition artin, then GProj = {XE R-ModIExt'(X,R) =0, Y i=1}. See [B], or [HHT].
Corollary 3.6 Let R be an n-Gorenstein ring , and

0—K—P

i =P > Py —>M —>0
be an exact sequence with P; projective . Then K is Gorenstein projective .
Proof Note that Ext (K, Proj) = Ext; " (M ,Proj) =0 for all i=1, by Theorem 3.3. Then K is Gorenstein projective
by Theorem 3.5.
3.4 The following shows, in particular, that for an n-Gorenstein ring, the subcategory of Gorenstein projective modules
is covariantly finite; and moreover, that any module has a proper Gorenstein projective resolution of bounded length n .
Theorem 3.7 ([EJ2]) Let R be an n-Gorenstein ring . Then

(1) Every R-module M has a surjective lefi GProj-approximation $: G —>M —>0, with pd Ker¢<n -1 (ifn=0
then Ker $ =0) .

(i ) Every finitely generated R-module M has a surjective lefi Gproj-approximation $: G —>M —>0, with pd Ker ¢ <
n-1.

Thus, every R-module has Gorenstein projective dimension at most n .
Proof By the corollary above there is an exact sequence

0—>K—P

i =P > Py —>M —>0
with every P; projective and K Gorenstein projective. Since K is Gorenstein projective, there is a Hom( —, Proj)-exact
sequence

0—K—pP" —pP ——> P —>—0 (%)
with every P projective and G’ Gorenstein projective. Since ( * ) is Hom( —, Proj)-exact, we have the following com-

mutative diagram with exact rows

0 K P° P! p-l (a4 0
v v ¥ v
0 K P._, P,_, EE P, M 0.

With the same argument as in the proof of Theorem 2.2 we get a surjective left GProj-approximation ¢: G —>M —>0,
with pd Ker $<n - 1.

Together with Theorem 2.2 we have
Corollary 3.8 Let R be an n-Gorenstein ring . Then every module has a proper Gorenstein projective resoluiton of length
at most n; and every finitely generated module has a proper Gorenstein projective resoluiton of length at most n., by finitely

generated Gorenstein projective modules .

4  Some recent results

We state more recent results.
4.1 Let A, B be k-algebra. A dualizing dualizing complex (see [Har], [YZ] and [WZ]) ,D; is a bounded com-
plex of B-A-bimodules, such that

(1) All the cohomology modules of D" are finitely generated over B and A” ;

(i)D" =I"€D"(B ®,A”), where each component of I is injective both over B and A” ; and

(i ) the canonical maps A —>RHom, (D" ,D" ), B—>RHomw (D", D" ) are isomorphisms in the derived cate-
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gories D(A°) and in D(B°), respectively, where A°=A4 ®, A”.
Theorem 4.1 ([J1, Theorems 1.10 and 2.11])  If a ring A satisfies one of the following two conditions , then A- GProj
is contravariantly finite in A-Mod.

(1) Ais a noetherian commutative ring with a dualizing complex .

(i) Ais a lefi coherent and right noetherian k-algebra for which there exists a lefi noetherian k-algebra B and a dual-
izing complex 5 D, .

If A is a finite-dimensional k-algebra, then A has a dualizing complex A = Hom, (A, k). So A-GProj is contravari-
antly finite in A-Mod, in other words, each A-module (not necessarily finitely generated) admits a left proper Gorenstein
projective resolution. It should be stress that it is open whether or not A-Gproj is contravariantly finite in A-mod. Aus-
lander and Reiten pointed out (Proposition 6.12 in [ AR1]) that a positive answer is equivalent to the Gorenstein Sym-
metric Conjecture. For more information see [ B] and [ BR]. Note that there exists a ring R such that R-Gproj is not
contravariantly finite in R-mod( [T]).

4.2 Recall from [ B] that a ring R is called Cohen-Macaulay finite (or, CM-finite for short) if there are only finitely
many isomorphism classes of finitely generated indecomposable Gorenstein projective R-modules.

Theorem 4.2 ([ Chenl]) Let A be a Gorenstein artin algebra . Then A is CM-finite if and only if every Gorenstein pro-
Jective module is a direct sum of finitely generated Gorenstein projective modules .

4.3 A class .7 of modules is called a cotilting class if there is a (generalized) cotilting module .7 such that .7 =~ T.
Theorem 4.3 ([HHT]) Let R be a two sided noetherian ring . Denote by GProj-R the category of right Gorenstein pro-
Jective R-modules . The following statements are equivalent :

(i) Ris a Gorenstein ring ;

(i ) Both R-GProj and GProj-R are cotilting classes .

4.4 A left artin ring R with ; R being an injective module is called a left quasi- Frobenius ring . Similarly, one has the
concept of a right quasi- Frobenius ring . A ring is left quasi-Frobenius if and only if it is right quasi-Frobenius. A left

artin ring is quasi-Frobenius if and only if the map ;M F>Hom, (M, R) defines a duality between the categories of left

and right finitely-generated R -modules.
Theorem 4.4 ([BMO]) Let R be a commutative ring . Then the following are equivalent .

(1) Any Gorenstein projective module is Gorenstein injective .

(i) Any Gorenstein injective module is Gorenstein projective .

(i) Ris quasi- Frobenius .
4.5 The following shows that, over a commutative ring, replacing projectives in the definition of Gorenstein projective
modules by Gorenstein projectives does not produce new kind of modules.
Theorem 4.5 ([W]) Let R be a commutative ring . Given an exact sequence of Gorenstein projective R-modules G* =
> GG "G —>G' —> - such that the complexes Homy ( G" , H) and Homy (H, G" ) are exact for
each Gorenstein projective R-module H . Then all the images are Gorenstein projective .
4.6 If R is a Gorenstein ring, then R-Mod = R-Proj if and only if gl.dimR < oo .
Theorem 4.6 ([LH]) Let R be a commutative artin ring , and G a finitely generated Gorenstein projective R-module .
Then G is projective if and only if Extz (G, G) =0,Y i=1.

5 Appendix I: Character modules

5.1 An injective module E is an injective cogenerator , if Hom(M,E) 0, ¥ M0, or equivalently, for any M 0
and 052 x € M, there is € Hom( M, E) such that f(x) 0. For example, Q/Z is an injective cogenerator of Z -mod-

ules.
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For any right R-module M 0, the nonzero left R-module M* = Homz( M ,Q/Z ) is called the character module of
M.

By the adjoint pair one can see that R™ is an injective left R-modules. So R™ is an injective cogenerator of left R-
modules since Hom( M, R* )=M" .
5.2 Any module M is a submodule of M** : in fact, the R-map M —>M ** = Homgz(Homz( M ,Q/Z) ;Q/Z) given
by m —>f:“g >g(m)” is injective.

A submodule N of M is pure if 0 —>X&® N —X&Q M is exact for any right R-module X. We have
Lemma 5.1 For any module M, M is a pure submodule of M*" .
Proof Applying Hom( -, Q/Z ) to the canonical injection M —M*" , we get surjection w: M*™*" —M" . Put ¢:
M* —=M"" . Then by direct verification one see 7o = Id,+ , which implies M * is a direct summand of M """ . Thus for
any right module X we have exact sequence Hom( X, M *** )—>Hom(X, M* )—>0, i.e., we have exact sequence
(by the adjoint pair) (XQ@M ™ )*—>(XQ M)*—>0; and then it is easily verified that 0 —X®@ M —>XQ M ** is
exact.
Lemma 5.2  Let N be a pure submodule of M. Then fd N<{d M.

In particular, fd M<fd M™" for any module M .
Proof We may assume fd M = n < % . For any right module X, take a partial projective resolution 0 —> K —>P, —>

«--—> P, —> X —>0. Consider the commutative diagram
KON —>P, ®N
|
0—— K@M —> P, ® M.
Since Tor,,,; (X, M) =0, the bottom row is exact. Two vertical maps are injective since N is a pure submodule of M .
It follows that K& N —P, @ N is injective, and hence Tor,,, (X, N)=0. Sofd N<n.
5.3 Flat modules can be related with injective modules as follows.
Proposition 5.3 Let M be a R-S-bimodule, E an injective cogenerator of right S-modules . Then
(1) fd @M =id Homg(M,E),.
In particular, xM is flat <= (M* ) is injective .
(i) If furthermore R is lefi noetherian , then id ;M = fd Homg(M,E),.
In particular, M is injective <> (M " ) is flat .
Proof The assertion ( | ) follows from the identity
Homg (Tor (X, M), E)=Ext; (X, Hom¢(M,E)), V X .
For (ii ), note that if R is left noetherian, then for any finitely presented module zX there holds
ToriR(Homs(M,E),X)EHomS(Ext,é(X,M) JE)
also, by using direct limit one has id M < n if and only if Ext};, (X,M)=0,Yi=n+1, and for all finitely generated
modules X .

6 Appendix [ : Direct products (sums), direct (inverse) limits

For the convenience, we list some frequently used properties in R-Mod .

(1) We have
Ext"(M,E{Ni)EEIExt"(M,Ni), n=0.

Ext”(@Mi,N)EEIEXt”(Mi,N), n=0.
€1 i
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Tor, (M, ,N)= & Tor,(M,,N),n=0.

i€1 i€1
Tor, (M, @N)—@Tor (M,N,),n=0.
i€l

(2) If M is a finitely generated R-module, then
Ext"(M,®N,)=@Ext"(M,N,),n=0.

i€1 i€
(3) A ring is left coherent, if every finitely generated left idea is finitely presented, or equivalently, every finitely
generated submodule of finitely presented left module is finitely presented. A left noetherian ring is a left coherent ring.
If R is left coherent and N is a finitely presented left R-module, then
Torn([[e[[]W, ,N)e ||T0r (M;,N), n=0.
If R is right coherent and M is a finitely presented rlght R-module, then
T0r,l(M,EIN,-)EEITOI“,I(M, N,), n=0.
(4) The direct limit of a direct system of modules always exists.
The inverse limit of an inverse system of modules always exists.
(5) Each module M is the direct limit of all the finitely generated submodules of M .
(6) If for each j& J, ((M;),(f;))ic, is a direct system of modules, then

L_qul( Mj)— %IML-]-); but li lgl( ||M )Sé ” (l—emM”) in general .

i€ JjEJ
(7) If for each j& J, ((M,-j ), (fi,-)>ie1 is an inverse system of modules, then
%( [ M; )— || (I%M ); butl (@MU)S‘E@(I MU) in general .
(8) We have
Ext (M,%}N[) =%%111Ext (M,N;),n=0.
Tor (%}Mi ,N) =lig;[1 Tor"(M;,N),n=0.
Tor" (M, %Q}Ni) :%{1 Tor"(M,N;),n=0.
1 . = 1 . : 1 " 1 - $ 1 " : .
(9) We have Hom(%lMl ,N) %I}Hom(M, ,N); but in general Ext (%M, ,N) %;er_rll Ext"(M,,N),n=1
(10) If R is left noetherian and M is a finitely generated left R-module, then
Ext (M,%Ni) :%Ext (M, N;),n=0.
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