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ABSTRACT
We describe a new method for efficiently computing the global

optimum of least squares registration problems based on the

recently developed theory of signal processing using random

projections. The method is especially attractive for large scale

registration problems where the goal is to register many im-

ages to a standard template. We test our new algorithm using

real images of cells’ nuclei and show our method can outper-

form more traditional dimension reduction methods such as

projections onto lower dimensional B-spline function spaces.

Index Terms— Image registration, global optimization,

random projection, B-splines.

1. INTRODUCTION

Image registration methods are routinely employed in imag-

ing problems as a means through which to extract quantita-

tive spatial information from two or more images. Amongst

the many algorithms developed for image registration so far,

methods based on image intensity values are especially at-

tractive as they are easy to automate as solutions to optimiza-

tion problems. The sum of squared differences, amongst other

quantities, is typically used as the objective function in such

optimization problems. The parameterization of the spatial

transformation, as well as the size of the images, typically

dictate the complexity of the problem. Pure translations, for

example, can be computed efficiently, and globally, as the

maxima of the cross correlation function between two images.

Other parameters such as rotations, combined with scaling,

shears, give rise to nonlinear functions which must be solved

using iterative nonlinear optimization methods.

One of the biggest challenges in nonlinear, non convex,

optimization problems has to do with guaranteeing conver-

gence to a global solution of the problem. To date, no well

established framework for finding a global solution of a reg-

istration problem exists. Multiple image resolutions can be

used to solve the problem in an iterative fashion, from a coarse

to fine scale, in the hope that local optima due to fine image

detail can be avoided. Simplex-type methods are often used

in the hope that their independence from local characteris-

tics (local derivatives of the objective function with respect

to spatial transformation parameters) will render the method

less likely to be confused by a local optima. Yet another ap-

proach is to solve the registration problem by initializing the

optimization at several, perhaps randomly chosen locations,

with the aim of avoiding at least some of the local optima

that may be present. Finally, exhaustive searchers can also be

used in instances where the parameter space is not too large.

Of all these methods, only exhaustive searches can guarantee

that the solution achieved is the global one.

Based on the work of Baraniuk and Wakin [1, 2] on ran-

dom projections of signal manifolds we develop a novel im-

age registration algorithm. The algorithm not only provides

a fast way to compute the solution to the registration prob-

lem but can also guarantee with high probability that, in the

sense of least squares, the solution encountered is a global so-

lution. We begin this paper by reviewing the recently devel-

oped theory of random projections of image manifolds and

then derive an algorithm that approximates the solution of the

problem using a sampled version of a low dimensional em-

bedding of the image manifold. We show the effectiveness of

the algorithm using real images of cell nuclei and compare it

to a similar algorithm based on orthogonal projections onto

B-spline function spaces.

2. THEORY

Let s(i), i ∈ Ω = [0, 1, · · · , Q − 1]d represent pixel val-

ues associated with a d dimensional real valued digital image

with N = Qd pixels. We denote s ∈ R
N to be the digital

image organized in an N dimensional column vector. A con-

tinuous and differentiable representation for the image can be

obtained by

s̃(x) =
∑
j∈Γ

bjφj (x) , (1)

where φj(x) are Cr d dimensional basis functions chosen

based on their interpolation or approximation properties and

bj , j ∈ Γ ⊂ Z, are the coefficients of the linear expansion.

A warped version of the digital image can be constructed by

sampling (1) at coordinates fp(i), i ∈ Ω, with p some param-

eterization for the spatial transformation fp : R
d → R

d. We

denote s̃p to represent the collection of image values s̃(fp(i)),
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i ∈ Ω organized in a column vector. The spatial transforma-

tion fp that aligns two images t and s can be computed as the

solution of the following optimization problem:

p∗ = argmin
p
‖t− s̃p‖ (2)

where ‖ · ‖ is the standard discrete 2 norm for a finite dimen-

sional vector.

When the problem is nonlinear, non-convex, performing

a global search is usually computationally prohibitive. Let

p belong to some (discrete) set Θ ⊂ R
K , K < N . Sup-

pose that Θ is organized in a K dimensional grid, with each

dimension having G discrete coordinates. A global search

for the optimum parameters p∗ over the samples in Θ would

then involve a nearest neighbor search over #Θ = GK N -

dimensional vectors. One alternative to decrease the dimen-

sionality of the image space (N ) is to project t ∈ R
N and

s ∈ R
N onto a lower dimensional space (say R

M ) via low

resolution approximations of each image. This does not de-

crease the number of vectors (#Θ) over which one has to

search, but does improve things in the sense that evaluations

of the objective function involve inner products in a M < N
dimensional space. Such low resolution approximations can

be computed as orthogonal projections onto low dimensional

B-spline function spaces [3], for example.

In this work we introduce a new way of reducing the di-

mensionality of the space in which the cost function needs to

be evaluated by using random projections instead. The mo-

tivation for our approach is as follows. Even though each

digital image s̃p is a point in R
N , the set of images s̃p, for

p ∈ Θ, does not fill the entire space. That is, for a fixed set of

coefficients bj , the model in (1), under spatial transformations

fp, p ∈ Θ is usually not capable of generating any arbitrary

image. Thus each image s̃p must lie on a K dimensional

manifold M embedded in R
N . Thus, in a sense, the infor-

mation pertaining to the spatial organization of the image s̃
under spatial transformation fp lies in a space of significantly

lower dimension than N . Therefore image registration could

be achieved, in principle, by evaluating the objective function

in a lower dimensional space so long as we find a lower (lower

than N ) dimensional embedding (projection) ofM which re-

tains some properties in terms of distances between different

points inM.

2.1. Random projections of image manifolds

Naturally, the first requirement is that our embedding proce-

dure be a one to one mapping. If not, one would run the risk

of having two warped images s̃p1 and s̃p2 occupy the same

point in R
M . Whitney’s easy embedding theorem provides a

guideline for the number of dimensions required for the em-

bedding of the K dimensional manifoldM:

Theorem 2.1 [4] Let M be a compact Hausdorff Cr K-
dimensional manifold, with 2 � r � ∞. Then there is a Cr

embedding ofM in R
2K+1.

In addition, Baraniuk and Wakin [1, 2] observed that, as-

suming mild conditions onM, a randomly chosen projection

from R
N to R

2K+1, when restricted toM, will also be invert-

ible with high probability. We denote a random projection of

an N dimensional vector image s̃p on R
M as P s̃p.

In cases where a significant amount of noise is present, or

when dealing with a set of images which cannot be described

exactly by spatial transformations of one single image, ad-

ditional requirements may be necessary for the minimization

over the reduced space (RM ) equate to minimization over the

original image space (RN ). This amounts to requiring that

distances between specific points on and near the manifolds

be the roughly equivalent in both spaces. In the discrete set-

ting described above, the Johnson-Lindenstrauss lemma (JL)

[1] provides a useful guideline for M :

Lemma 2.2 [Johnson-Lindenstrauss] Let Ψ be a finite col-
lection of points in R

N . Fix 0 < ε < 1 and β > 0. Let P be
a random orthoprojector from R

N to R
M with

M �
(

4 + 2β
ε2/2− ε3/3

)
ln(#Ψ)

If M � N , then, with probability exceeding 1− (#Ψ)−β , the
following statement holds: For every s, t ∈ Ψ,

(1− ε)

√
M

N
� ‖Ps− Pt‖

‖s− t‖ � (1 + ε)

√
M

N

For the registration problem discussed above, #Ψ = #Θ =
GK , while P can be an M×N matrix whose entries are inde-

pendent identically distributed instances of a random variable

with distribution N (0, 1) (and whose rows are orthogonal).

Other randomly constructed matrices (e.g. Bernoulli), some

of which are sparse, can also be used [1]. The requirements of

the JL lemma can be refined by realizing that in our problem

the points s and t lie on a low dimensional smooth manifold

in R
N [1].

The notion of random projections of manifolds generated

by applying spatial transformations to an image is illustrated

in Figure 1. The top row shows the image (Gaussian ‘blob’)

used in the experiment. The image was translated along a two

dimensional sinusoidal path shown as the black curve on the

same image. Since only one parameter is varied to translate

the image along the path, the manifold generated by the trans-

lated versions of the image is one dimensional (K = 1). The

bottom left panel shows a random projection of the manifold

using only two coefficients. As shown in this panel, the pro-

jection is not one to one. The bottom right panel shows a

projection where M = 2K + 1 = 3: the embedding is non

self intersecting.
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Fig. 1. Random projection of manifold generated by translat-

ing a 2D image along a sinusoidal path. The bottom panels

shown the random projection of the manifold in 2 (left) and 3

(right) dimensions.

3. ALGORITHM

Consider the problem of registering a series of images s1, s2, · · ·
to a reference image t. This operation is commonly per-

formed in the analysis of large quantities of images, where

a common reference frame is beneficial. Examples include

large scale computational anatomy, registration of large time

series of images, and others. Note that each image in the se-

ries can be made continuous through equation (1). Let Λ rep-

resent a set of M dimensional points generated by randomly

projecting each t̃p, p ∈ Θ with a fixed projection matrix P .

Note that#Λ = #Θ = GK . We refer to this the computation

of the set of points Λ as the training phase. Note that this is

a computationally expensive procedure, but since it only has

to be performed once an exhaustive sampling of the spatial

transformation parameters to a desired level of accuracy can

be used.

In the next phase of the algorithm each image sj is reg-

istered to t by first searching for the nearest neighbor of Psj

in Λ. This is an exhaustive search but is occurs over points

in R
M rather than R

N . Once the nearest neighbor is found,

the set of parameters p which generated the nearest neigh-

bor to Psj becomes known. A registered pair of images can

be computed by s(i), t̃(fp(i)) or, alternatively, by s̃(f−1p (i)),
t(i), where f−1 represents the function inverse.

3.1. Extension to multiscale manifold representations

When compared to global exhaustive searching, the random

projection-based registration algorithm above reduces the com-

putational complexity (including memory requirements) from

O(GKN) to O(GKM), with M ∼ O(ln(GK)). However

the number of points GK can be large and cumbersome to

Fig. 2. Comparison of registration results obtained using a

gradient descent optimization, versus gradient descent initial-

ized using nearest neighbors of B-spline and random projec-

tions.

work with (e.g. may still be too large to store in memory).

An additional improvement could be obtained via multiscale

representations not of the image data, as is routinely done [5],

but of the manifold generated by image t and its spatial trans-

formations [6, 7]. An approximate registration could be ob-

tained by the algorithm above using a coarse representation of

the manifold data P t̃p, p ∈ Θ (thus reducing G drastically).

Once an approximate solution to papp. is obtained, a more

accurate one can be computed by repeating the procedure re-

placing s̃(i) with s̃(f−1papp.
(i)) and using a finer, but more lo-

calized around the identity transformation, sampling of the

registration parameter space Θ. Alternatively, the refinement

can also be computed using a standard gradient descent min-

imization method.

4. RESULTS

We test the nearest neighbor algorithm proposed above to reg-

ister a set of 87 real microscopy images of HeLa cell nuclei

[8]. We compare random projections to orthogonal projec-

tions on cubic B-spline function spaces [3]. In both cases

the projection-based nearest neighbor algorithm was used to

compute an estimate of an affine two dimensional transfor-

mations without shear (two translations, one rotation, two

scalings): that is K = 5. Both the random and B-spline

function space projections were of dimension M = 20 while

#Θ = 8.1 × 106. Multiscale manifold representations were

not used. The estimates of the registration using random and

B-spline projections were refined using a standard gradient

descent approach. We also compare the result of the pro-

jection based registration methods with a registration based

solely on the gradient descent minimization of (2) without

global searching.

Figure 2 displays results of the registration obtained using

different methods. As can be seen in this example, a simple

gradient descent fails to register the source and target images
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satisfactorily since it becomes ‘stuck’ in a local optima. Vi-

sual inspection of the result obtained with the gradient descent

initialized based on the results obtained using nearest neigh-

bors of random projections reveals this method produced a

much superior match for this image. Finally, the result ob-

tained by using a nearest neighbor search of projections on

cubic B-spline function spaces produces an erroneous result

suggesting that such drastic dimension reductions computed

using the B-spline projection framework do not result in iso-

metric manifold representations.

In Figure 3 we plot the joint distribution of least squares

error between the target image and each image registered us-

ing the standard gradient descent optimization method and the

random projection assisted one. The nearest neighbor algo-

rithm based on orthogonal projections onto cubic B-splines

function spaces produced results of very poor quality. These

are omitted for brevity. In Figure 3, the identity line is also

plotted in order to make it more clear that, more often than

not, the error produced by the random projection registra-

tion method is lower than the error produced by the standard

method. However, in some cases the error produced by the

standard method is lower. One possible explanation is that

due to the influence of noise and finite step sizes in the nu-

merical optimization, the gradient descent algorithm is not

arbitrarily accurate (in our implementation translations are

calculated to 0.1 pixels for example). This variability in ac-

curacy of the registration parameters will result in variabil-

ity on the final objective function value. Indeed many values

in Figure 3 seem to be near the identity line, meaning that

in those instances registration with both methods produced

roughly equivalent results.

As for the few instances where the random projection al-

gorithm produced a result significantly worse than the result

obtained, two factors could be to blame. These are: not enough

resolution in the parameter space (#Θ) so that a local op-

timum is found instead of a global optimum, and too few

random projections. The first problem can be addressed by

increasing #Θ or by using multi-resolution manifold repre-

sentations as mentioned earlier. The second issue can be ad-

dressed by increasing M so that, as much as possible, the

projection operation results in an (approximate) isometry.

5. SUMMARY AND CONCLUSIONS

We have proposed an image registration algorithm based on

random projections of manifolds generated by spatial trans-

formations of a fixed image. The method is especially suited

for situations where the goal is to register a series of images

to a standard template. For low dimensional manifolds the

method can significantly reduce the computational complex-

ity of global searches, allowing for robust registration of a

series of images.

We have demonstrated the method can improve the qual-

ity of the registration of a series of 2D images of nuclei of

Fig. 3. Joint distribution of registration error between a stan-

dard gradient descent method and a random projection as-

sisted gradient descent method.

cells as compared to a standard gradient descent implementa-

tions. In comparison, a similar algorithm devised based on

orthogonal projections onto cubic B-spline function spaces

performed very poorly and suggests such drastic dimension

reduction with standard basis functions (B-splines, and oth-

ers) is not appropriate for the purpose of registering two im-

ages.
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