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ABSTRACT

We identify a cause for interpolation artifacts in objective

functions by observing that the energy of interpolated and

translated �2 sequences oscillates with respect to the transla-

tion parameter. Using the B-spline interpolation framework,

we show that such oscillations in the energy of the signals af-

fect the sum of squared differences, cross correlation, and mu-

tual information objective functions. We describe several ap-

proaches that can be used to avoid interpolation artifacts (such

as higher degree interpolation, as well as stochastic sampling)

and explain in detail why these are effective in eliminating the

artifacts.

Index Terms— Image registration, interpolation, artifacts,

local optima

1. INTRODUCTION

Image interpolation methods have been known to introduce

artifacts (local optima) in objective functions used for auto-

matic intensity-based image registration. To date most con-

sider such artifacts to be a feature specific to the mutual in-

formation similarity measure [1, 2, 3]. A common strategy

for avoiding such artifacts has been through the introduction

of a randomizing sampling operation (see [2, 4, 3] for exam-

ples), though a precise cause for the oscillatory artifacts when

regular sampling is used has not been mathematically demon-

strated. In [5, 6] we showed that the covariance properties

of an image undergoing spatial transformations can cause ar-

tifactual oscillations, and in some cases local optima, in the

sum of squared differences (SSD), cross correlation (CC), and

mutual information (MI) objective functions. Our arguments,

however, were entirely stochastic in that only the effects of

additive noise were considered.

Here we provide a more general and concise explanation

for oscillation artifacts in the objective functions used above

and show that even interpolation on signals or images with

no noise can cause oscillation artifacts. We explain three ap-

proaches for avoiding them based on low pass filtering the

image, higher degree interpolation, and Monte Carlo integra-

tion. We begin by showing that the energy of interpolated data

sequences is present in all objective functions named above.

Using the generic framework of B-spline image interpolation

we then show that the energy of interpolated, translated, and

sampled data sequences oscillates with respect to the transla-

tion parameter. We show that Monte Carlo integration meth-

ods can be used to compute objective functions without ar-

tifactual oscillations. Finally results and conclusions are of-

fered.

2. THEORY

Let �2 denote the space of square summable infinite dimen-

sional real valued sequences. The inner product between two

sequences a, b in �2 is defined by 〈a, b〉�2 =
∑

k∈Z
a(k)b(k)

while ‖b‖2�2 = 〈b, b〉�2 . A convolution between two �2 se-

quences is denoted a ∗ b and thus b can be though of as a dis-

crete operator characterized by its transfer function B(z) =∑
k∈Z

b(k)z−k. If B has no zeros on the unit circle, then the

inverse operator (b)−1 exists and is uniquely defined by:

(b)−1←→1/B.

A sequence s ∈ �2 can be translated by an arbitrary amount

θ ∈ R by first fitting an interpolation (or approximation)

model to s and then sampling the model at a translated set of

coordinates normally organized on a regular grid. Let β0 refer

to the centered normalized rectangle. Then the B-spline func-

tion of degree n at value x is given by βn(x) = βn−1∗β0(x).
Let

s̃(x) =
∑
k∈Z

s(k)ηn(x− k). (1)

where ηn(x) =
∑

k∈Z
(bn)−1(k)βn(x − k) and bn(k) =

βn(x)|x=k. The translated data sequence can then be rep-

resented by

s̃(k + θ) = ηn
θ ∗ s(k) (2)

where ηn
θ (k) = ηn(k + θ). These operations can be extended

to dimensions 2 and over via tensor products of η.

2.1. Objective functions

The goal in image registration is to compute a function fθ :
R

d → R
d, where θ are parameters that determine f , such
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that two signals (images) are aligned. This procedure can be

automated as an optimization problem:

f∗θ = arg max
fθ

Q(s, t, fθ),

where Q(· · · ) is the objective function chosen for a specific

problem. An intuitive figure of merit for quantifying how well

two sequences s and t align is the squared �2 norm of its dif-

ference (SSD). Let s̃θ = {s̃(fθ(k))}k∈Z. The SSD objective

function, to be minimized in this case, is:

Q(θ) = ‖s̃θ − t‖2�2 = ‖t‖�2 − 2 〈s̃θ, t〉�2 + ‖s̃θ‖2�2 .

Another objective function often used is the cross correlation

between the signals:

Q(θ) =
〈s̃θ, t〉�2
‖t‖�2‖s̃θ‖�2

.

Finally, the registration between two images can also be

computed by maximizing the MI between them. Originally

introduced as a similarity measure for registration problems

in [7, 8], the MI between two signals s̃θ and t quantifies the

amount of ‘information’ due to s̃θ is present in t. Let Sθ and

T represent random variables associated with the discrete sig-

nals {s̃(fθ(k))}k∈Z and {t(k)}k∈Z, respectively, with prob-

ability density functions (pdf) pSθ (μ), pT (υ), and joint pdf

pSθ,T (μ, υ). The mutual information is defined as

Q(θ) =
∫ ∫

pSθ,T (μ, υ) log
(

pSθ,T (μ, υ)
pSθ (μ)pT (υ)

)
dμdυ

Using the Gram-Charlier series expansion for the pdfs above,

the MI between two random variables can also be written as

[9]:

MI(θ) = IG(θ) + R(θ)

where

IG(T, Sθ) = −1
2

log
(
1− ρ2(θ)

)
, ρ(θ) = ξ(θ)/σT σSθ

ξ(θ) stands for the covariance between random variables Sθ

and T , and σ2
T and σ2

Sθ represent their respective variances.

R(θ) is a residual term. Assuming stationarity and ergodic-

ity, these quantities can be estimated from a set of samples

s̃(fθ(k)) and t(k), k ∈ Ω:

ξ(θ) =
1
N

∑
k∈Ω

s̃(fθ(k))t(k),

σ2
T =

1
N

∑
k∈Ω

|t(k)|2, and

σ2
Sθ =

1
N

∑
k∈Ω

|s̃(fθ(k))|2,

Fig. 1. Frequency response for cardinal B-spline translation

filters for different translation values (a) and degrees (b).

assuming the signals are zero mean, where Ω represents a set

of predefined coordinates and N = |Ω|. Clearly, σ2
Sθ is re-

lated to ‖s̃θ‖2�2 via:

σ2
Sθ =

1
N
‖s̃θ‖2�2 −

1
N

∑
k/∈Ω

|s̃(fθ(k))|2.

2.2. Oscillation artifacts

Note that the term ‖s̃θ‖�2 is present in all three objective

functions discussed above. Using the B-spline interpolation

framework defined earlier we now show that this quantity can

oscillate with respect to translations fθ(k) = k+θ. Using (2)

we have

‖s̃θ‖�2 =
1
2π

∫ π

−π

|ŝ(ω)η̂n
θ (ω)|2dω (3)

with

η̂n
θ (ω) =

∞∑
k=−∞

ηn(k + θ)e−iωk.

In Figure 1 we plot |η̂n
θ (ω)|, ω ∈ [−π, π] for different values

of θ and n. It is clear that, for a fixed degree n, |η̂n
θ | is not con-

stant with respect to the translation parameter θ. When θ ∈ Z,

|η̂n
θ | = 1 and thus the frequency content of s is not modified

and the signal’s energy remains intact. As θ approaches 0.5,

η̂n
θ attenuates any high frequency components in s more than

when θ is close to zero. Therefore the energy of the inter-

polated sequence is dependent on the translation parameter θ.

This dependency is elucidated in equation (3) and Figure 1.

3. AVOIDING OSCILLATION ARTIFACTS

Based on the arguments above, two obvious strategies for

avoiding oscillation artifacts in image registration can be used:

low pass filtering the data, and high degree B-spline interpola-

tion. For a fixed degree n, the frequency content of the signal

s can be modified by low pass filtering it so that its support

is located where |η̂n
θ | ∼ 1. The drawback of this approach

is that low pass filtering can also remove information (edges)

which could be useful in determining the match.
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Another option, as indicated in Figure 1, is to increase the

degree of the B-spline in use so that |η̂n
θ | ∼ 1 wherever |ŝ|

is significantly different from 0. As the degree n increases,

however, so does the computational complexity of the overall

procedure.

We now show that Monte Carlo integration can be used

together with low degree interpolation as an attractive alter-

native for computing all three similarity measures discussed.

Expanding ‖s̃(fθ)‖2�2 we have

‖s̃(fθ)‖2�2 =
∑
p∈Z

∑
q∈Z

s(p)s(q)
∑
k∈Z

ϕ(k)

where ϕ(k) = ηn(k + θ − p)ηn(k + θ − q). The oscillation

artifacts discussed above occur because
∑

k∈Z
ηn(k + θ −

p)ηn(k + θ − q) is not independent of θ. Replacing this term

with its continuous version would address the issue since∫ ∞

−∞
ηn(x + θ − p)ηn(x + θ − q)dx =

∫ ∞

−∞
ηn(x− p)ηn(x− q)dx.

Such continuous formulation is rarely used in image regis-

tration problems due to computational considerations. More-

over, it would be unfeasible for computing the mutual infor-

mation objective function.

The basic result in Monte Carlo methods states that the

integral of a bounded function ϕ(a), a ∈ Ω, can be estimated

by first generating a set of pseudo-random numbers ak, k =
1, · · · ,M uniformly distributed in Ω and then using

|Ω|
M

M∑
k=1

ϕ(ak).

In the sense of expectations, the sum above approximates the

value of the integral since:

|Ω|
M

M∑
k=1

ϕ(ak) ≈ |Ω|E{ϕ(a)} =
∫

Ω

ϕ(a)da.

Because a is a (pseudo) random variable uniformly distributed

in Ω we may use another random variable a + θ where θ
is a deterministic constant and a + θ is a random variable

uniformly distributed in Ω (ignoring edge effects). Clearly,

E{ϕ(a)} ≈ E{ϕ(a + θ)}. Therefore we have:

1
M

M∑
k=1

ϕ(ak) ≈ 1
M

M∑
k=1

ϕ(ak + θ) and

M∑
k=1

ηn(ak − p)ηn(ak − q) ≈

M∑
k=1

ηn(ak + θ − p)ηn(ak + θ − q).

Fig. 2. Test image used in translation experiments.

We conclude that if stochastic methods are used to approxi-

mate integrals, the oscillations described above do not occur.

Thus we define the stochastic sum

〈s, t〉MC =
∑
k∈Z

s̃(ak)t̃(ak)

where s̃(x) and t̃(x) refer to the interpolated values defined

in equation (1), and ak refers to an uniformly distributed ran-

dom coordinate. As before, we define ‖s‖2MC = 〈s, s〉MC

and henceforth whenever we speak of a similarity measure

computed using Monte Carlo integration, we replace 〈s, t〉�2
with 〈s, t〉MC where appropriate. Finally, note that all conclu-

sions regarding stochastic integration translate without prob-

lems to dimensions 2 and higher, since we are using separable

B-spline interpolation.

4. COMPUTATIONAL EXAMPLES

Figure 2 contains the 2D image (microtubules of HeLa cell

[10]) used to demonstrate the concepts discussed in the pre-

vious section. The image was translated with respect to itself

from left to right and at each translation value the CC (Figure

3) and MI (Figure 4) objective functions were computed us-

ing several approaches. The SSD objective function figure is

omitted for brevity. Results show that the linear interpolation

method produces the oscillation artifacts in all cost functions

as predicted by our theory. High degree interpolation (n = 5
in this case) produces objective functions without accentuated

oscillations artifacts. As discussed earlier, linear interpolation

used in conjunction with smooth (in this case blurred with a

3x3 constant filter) versions of the data can also be used to

produce smooth versions of objective functions. Finally, lin-

ear interpolation can also be used in conjunction with Monte

Carlo integration to produce registration curves without oscil-

lation artifacts.

5. SUMMARY AND CONCLUSIONS

Previously we had shown, using stochastic arguments, that

low degree interpolation on noisy images can cause artifactual

oscillations in SSD, CC, and MI objective functions used in
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Fig. 3. Cross Correlation (vertical axis) w.r.t translation (hor-

izontal axis), in pixels, using different approaches. See text

for description.

Fig. 4. Mutual Information (vertical axis) w.r.t translation

(horizontal axis), in pixels, using different approaches. See

text for description.

registration problems [5, 6]. Here we extend the analysis pre-

sented elsewhere to include a deterministic, frequency-based,

explanation for the artifacts encountered in common objective

functions. We proposed and discussed several approaches for

avoiding interpolation artifacts (blurring, high degree interpo-

lation, and Monte Carlo methods). We also included here an

explanation for the improvements that can be achieved with

stochastic sampling. This has been corroborated, with com-

putational experiments, elsewhere [2, 4, 3]. Computational

examples using an image of microtubular structure in a cell

are in good agreement with the theory we presented. Com-

putational examples using ‘local’ translations (important for

nonrigid registration problems) can also be performed [9] to

demonstrate similar concepts.
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[3] P. Thévenaz, M. Bierlaire, and M. Unser, “Halton sam-

pling for image registration based on mutual informa-

tion,” Sampling Theory in Signal and Image Processing,

vol. In Press, 2006.

[4] R. Gan, J. Wu, A.C.S. Chung, S.C.H. Yu, and

W.M. Wells III, “Multiresolution image registration

based on Kullback-Leibler distance,” in MICCAI,
C. Barillot, D.R. Haynor, and P. Hellier, Eds., Berlin,

2004, vol. 3216 of LNCS, pp. 599–606, Springer-Verlag.

[5] G.K. Rohde, C.A. Berenstein, and D.M. Healy Jr.,

“Measuring image similarity in the presence of noise,”

in Proceedings of the SPIE Medical Imaging: Image
Processing, J.M. Fitzpatrick and J.M. Reinhardt, Eds.,

San Diego, USA, February 2005, vol. 5747, pp. 132–

143.

[6] G.K. Rohde, Jr. D.M. Healy, C.A. Berenstein, and

A. Aldroubi, “Measuring image similarity to sub-pixel

accuracy,” in Proceedings of the IEEE International
Symposium on Biomedical Imaging (ISBI), Washington,

DC, USA, April 2006, pp. 638–641.

[7] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen,

P. Suetens, and G. Marchal, “Automated multimodality

image registration using information theory,” 1995, In-

formation Processing in Medical Imaging, pp. 263–274,

Kluwer Academic Publishers.

[8] W.M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and

R. Kikinis, “Multi-modal volume registration by maxi-

mization of mutual information,” Medical Image Anal-
ysis, vol. 1, pp. 35–51, 1996.

[9] G.K Rohde, D.M. Healy Jr., C.A. Berensteing, and

A. Aldroubi, “Interpolation artifacts in sub-pixel image

registration,” Preprint, 2006.

[10] M. V. Boland and R. F. Murphy, “A neural network clas-

sifier capable of recognizing the patterns of all major

subcelluar structures in fluorescence microscope images

of HeLa cells,” Bioinformatics, vol. 17, pp. 1213–1223,

2001.

651


