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ABSTRACT

We investigate the problem of sampling and reconstruction of

signals in the context of biomedical image registration. Given

a finite energy input signal, a band limited point spread func-

tion, and Nyquist sampling scheme, we characterize the basis

functions that can be used in reconstructing the signals so that

the shift (pure translation) between two such input signals can

be recovered exactly. Computational results using reconstruc-

tion using B-spline function spaces show that perfect recon-

struction nor interpolation are not necessary for exact recov-

ery of shifts between two signals.

Index Terms— Image registration, interpolation, sub-pixel,

reconstruction

1. INTRODUCTION

Due to their applications to data fusion, motion and distortion

correction, computational anatomy, and other related prob-

lems in biomedical imaging, automated image registration

(alignment) has become a major topic of image processing re-

search. Precision, in conjunction with robustness to noise and

computational efficiency, are common requirements of many

applications. One possible way through which precision and

accuracy of current registration methods can be assessed, and

perhaps improved, is by including as much prior information

from the image acquisition system in the consideration of the

problem. Here we examine the problem of recovering uni-

form shifts between two images (signals) by considering the

sampling and reconstruction operations normally present in

digital imaging systems and registration algorithms. We of-

fer a characterization result for reconstruction basis functions

that allow one to determine a shift between two digital im-

ages, exactly, so long as the images are not aliased. We show

computational results demonstrating that perfect reconstruc-

tion is not necessary for recovering the shift between two sig-

nals to sub-pixel accuracy.

1.1. Prior work

Intensity based image registration methods are plentiful and

have been applied to a variety of imaging problems, in ad-

dition to biomedical ones (see [1] for a review). Most al-

gorithms developed to date, however, assume implicitly or

explicitly that straightforward image interpolation or approxi-

mation is sufficient for recovering spatial transformations (trans-

lations, rotations, and higher order nonlinear mappings) be-

tween two or more images. Unser et al., for example, work

in the function space generated by integer shifts of B-spline

basis functions [2], while Foroosh et al [3] use band-limited

interpolation to recover shifts between images to sub-pixel

accuracy. In the following sections we investigate these as-

sumptions more closely.

2. THEORY

2.1. Preliminaries: band-limited signal acquisition

We consider the Hilbert space of square integrable images

(signals) s(x) ∈ L2, x ∈ R
d with the usual norm

‖s‖2L2
= 〈s, s〉L2

=
∫

Rd

s(x)s∗(x)dx (1)

with s∗ denoting the complex conjugate in the case of com-

plex images, although in this work we consider exclusively

real valued images and signals.

We briefly describe the image acquisition system we as-

sume in subsequent sections. In typical image and signal ac-

quisition devices, and incoming signals is ”filtered” prior to

sampling and digitization. In time domain signals flow pass

filtering is typically performed so as to avoid aliasing, while in

imaging devices inherent limitations (features) of typical de-

vices (diffraction limited lenses, magnetic resonance imaging,

etc.) prevent arbitrarily high spacial frequencies from being

acquired. We represent such a filtering operation as a con-

tinuous convolution between the incoming continuous signal

(image) s and the point spread function h: g(x) = h ∗ s(x) =∫
Rd s(u)h(x− u)du. We assume h is band limited:

ĥ(ω) =
∫

Rd

h(x)e−j2πωxdx = 0, (2)

for |ω| > 1/2. Next the signal is sampled, preferably at or

above the Nyquist rate, and the signal information is then

stored using a finite number of bits yielding (assuming h ∈
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Fig. 1. Linear system representation of image acquisition sys-

tem. An input signal s is ”blurred” according to a point spread

function h and then sampled at a regular grid. See text for

more details.

L2) a square summable sequence g = h ∗ s|k∈Zd . Thus

g = h ∗ s|k∈Zd , with ∗ denoting continuous convolution (in

d dimensions), is a square summable (�2) sequence and rep-

resents a filtered and sampled multi-dimensional infinite se-

quence. Figure 1 depicts the system features described above.

2.2. Image registration

Let s denote a square integrable signal as described above and

Tτs = sτ = s(· − τ) represent the a version of s shifted by

some arbitrary τ ∈ R
d. Given s and Tτs the goal in the regis-

tration problem we consider is to recover τ from sampled data

g = h ∗ s|k∈Zd and gτ = h ∗ Tτs|k∈Zd . We note that since

we assume h to be band limited, the Shannon-Whittaker sam-

pling theorem allows perfect reconstruction of the the contin-

uous functions g = h ∗ s and gτ = h ∗ Tτs, not of s and Tτs.

Thus, pending further analysis shown below, at this point it

is not clear whether perfect reconstruction using sinc basis

functions is enough, or required, for estimating the shift τ .

Let real valued function s̃ represent a reconstruction of s
via:

s̃(x) =
∑
k∈Zd

g[k]ϕ(x− k) =
∑
k∈Zd

h ∗ s[k]ϕ(x− k) (3)

where ϕ is a symmetric L2 basis function. If the signal s
suffered a translation prior to sampling its reconstruction from

its sampled values is denoted:

s̃τ (x) =
∑
k∈Zd

gτ [k]ϕ(x− k) =
∑
k∈Zd

h ∗ sτ [k]ϕ(x− k) (4)

which is to be differentiated from the translated reconstruc-

tion

Tλs̃(x) =
∑
k∈Zd

g[k]ϕ(x−λ−k) =
∑
k∈Zd

h∗s[k]ϕ(x−λ−k).

Given two reconstructions s̃ and s̃τ we seek to recover τ
via

τop = arg min
λ
‖Tλs̃− s̃τ‖2L2

. (5)

Clearly, the sampling and reconstruction procedure with ϕ is

appropriate (τop = τ ) if and only if:

‖Tλs̃− s̃τ‖2L2
≥ ‖Tτ s̃− s̃τ‖2L2

(6)

or equivalently

〈Tλs̃, s̃τ 〉L2
≤ 〈Tτ s̃, s̃τ 〉L2

. (7)

with equality only when τ = λ. Next we offer a sufficient and

necessary conditions on ϕ so that the shift can be recovered

exactly for any τ , s, and bandlimited h.

Theorem 2.1 Let

Υ(ω, τ, λ) =
∑
q∈Zd

|ϕ̂(ω+q)|2 cos (2πω · (τ − λ)− 2πλ · q) .

(8)

Then 〈Tλs̃, s̃τ 〉L2
≤ 〈Tτ s̃, s̃τ 〉L2

iff Υ(ω, τ, τ) ≥ Υ(ω, τ, λ),
∀ω ∈ [−1/2, 1/2]d.

Proof:
Substituting the definitions we have:

〈Tλs̃, s̃τ 〉L2
=

X

k∈Zd

X

p∈Zd

(h ∗ s[k])(h ∗ sτ [p])

Z

Rd
ϕ(x− λ− k)ϕ(x− p)dx

=
X

k∈Zd

X

p∈Zd

(h ∗ s[k])(h ∗ sτ [p])ϕ ∗ ϕ∨(k − p + λ)

=
X

k∈Zd

h ∗ s[k]
X

p∈Zd

h ∗ sτ [p]
`
ϕ ∗ ϕ∨−λ(k − p)

´

which can be viewed as an �2 inner product between the sequences h ∗ s[k]

and
P

p∈Zd h ∗ sτ [p]
“
ϕ ∗ ϕ∨−λ(k − p)

”
. Note that in the above ϕ∨ de-

notes the time reversed function ϕ. This can be written in Fourier domain

with the aid of the discrete time Fourier transform (DTFT):

〈Tλs̃, s̃τ 〉L2
=

Z

[−1/2,1/2]d
DTFT {h ∗ s}∗ (ω)

DTFT
˘
h ∗ sτ ⊗ ϕ ∗ ϕ∨−λ

¯
(ω)dω (9)

where⊗ denotes the discrete convolution operation between two �2 sequences.

We have

DTFT {h ∗ sτ ⊗ ϕ ∗ ϕ−λ} (ω) = DTFT {h ∗ sτ}DTFT
˘
ϕ ∗ ϕ∨−λ

¯
(ω)

while, via the Poisson summation formula, we have

DTFT {h ∗ s} (ω) =
X

k∈Zd

ĥ(ω + k)ŝ(ω + k),

DTFT {h ∗ sτ} (ω) =
X

k∈Zd

ĥ(ω + k)ŝ(ω + k)e−j2πωτ ·(ω+k),

and

DTFT
˘
ϕ ∗ ϕ∨−λ

¯
(ω) =

X

k∈Zd

|ϕ̂(ω + k)|2ej2πωλ·(ω+k).

Inserting these into (9), and keeping in mind that h is bandlimited, we have

〈Tλs̃, s̃τ 〉L2
=

Z

[−1/2,1/2]d
|ĥ(ω)|2|ŝ(ω)|2Υ(ω, τ, λ)dω (10)

with Υ(ω, τ, λ) =
P

q∈Zd |ϕ̂(ω + q)|2 cos (2πω · (τ − λ)− 2πλ · q).

It is clear that if Υ(ω, τ, τ) ≥ Υ(ω, τ, λ), ∀ω ∈ [−1/2, 1/2]d then

〈Tλs̃, s̃τ 〉L2
≤ 〈Tτ s̃, s̃τ 〉L2

holds. The converse is also true. Suppose

〈Tλs̃, s̃τ 〉L2
≤ 〈Tτ s̃, s̃τ 〉L2

then Υ(ω, τ, τ) ≥ Υ(ω, τ, λ), ∀ω ∈ [−1/2, 1/2]d

must hold. If it is not the case, one can always choose |ĥ(ω)|2|ŝ(ω)|2 so that

〈Tλs̃, s̃τ 〉L2
≤ 〈Tτ s̃, s̃τ 〉L2

is not the case.

As a simple corollary we have that
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Corollary 2.2 If ϕ is also band-limited (its Fourier transform
is zero outside [−1/2, 1/2]d), then 〈Tλs̃, s̃τ 〉L2

≤ 〈Tτ s̃, s̃τ 〉L2
.

The result above implies that the orthogonal projection of s
onto the space of band limited functions can be used to re-

cover the shift τ without error, so long as the projection is not

zero.

3. COMPUTATIONAL EXAMPLE

Using Υ(ω, τ, λ) defined in Theorem 2.1 we have that

〈Tλs̃, s̃τ 〉L2
=

∫
[−1/2,1/2]d

|ĥ(ω)|2|ŝ(ω)|2Υ(ω, τ, λ)dω

while for registration the basic requirement on the reconstruc-

tion procedure is that ϕ is 〈Tλs̃, s̃τ 〉L2
≤ 〈Tτ s̃, s̃τ 〉L2

. If

|ĥ(ω)|2|ŝ(ω)|2 decays fast enough such that the Poisson sum

terms in Υ(ω, τ, λ) (other than the zeroth term) do no overlap

the portion of the Fourier domain to which |ĥ(ω)|2|ŝ(ω)|2 be-

longs, ϕ is not required to be band-limited for exact recovery

of the shift τ . We illustrate this with the following computa-

tional example.

The top portion of Figure 2 displays one signal (solid line)

composed of a linear combination of sinc basis functions,

with the coefficients of the linear combination composed of

a sample dGaussian function. The signal is by construction

band-limited and represents g = h ∗ s as discussed earlier.

The signal is to be matched to its shifted version gτ = h∗Tτs,

where in this case τ = 2.61 samples (pixels). As the system

diagram shown in Figure 1 illustrates, the signals are then

sampled (at the unit sample regular grid). The correspond-

ing discrete signals are shown in the middle portion of Figure

2. Lastly, the signals s̃ and s̃τ are reconstructed according

to equations (3) and (4). The reconstruction basis functions

were chosen to be B-splines of degree 2, ϕ = β2:

β2(x) =

⎧⎨
⎩

0 if |x| > 1.5;
(3/2− |x|)2/2 if 0.5 < |x| < 1.5;
0.75− x2 if |x| ≤ 0.5

The signal reconstructions are shown at the bottom of Figure

2. Using these, the inner product 〈Tλs̃, s̃τ 〉L2
can be com-

puted analytically:

〈Tλs̃, s̃τ 〉L2
=

∑
k∈Zd

(gτ [k])(g ⊗ Tλβ3[k]). (11)

with

β3(x) =

⎧⎪⎨
⎪⎩

0 if |x| ≥ 2;
(2−|x|)2

6 if 1 ≤ |x| < 2;
2
3 − |x|2 + |x|3

2 0 ≤ |x| < 1.

Fig. 2. Top: two band-limited functions g and gτ . Middle: the

functions on the top portion sampled at the unit regular grid.

Bottom: the original functions reconstructed with B-splines

of degree 2.

Alternatively, the inner product in (11) can be approximated

through numerical integration. However, this is not recom-

mended since it can give rise to so called ”interpolation arti-

facts” [4].

We plot equation (11) in Figure 3 where, for this particular

simulation, the correct shift τopt = 2.61 can be identified to

two decimal places. The accuracy of the simulation can be in-

creased by augmenting the degree of the reconstruction basis

function. We note that contrary to previous works, interpola-

tion or least squares projections into function spaces are not

a requirement for near perfect recovery of the shift. In fact

the B-spline basis functions used in this computational ex-

ample are non interpolating (as shown in the reconstructions

displayed in the bottom portion of Figure 2).
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Fig. 3. 〈Tλs̃, s̃τ 〉L2
computed using B-splines of degree 2 for

reconstructing the signals. See text for more details.

4. SUMMARY AND CONCLUSIONS

In image registration problems, and other image processing

problems in general, signal (image) reconstruction is not the

end goal. Rather, in the case of image registration, we seek to

recover a spatial transformation that aligns two images. Of-

ten times sub-pixel shifts are desired, and our goal above was

to characterize necessary and sufficient conditions on recon-

struction basis functions for recovering the shift between two

images.

We presented a result characterizing the reconstruction

basis functions ϕ that enable one to recover the shift between

two signals exactly. We also show that the projection of two

square integrable signals onto the space of band-limited func-

tions contains enough information to recover sub-pixel shifts

exactly. From a practical standpoint, the results above have

important applications. Firstly, the characterization result may

be used to constructing basis functions ϕ that are computa-

tionally efficient for evaluating the registration functions in-

volved (inner products defined above), and may not neces-

sarily be band-limited themselves. Secondly, as the compu-

tational example showed, computationally efficient solutions

may be obtained by limiting the frequency content of the sig-

nal via the application of a filter ĥ such that the frequency con-

tent of ϕ̂(ω + k), k �= 0 does not intersect significantly with

|ĥ(ω)|2|ŝ(ω)|2. The filtering operation may be performed in

hardware (through the effect of lenses, for example) or by

post-processing the data.

Finally, we note that although our computational example

we provide above was performed in one dimension, the theory

and methods described above are valid for multiple dimen-

sions. The computational example can be extended to two or

more dimensions by using the cross product of B-splines.
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