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Abstract

This paper presents a Bayesian methodology for computer-aided experimental design of heterogeneous scaffolds for tissue engineering

applications. These heterogeneous scaffolds have spatial distributions of growth factors designed to induce and direct the growth of new

tissue as the scaffolds degrade. While early scaffold designs have been essentially homogenous, new solid freeform fabrication (SFF)

processes enable the fabrication of more complex, biologically inspired heterogeneous designs with controlled spatial distributions of growth

factors and scaffold microstructures. SFF processes dramatically expand the number of design possibilities and significantly increase the

experimental burden placed on tissue engineers in terms of time and cost. Therefore, we use a multi-stage Bayesian surrogate modeling

methodology (MBSM) to build surrogate models that describe the relationship between the design parameters and the therapeutic response.

This methodology is well suited for the early stages of the design process because we do not have accurate models of tissue growth, yet the

success of our design depends on understanding the effect of the spatial distribution of growth factors on tissue growth. The MBSM process

can guide experimental design more efficiently than traditional factorial methods. Using a simulated computer model of bone tissue

regeneration, we demonstrate the advantages of Bayesian versus factorial methods for designing heterogeneous fibrin scaffolds with spatial

distributions of growth factors enabled by a new SFF process.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Our goal is to create tissue engineered therapies to treat

hard-to-heal wound sites by designing and manufacturing

implantable scaffolds with growth factors that recruit cells

from the host’s surrounding healthy tissue into the scaffolds,

and then guide new tissue growth as the scaffolds are

degraded by these invading cells. Fig. 1 shows a candidate

therapy for use in a calvarial (skull) critical sized defect

(CSD), i.e. a defect that is too large for the bone to

regenerate spontaneously unless treated with a bone

promoting therapy [1]. Calvarial defects are often chosen

for testing bone repair materials because the skull has a poor

blood supply and a deficiency of bone marrow, making
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a demanding test for a candidate therapy [2]. The design in

Fig. 1, which will be used as an example throughout this

paper, consists of spatial patterning of two growth factors,

fibroblast growth factor-2 (FGF-2) and bone morphogenetic

protein-2 (BMP-2), delivered in a bi-density fibrin scaffold.

The dense and less dense regions are interconnected in a

cross-hatch architecture. To design and fabricate such an

implant successfully requires:
†
 a manufacturing process capable of fabricating hetero-

geneous structures with complex architectures, and
†
 an understanding of the relationship between the spatial

patterning of growth factors and the resulting bone

regeneration in order to optimize the design parameters.

In this paper, we describe a solid freeform fabrication

(SFF) process we are developing which can manufacture

heterogeneous fibrin-based scaffolds. This process dramati-

cally expands the space of possible designs and parameter

combinations, because both the microstructure of
Computer-Aided Design 37 (2005) 1127–1139
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Fig. 1. Example of a candidate heterogeneous scaffold design with a spatial patterning of two growth factors, FGF-2 and BMP-2, and two densities of fibrin.
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the scaffold and the distribution of growth factors, within the

scaffold, can be controlled precisely. For example, consider

a conventional factorial experimental design using the

following parameters and values in an in vivo study to

determine the therapy effectiveness and optimal values of

the parameters:
†
 four values of FGF-2 concentration gradient magnitude:

[0control, LowFGF-2, MedFGF-2, HiFGF-2]
†
 four values of BMP-2 concentration: [0control, LowBMP-2,

MedBMP-2, HiBMP-2]
†
 three values of fibrin density in dense region: [Low fibrin,

Med fibrin, Hi fibrin]

Using a traditional factorial design approach, this would

result in 48 (4!4!3) combinations of treatment options.

Using a rabbit in vivo model, observing bone regeneration at

three separate time endpoints (e.g. sacrificing rabbits at 4, 8

and 12 weeks post-surgery), using eight rabbits per

treatment group for each time endpoint for a total of 1152

rabbits, and processing a maximum of 60 rabbits per year

results in a conservative estimate of $873,000 in costs over a

19 year timeframe. This estimate demonstrates that a

conventional factorial design approach is not practical.

One option would be to first use faster less expensive in

vitro studies to pre-screen the designs and narrow the

number to the best performers for subsequent in vivo

testing. However, in vitro results do not necessarily

correlate well with in vivo responses. Ultimately, the tissue

engineer would have to use past experience, insight, and

intuition to make decisions to limit the number of in vivo

tests. However, this ad hoc approach could produce sub-

optimal designs and limit gaining further insight about the

interactions of the scaffold components and their contri-

butions to healing.

The large number of design possibilities and the

combinatorial explosion that results from using standard

factorial design underscores the need for more efficient

ways to search the parameter space of design possibilities.

To address this challenge, we describe a Multi-stage

Bayesian Surrogate Modeling (MBSM) methodology that

can be used to construct computational models that guide

experimental design by quantifying the interactions among

variables and performance outcomes. In combination, SFF

and MBSM will make possible the design and fabrication of

heterogeneous scaffolds for bone tissue engineering.
1.1. Solid freeform fabrication (SFF)

SFF refers to computer-aided-design/computer-aided-

manufacturing (CAD/CAM) methods that can fabricate

complex shapes automatically from CAD models [3]. SFF

processes are based on a layered manufacturing paradigm

that builds shapes by incremental material deposition and

fusion of thin cross-sectional layers. Decomposing complex

3D shapes into simpler 2D layers dramatically simplifies

computer-assisted planning and fabrication of parts. SFF

processes also provide full access to the interior of parts as

they are being built. Therefore, shapes with complex interior

architectures can be fabricated, enabling scaffolds with

controlled microstructures to be built for tissue engineering

applications [4–17]. In addition to the capability of

manufacturing scaffolds with custom shapes and complex

internal architectures, it will be important for next-

generation scaffold designs to include heterogeneous

compositions incorporating controlled spatial distributions

of cells, growth factors, and material compositions in order

to better mimic aspects of nature or to enable biologically

inspired engineered designs. In general terms, SFF meth-

odology enables heterogeneous designs through the use of

selective material deposition processes and by simultaneous

embedding of discrete components during deposition [17–

19]. For tissue engineering applications, we proposed the

extension of SFF methodology to build heterogeneous

scaffold designs by selectively adding cells and growth

factors to the layers as the scaffolds are being built [20].

Numerous investigators have since demonstrated SFF can

control the 3D spatial distributions of the biological factors

throughout these structures [7,21–30].

Effective use of SFF to build scaffolds requires CAD

tools for modeling, informatics, structural analysis, and

process planning. Numerous investigators are addressing

these needs; Sun et al. [31,32] provide an excellent review

of such computer-aided tissue engineering techniques.

However, an often-overlooked design issue is that SFF

enables the space of design possibilities to expand

dramatically. Now, tissue engineers can consider the

incorporation of multiple factors and material compositions

in a continuum of spatial arrangements throughout the

scaffold, resulting in a combinatorial explosion of design

possibilities. The biological experimentation required to test

and optimize the parameters of any new design, especially

in vivo, is typically time consuming and expensive, so tissue



L.E. Weiss et al. / Computer-Aided Design 37 (2005) 1127–1139 1129
engineers are limited in the number of experimental trials

that they can conduct. While the existing large bodies of

biological and clinical knowledge can help to inspire new

designs and guide parameter selections, this knowledge-

base is not mature enough to provide models of wound

healing that can serve as a basis for designing heterogeneous

matrices.

1.2. Multi-stage Bayesian surrogate modeling (MBSM)

In some design domains, particularly in rapidly evolving

domains such as tissue engineering, analytical represen-

tations of system behaviors do not exist. In such domains,

the design process can be facilitated by the development of

surrogate models that provide an understanding of the

interactions of parameters and their influence on system

performance, even though the models do not explain the

underlying phenomena. Many different techniques can be

used to build surrogate models, including neural networks,

radial basis functions, response surface methodologies, and

kriging. Surrogate models can reduce the number of

experiments needed and increase the value of the infor-

mation gained through experimentation. A detailed expla-

nation and comparison of these methods can be found in Jin

et al. [33] and Simpson et al. [34]. The main points of

comparison are as follows. Response surface is the most

widely used method due to its simplicity. Its accuracy

depends on the complexity of the response to be modeled. It

assumes random errors and does not behave well for highly

non-linear responses. Neural networks are better suited for

highly non-linear responses and for problems with a large

number of parameters. Due to the computational expense of

training the network, it is best suited for applications that

repeat evaluations. Radial basis functions are easy to apply

given the simplicity of the interpolation method. This

technique is usually dependable and generates good

surfaces in most situations. Kriging is flexible and well

suited for deterministic applications. Due to the complexity

of the method, applications usually entail fewer than 50

parameters.

We have developed a MBSM methodology, based on a

kriging approach, for design and optimization of complex

systems and have successfully applied it to several non-

biological processes [35–38]. We follow a statistical

Bayesian approach in which probability is regarded as a

degree of belief. Within the Bayesian framework, a prior

distribution is specified to represent what is known (degree

of belief) about the process before data is available. As data

is collected, the prior distribution is updated to obtain the

posterior distribution. Bayesian analysis offers a mathemat-

ically rigorous framework in which information is updated

based on previous outcomes [39]. In this methodology, we

select particular combinations of input parameters, perform

experiments at the selected points in the design space, and

then construct surrogate computational models that quantify

the interactions among variables and predict performance
outcomes. At each stage, the current model serves as the

prior expectation for the next set of experiments, enabling us

to maximize the information gained from each experimental

trial [35]. Thus, multi-stage Bayesian modeling can reduce

the number of experiments and shorten the timeline for

iterative design testing.
2. Heterogeneous fibrin scaffold

2.1. Rationale for the scaffold design

Fibrin was selected as the scaffold material for the

candidate therapy in Fig. 1 for several reasons. Fibrin is a

native hydrogel that, upon injury, forms a clot in the wound

site to stop bleeding, and then it acts as a temporary

extracellular matrix for supporting the subsequent cascade

of wound healing events [40]. These events include

invasion of host cells from the healthy surrounding tissue

into the fibrin extracellular matrix, followed by the making

of new bone tissue by these cells as the fibrin extracellular

matrix degrades. Fibrin degradation is controlled by cell-

directed proteolysis (i.e. the invading cells digest the

fibrin), with the degradation rate controlled by the resident

cells involved in the tissue regeneration process [41,42].

The degradation rate thus controls cell access to fibrin-

bound growth factors [41]. Our therapeutic target window

for the stimulation of bone regeneration in vivo, which is

the example discussed in this paper, falls within the first

two weeks of scaffold implantation, during which time

growth factor stimulation of initial bone regeneration is

expected to occur [43–45]. This will enable FGF-2 and

BMP-2, which both naturally bind to fibrin, to remain

immobilized until fibrin degradation by invading wound

healing cells.

In general, the density of a fibrin scaffold affects both its

mechanical and biological properties, which in turn

influences many key regeneration factors including cell

growth, cell spreading, scaffold degradation rate, surgical

handling, and stiffness required to initially maintain the

scaffold shape in vivo [46]. However, no single density

value of a fibrin scaffold can simultaneously optimize all

these factors [46]. For example, lower densities optimize

cell growth, while higher densities optimize handling. A

composite scaffold with a bi-density distribution might

better satisfy both requirements.

FGF-2 was selected since it is both angiogenic (i.e.

stimulates growth of new blood vessels) and osteogenic

(i.e., stimulates bone growth) [47]; angiogenesis is the

antecedent to osteogenesis [44,48]. A gradient of FGF-2

was selected because, in nature, spatial concentration

gradients of endogenous growth factors (i.e., made by the

body) play critical roles in directing cell migration,

proliferation, and differentiation [49,50]. For example,

during normal wound healing, cells from the wound site

and invading host cells lose their blood supply due to
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the injury. These cells respond by producing angiogenic

growth factors that diffuse out into the surrounding healthy

tissue. Growth factor concentration gradients, emanating

from the hypoxic cells (i.e., lacking oxygen), are thus

formed to provide chemotactic directional cues as liquid-

phase (soluble) molecules. These cues direct angiogenic cell

migration from surrounding vascularized tissues into and

proliferation within the wound in order to induce angiogen-

esis. Spatial cues have been mimicked, to some extent, by

tissue engineering therapies that use controlled growth

factor release technologies to deliver growth factors as

liquid-phase molecules [51]. Problems with this delivery

approach include: 1) relatively large, non-physiogical doses

of growth factors are required for the gradients to persist;

and 2) liquid-phase delivery does not permit specific control

over gradient directionality or growth factor localization

within the scaffold. Growth factors have been immobilized

within engineered scaffolds to begin to address persistence

and dosing issues [52,53], but spatial patterning has not been

accomplished [52,53]. We reason that, similar to chemo-

taxis, a solid-phase (growth factors immobilized to the

scaffold) gradient of a low-to-high concentration of an

angiogenic growth factor would direct cell migration into

the scaffold, thus maximizing the cell population in the

scaffold and enhancing therapeutic potential. The direction

of the gradient was chosen because CSD studies have

reported a significant quantitative difference in osteogenic

cell sources to healing bone, with the dura (i.e. the

protective, highly vascularized sheath of tissue between

the skull and brain) representing the predominate cell source

[54–56].

BMP-2 is a powerful osteogenic factor that stimulates

bone precursor cells to differentiate into mature bone cells

[57], i.e., it is present in the final stages of bone wound

healing. When BMP-2 is delivered as a therapeutic factor,

early differentiation of cells prior to sufficient migration and

proliferation could inhibit further tissue growth, and thus

inhibit wound healing. Therefore, temporal control

of BMP-2 delivery will be important; that is, we want
Fig. 2. SFF printing system configured with four ink-jet print heads for depositi
the cells to first have access to FGF-2, and later to BMP-2.

By localizing BMP-2 in denser portions of the scaffold, the

cells will take longer to degrade those portions of the

scaffold and access the BMP-2 as discussed above.

We emphasize that we are not trying to replicate nature

since CSD biology does not lead to bone regeneration on its

own. Rather, we seek to create biologically inspired designs

that might amplify and accelerate wound healing suffi-

ciently to boost the body’s own natural healing processes

and promote CSD regeneration.
2.2. Fabrication of fibrin-based scaffolds

Fibrin hydrogel is produced by polymerization/gelation

of the monomer fibrinogen to fibrin in the presence of the

activator thrombin [58]. To fabricate fibrin-based scaffolds,

the SFF system we are developing is configured with four

ink-jet print heads for independently depositing solutions

(bio-inks) of fibrinogen, thrombin, and two growth factors

(Fig. 2). The print heads are focused at the printed surface

where local mixing and gelation of deposited fibrinogen

(Fg) and thrombin (Tr) droplets occur. Fibrin gelation times

range from seconds to minutes.

The growth factor bio-inks consist of growth factors pre-

bound to fibrinogen (GF/Fg). The deposited concentrations

of growth factors are modulated by controlling the ratio of

the GF/Fg bio-inks to the Fg bio-ink. Direct or indirect

binding to native extracellular matrix biomolecules occurs

naturally for most growth factors, including FGF-2 and

BMP-2 [41]. However, since binding interactions between

the growth factors and fibrinogen binding site(s) typically

require between 30–60 min to reach equilibria [59], we pre-

mix the growth factors with fibrinogen and wait several

hours prior to printing to minimize post printing diffusion of

the growth factors. Thus, upon printing and gelation, these

growth factors remain bound to fibrin to establish a solid-

phase printed pattern that will persist in physiologically

relevant concentrations until host cells invade and degrade

the scaffold.
ng fibrinogen (Fg), thrombin (Tr), and two growth factors (GF1 and GF2).
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The ink jets are microsolenoid valves (Matthews

International Corp., Pittsburgh, PA) with 100 mm diameter

nozzles. The volume of jetted fluid, which is proportional to

the valve open time and the supply pressure, can be

controlled down to approximately 2 nl. The jets are mounted

to computer controlled X-Y servo stages that move the jets

relative to the substrate. A computer controlled Z-axis

adjusts the substrate-to-print head stand-off height between

layers using feedback from a confocal displacement sensor

(Keyence Corp., Woodcliff Lake, NJ). The printer is

enclosed within a filtered, laminar flow hood for sterility.

The current system can produce features with a size

resolution of 250 mm.

Examples of heterogeneous scaffolds printed with this

system are shown in Fig. 3. Fig. 3a shows a scanning

electron micrograph (SEM) of fibrin printed with 20 mg/ml

of fibrinogen and 10 U/ml of thrombin. The resulting fibrin

microstructure (fibril diameter and density) is similar to

fibrin formed during bulk gelation [60,61]. Fig. 3b shows a

concentration gradient of FGF-2 printed in a single layer of

a 200 mm thick fibrin scaffold imaged for fluorescence using

a binocular scope. The concentration of printed FGF-2 was

modulated by controlling the ratio of two bio-inks:

100 mg/ml of cyanine 3 fluorescently-labeled FGF-2
Fig. 3. (a). SEM of ink-jet printed fibrin. (b) Fluorescence image of a fluorescently

scaffold layer. (c) 3D cross-hatch pattern of variable density fibrin printed using C

thick, bi-porosity structure. (d) schematic of printing the layers to form a in inter
(Cy3-FGF-2) pre-bound to 20 mg/ml of fibrinogen, and

20 mg/ml of fibrinogen alone. Fig. 3c shows a printed 3D

cross-hatch pattern of variable density fibrin imaged as for

Fig. 3b. The cross-hatch was produced by printing Cy3-

fibrinogen with a bio-ink concentration of 12 mg/ml and the

surrounding non-fluorescent cross-hatch fill was printed

with 20 mg/ml unlabelled fibrinogen. The thrombin bio-ink

concentration was 25 U/ml. This structure was printed with

four 250 mm layers, creating an 8!8 mm square, 1 mm

thick, bi-density structure. Fig. 3d is a schematic showing

how the cross-hatch pattern was formed with interconnected

regions of different fibrin densities.
3. Bayesian Modeling

Bayesian statistical inference is a collection of statistical

methods for designing experimental studies and for

analyzing data [62]. One begins with a statistical model

that describes a relationship among the parameters that can

be controlled (e.g., FGF-2 and BMP-2 concentrations and

fibrin density) and the desired outcome (e.g., bone growth).

The model involves unknown parameters to be estimated

based on experimental data from in vivo experiments.
labeled Cy3-FGF-2 concentration gradient printed in a 200 (mm thick fibrin

y3-fibrinogen printed with four individual 250 mm layers, creating a 1 mm

connected, bi-density structure.
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Bayesian statistical inference combines prior information

expressed as a prior probability distribution for the

parameters with available data to form a posterior

probability distribution. Point estimates and confidence

intervals can then be extracted from the posterior

distribution.

In multi-stage Bayesian analysis, the statistical models

are updated and improved sequentially through multiple

stages of testing and data acquisition [35,63]. Using this

multistage Bayesian approach, the results of each prior

model and set of experiments guide the selection of the

combination of experimental sample points for the next

stage, thus reducing the required number of experiments

and improving the quality of information obtained at each

stage.

Bayesian methods are particularly useful in experimental

design to estimate a response surface. A non-Bayesian

method would observe a process on a grid of points and

estimate the response surface based on the information

gathered at those points, typically using a low order

polynomial to model the response. Several improvements

to this standard method can be implemented within the

Bayesian framework. For example, a prior distribution can

be placed on the response surface to express the idea that the

surface is expected to be smooth. As experimental data are

collected, the current posterior probability distribution is

updated into a new posterior distribution. This posterior

distribution can be used to locate new experimental

sampling points that will lead to the highest expected

information gain. Then the procedure is repeated in several

stages. Even though smoothing and sequential design can be

carried out in a non-Bayesian framework, the Bayesian

approach provides a unified, efficient, and rigorous way to

accomplish this.

Building Bayesian models in a multi-stage approach has

several advantages. First, it gives adaptability to the data

gathering process, allowing the use of already acquired

information to influence the location of the sampling points

for the next stage of data collection. In addition, building the

surrogate in stages eases the computational burden of the

calculations associated with the model, such as optimal

sampling or maximum likelihood estimation of its para-

meters. Finally, the multi-stage development of these

models resembles the experimental process in which

knowledge is formulated, tested, and updated in stages of

hypothesizing, experimentation, and critical analysis of the

resulting data.

3.1. Mathematical formulation

MBSM is a technique of general applicability for the

creation of surrogate models of the response of physical

systems. In this methodology, the response of the system

Zð~xÞ is considered to be governed by a known set of design

parameters ~xZ ½x1;.; xn�. For example, in our specific

application of computer-aided bone tissue engineering,
the response of the system is a measure of bone growth,

while the design parameters are the concentrations of FGF-

2, BMP-2 and the fibrin densities of the fibrin/BMP-2

component of the scaffold.

Experiments performed with such a system, or with a

computational model of it, yield the data set represented in

Eq. (1):

DðsÞ Z

x11 x12 / x1n

« « «

xm1 xm2 / xmn

2
64

3
75 (1a)

ZDðsÞ Z ½ Zð~x1Þ Zð~x2Þ / Zð~xmÞ �
T (1b)

where D(s) (size m!n) is the design matrix, whose m

rows correspond to different combinations of the design

parameters x1,.xn,, represented by the n columns of D(s).

For each sampling point in the design matrix D(s), we

obtain the response of the system, and this information is

summarized in the m!1 response vector ZD. All matrices

are identified with a superscript stage index, (s), to

indicate that the data collected from the experiments

correspond to a specific stage in our multi-stage modeling

process.

The observed responses of Eq. (1) are considered to be a

partial realization of a Gaussian spatial random process

Zð~xÞ, which can be decomposed as the sum of a

deterministic mean (trend) Mð~xÞ and a zero-mean spatial

random process Yð~xÞ, with a given covariance structure, i.e.

Zð~xÞ Z Mð~xÞCYð~xÞ (2)

with

E Yð~xÞ
� �

Z 0 (3a)

cov Yð~xiÞ;Yð~xjÞ
� �

Z c jj ~xi K~xjjj; ~q
	 


(3b)

where c jj~xiK~xjjj; ~q
	 


is the covariance function of the

random process and represents the covariance between the

response variables at two different locations in the design

space. This covariance is a parametric function of the

distance between the observations; its parameters ~q are

estimated based on the observed data via maximum

likelihood. In the decomposition presented in Eqs. (2) and

(3), the mean component Mð~xÞ is a global approximation of

the response while the random processes Yð~xÞ account for

localized deviations from this mean, such that the surrogate

model interpolates the response data.

Consistent with the stochastic model of Eq. (2), the best

prediction of the responses of the system at any unsampled

point ~x0 in the design space, at stage s, would be the

expected value of the random process at that point,

conditional on the observed data, i.e.

~Z
ðsÞ

� ~x0

� �
Z E ~Z

ðsÞ
jDðsÞ;ZD

h i
(4)
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which can be interpreted as the mean of the spatial random

process posterior to the data collection stage. With the

assumption that the system responses are a realization of

a Gaussian spatial random process, the conditional

expectation of Eq. (4) becomes

ZðsÞ
� ~x0

� �
Z MðsÞ ~x0

� �

C ~C
ðsÞ

~x0;D
ðsÞ

� �h iT

CðsÞ

DðsÞ

h iK1

ZðsÞ
D KMðsÞðDðsÞÞ

� �

(5)

where ~C
ðsÞ

~x0;D
ðsÞ

� �
is the covariance vector between the

unsampled point and the samples of the current stage, CðsÞ

DðsÞ

is the covariance matrix of the samples, and M(s)($) is the

(prior) mean. Typically, for the first stage of data collection

and modeling, the mean component M(s)($) is modeled as a

linear regression on the design parameters. On the other

hand, in the multistage implementation of the methodology

we set M(s)($) equal to the posterior expectation at the

previous stage Z sK1ð Þ
� ð,Þ.

A more detailed mathematical description of the

Bayesian computational methodology that provides the

basis for our work is presented in Osio and Amon [35], and

further developments, extensions and applications of the

methodology can be found in the work of Leoni et al. [38,

64], Pacheco et al. [37,63,65–67], and Romero et al. [68].
4. Example of Bayesian modeling applied

to scaffold design

To illustrate how the Bayesian methodology can be

applied to aid in the design of the scaffold illustrated in

Fig. 1, we conduct simulated experiments using a

hypothetical computer model of bone wound healing.

The model relates the performance response (i.e. bone

growth) to values of the therapeutic factors, and thus the

model stands in for the true state of nature for the

simulated experimental studies. Both Bayesian and

factorial design methods are used to sample this space,

but no a priori information about this model is

incorporated in the sampling algorithms. We show that

with a fixed number of experiments, the Bayesian
Fig. 4. Hypothetical model of bone growth in response to the therapeutic factors;

(BMP-2), and fibrin density in the fibrin/BMP-2 region of the scaffold (density).
approach best estimates the model of wound healing.

Therefore, numerical optimization on the Bayesian-

derived model would produce better estimates of optimal

values to use in a final therapy design.

Since computational models of wound healing do not

exist, we create a hypothetical model (Fig. 4) that obeys

some simple rules about expected outcomes based upon our

experience and the literature. We emphasize that this model

is an over simplification of nature, but provides a relatively

complex, non-trivial 3D performance surface to demon-

strate our approach. The model obeys the following rules:
†

mag
Uni-modal, normal distributions for single growth

factors: When a single therapeutic growth factor is

delivered, the performance response will have a normal

distribution. If the growth factor concentration is too low,

then there is little effect. If the concentration is too high,

there is a biological feedback mechanism which inhibits

desired cell responses [69]. Furthermore, very high

concentrations of powerful growth factors like BMP-2

can stimulate growth of undesirable cells such as tumor

cells [70].
†
 Synergistic effect of multiple growth factors: growth

factors can work synergistically [50], and therefore, the

resulting performance of combined FGF-2 and BMP-2

will be better than for either individually.
†
 Bi-modal distribution for fibrin/BMP-2 density: as the

fibrin density increases, the time constant for cellular

access to the BMP-2 increases because it takes cells

longer to degrade in this denser portion of the scaffold.

Therefore, the performance begins to improve and reach

a local maximum at a point where the temporal

relationship between cellular access to BMP-2 and

FGF-2 is optimal. A second local maximum is produced

where the net amount of BMP-2, which increases with

density of the fibrin/BMP-2 component, is at an optimal

value as a single factor.

In this simplified model, bone growth is a function of

three parameters: magnitude of the FGF-2 concentration

gradient, BMP-2 concentration, and the fibrin density of the

fibrin/BMP-2 component of the scaffold. In the plots, the

three coordinates (x,y,z) represent these parameters, while
nitude of FGF-2 concentration gradient (FGF-2), BMP-2 concentration



Fig. 5. Bone growth metric versus magnitude of FGf density of the

fibrin/BMP-2 region for fixed BMP-2Z25%.
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the shaded colors represent the magnitude of resulting bone

growth metric with red and blue indicating the zones of

maximum and minimum bone growth, respectively. Each

slice shown in the figures corresponds to a filled contour plot

of the behavior of bone growth as a function of two of these

parameters, while the third parameter is kept constant. For

example, Fig. 4c shows the behavior of the bone growth

metric as a function of the magnitude of the FGF-2

concentration gradient and fibrin density of the

fibrin/BMP-2 region at five different values of BMP-2

concentration. Fig. 5 shows a 3D plot of the same data for

BMP-2 concentration fixed at 25% of its range.

To illustrate MBSM, we simulate a set of experiments by

sampling the hypothetical model in Fig. 4. The results of

these experiments are used to construct a surrogate model of

the system response and to select the combination of design
Fig. 6. Projections of the first stag

Fig. 7. First stage Bayesia
parameters for the next stage of experimentation as

discussed below.

For the first set of experiments, we construct a randomized

orthogonal array of 25 sampling points, three variables,

and strength two [71]. Orthogonal arrays have uniform

projection properties that are desirable when exploring high-

dimensional spaces. Fig. 6 shows the projection of this

orthogonal array in planes formed by combinations of the

design variables. Note that even though the orthogonal array

is dispersed in the 3D space that we are exploring, it projects

as a full factorial in each plane.

Once the first stage sampling points are selected, we

simulate the experiments by evaluating the hypothetical

bone growth model for each sampling point. With this data,

we use maximum likelihood estimation to determine the

model parameters that best fit the observed data, thus

uniquely defining the first stage Bayesian surrogate model.

Fig. 7 presents the resulting model for bone growth, using

only 25 experimental points.

Based on the outcomes of the first set of experiments

and the first stage Bayesian model as the prior probability

distribution, we select a second set of 18 experimental

design points using the optimal sampling strategy known as

maximum entropy sampling [72]. The maximum entropy

sampling strategy locates the sample points such that they

maximize the expected information gain, thus reducing the

uncertainty of the predicted response. Fig. 8 shows the

projections of this experimental design in the planes

defined by each pair of design variables. Fig. 8 also

shows the first stage design for comparison purposes. Note

that the distribution of points does not correspond to any
e experimental design, D1.

n surrogate model.



Fig. 9. Projections of the second stage experimental design D2.

Fig. 8. Second stage Bayesian surrogate model.
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standard experimental design, but rather it is tailored

specifically for the phenomenon we are modeling. Note

also that most of the points are located in the edges of the

design space, mainly in regions that were left unsampled in

the first stage of data collection. This behavior is to be

expected from the maximum entropy sampling technique,

since our knowledge of the response decreases as we move

away from the regions of the space that have been sampled

already.

After determining the experimental design for the second

stage of data collection, we simulate the experiments by

evaluating the hypothetical model at these points, and the

observed responses are used to estimate the new model

parameters via maximum likelihood. Fig. 9 shows the

second stage surrogate model of the response; note the

similarity with the true response shown in Fig. 4, even

though the model is based on experimental data from only

43 samples. To evaluate the performance of the modeling
Fig. 10. Response surface model with line
methodology quantitatively, we calculate the mean relative

error between the Bayesian surrogate model predictions and

the hypothetical bone growth model used to generate the

data. The resulting error after the second stage, averaged

over an array of 100 points distributed uniformly in

the design space, is only 6.73%, with a maximum error of

24.61%.

Next, we compare the MBSM methodology with the

more traditional factorial approach for experimental design

combined with low order polynomials to fit a response

surface to the observed data points. Fig. 10 shows a full

quadratic response surface model built based on a full

factorial design of four values in three variables, with a total

of 64 samples. For this case, the mean relative error is

8.00%, with a maximum error of 40.61%. Note that even

though the response surface model was built with a larger

number of samples (about 50% more samples were used), it

results in larger prediction errors. The main reason for this
ar, quadratic and interaction terms.



Fig. 11. Comparison of modeling methodologies. (a) Hypothetical model for bone growth. (b) Response surface model (64 samples). (c) First stage Bayesian

surrogate model (25 samples). (d) Second stage Bayesian surrogate model (25C18 samples).
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behavior is that response surface models are restricted to a

given functional form, usually a second order polynomial on

the input variables. As a result, the models lack flexibility to

adapt to arbitrary shapes of the response over a large

domain. In this application, the underlying model of bone

growth is bi-modal, while the parametric form of the

response surface constrains it to have only one maximum.

Consequently, no matter how many samples are added to the

response surface model, its performance will be poor. On

the other hand, MBSM can adapt to response surfaces of

arbitrary shape, and thus would yield smaller prediction

errors as more samples are added to the model. Furthermore,

due to the use of optimal sampling, multistage Bayesian

models can give smaller prediction errors than response

surface models while requiring a smaller number of

samples, which can yield significant savings in experimental

efforts and costs.

Fig. 11 summarizes our results, comparing the multi-

stage Bayesian surrogate model to the response surface

model with the hypothetical model of Fig. 4. To make

visualization of the models easier, we fixed the concen-

tration of BMP-2 at 25% of its allowed range. Fig. 11

shows surface plots of the bone growth metric as a

function of the magnitude of the FGF-2 concentration

gradient and fibrin density of the fibrin/BMP-2 component

of the scaffold. Note the similarity between the surrogate

models (Fig. 11c and d) with the hypothetical model for

bone growth (Fig. 11a). Note also the improvement of
the model from the first stage (Fig. 11c) to the second

stage (Fig. 11d).
5. Conclusion

Biologically inspired scaffold designs for tissue engin-

eering applications can be built with SFF processes such as

the new fibrin-based printing system described in this

paper. However, SFF also enables the space of design

possibilities to expand dramatically, making it impractical

to test experimentally all combinations of design parameter

values using standard factorial analysis. To address this

problem, we present a computer-aided, multi-stage Baye-

sian surrogate modeling approach that permits us to obtain

more accurate models with fewer samples than would be

required using factorial analysis. In addition to decreasing

the number of samples required, models built using the

Bayesian surrogate methodology can be expanded and

refined over time. We showed how this methodology could

be applied to heterogeneous scaffold designs. As an

example, Bayesian versus traditional factorial design

methods were compared to estimate response surface

models for a simulated computer model of bone regener-

ation. The Bayesian method estimated the true surface

within a mean relative prediction error of 6.73% and a

maximum error of 24.61% compared with 8.00 and

40.61% for the factorial approach. Moreover, the
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Bayesian-derived surface required only half as many

experimental data points as the factorial approach to

achieve these results. This capability will be particularly

important for realizing next-generation scaffold designs

and for shortening the timeline and reducing the expenses

required to develop new therapies.
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