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Abstract 
The present paper deals with the application of the generalized logistic regression model to the es-

timation of item location effects. A Monte Carlo study demonstrates that item difficulties and item 
location effects show excellent parameter recovery when distributional assumptions of the marginal 
maximum likelihood method are not met. A practical application to a reasoning test revealed the exis-
tence of item location effects and an effect of total test taking time. This model allows for the flexible 
utilization to a wide range of problems and thus provides a powerful tool for item analysis. 
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1. Introduction 
 
This paper deals with the estimation of item location effects (Kingston &Dorans, 1984; 

for an overview see Leary & Dorans, 1985), which alter the item difficulty depending on its 
very position (1st, 2nd, ... , last) within a test (throughout this article we will refer to tests; of 
course, other applications can be thought of as well). Several factors causing item location 
effects can be identified, some of which are warm-up, learning or practice, fatigue or time 
shortage. If e.g. fatigue takes place, items of basically equal difficulty will appear more 
difficult towards the end of the test – mere effects of the position of an item will be ascribed 
to its characteristics. Such effects violate the unidimensionality assumption (Whitely & 
Dawis, 1976; Yen, 1980). Hence item location effects will distort the estimation of item 
difficulties Thus they invalidate conclusions concerning psychometric properties of an item 
or the level of performance of a respondent, respectively. This is of particular importance 
when the sequence of items differs between calibration phase and the administration of a 
test. This occurs inevitably in the context of adaptive testing: based on a pool of items con-
sidered to be in accordance with the assumptions of the Rasch-model, an adaptive testing 
strategy chooses the most informative item(s) with respect to the estimated ability level. In 
such a context an item can occur at virtually any position, therefore it is of indispensable 
importance that item characteristics obtained from a calibration study are maintained in test 
administration.  

One model that allows the estimation of position effects is the Linear Logistic Test 
Model (LLTM; Fischer, 1972, 1973, 1995). Here, the item difficulty parameter βi is being 
split up into a sum of several basic parameters, ηj, weighted according to the entries of a 
design matrix W: ijji jwβ η=∑ , (j = 1...m indexing the vector of basic parameters, i = 1...k 
indexing the item difficulty parameters). If a set of items had been administered in at least 
two (favorably more) different compilations of the test (i.e. test versions with items arranged 
at different positions), two sets of basic parameters are used for each item: one set describes 
the difficulty of an item if there were no position effects present (subsequently these will be 
termed conditional difficulties) and the second one is used for the estimation of the effect the 
position has on this item (of course, both sets can consist of one single ηj each). Different 
parametrizations of the second set can be thought of. If e.g. continuous learning or tiring is 
assumed, a linear effect might be chosen: with each item a respondent has worked on, the 
same amount of learning or tiring occurs. This would require one parameter ηj that estimates 
the in-/decrease of difficulty per each item. Then, the entries in the corresponding column of 
W are the position of the item. Another possibility would be to introduce one parameter to 
each position, each of which describes the effect of this very position (the matrix W would 
have to be extended by the appropriate number of positions, which in this case equals the 
number of items). Such a parametrization not only allows for the detection of position effects 
as such, but also for a structural description of the kind of position effect that can be derived 
from the data, because no structure of this effect (e.g. linear) is assumed a priori.  

In the present paper we want to take another approach towards the estimation of position 
effects. The problem can be framed by a mixed logistic regression model, which allows for a 
reformulation of the LLTM (Rijmen et al., 2003).  
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The model equation of a generalized logistic regression model, can be expressed as fol-
lows:  
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with  
  yvi  the binary response of level-2-unit v to level-1-subunit i (v = 1..n; i = 1..k)  
  xvi  the user provided covariate vector for the fixed effects (1×p) 
  zvi  the user provided covariate vector for the random effects (1×q) 
  β  the p-dimensional parameter vector for the fixed covariates  
 θv the q-dimensional parameter vector for random covariates of unit v 
 
Basically, this is a two level model (Goldstein, 1995; Langer, 2004; Raudenbush & Bryk, 

2002; Snijders & Bosker, 1999) and responses yvi are stacked one below the other, resulting 
in a response vector y with dimensions (nk × 1). By stacking all row vectors xvi and zvi across 
the items a person v has responded to, one obtains the design matrices Xv and Zv, respec-
tively. If we further stack all design matrices Xv and Zv over persons (units), we obtain the 
supermatrices X (nk × p) and Z (nk × q). The distribution of the error term of the random 
parameter is usually assumed to be normal. In the present application an items-within-
respondents design is applied, respondents are assigned to level-2-units and items to level-1-
units. Item difficulties and position effects are modelled through the fixed effects, and the 
ability of the respondent is covered by one random parameter (therefore, Zv is in this case a 
column of ones). Note that in contrast to the definition above, the fixed parameters βj used in 
(1) correspond with the ηj of the LLTM, hence the same subscript will be used. This model is 
extensible as it allows for the inclusion of predictors for both fixed and random effects. 
These predictors can be both quantitative and qualitative and interactions within and across 
levels can be estimated (De Boeck & Wilson, 2004; Skrondal & Rabe-Hesketh, 2004).  

The generalized logistic regression model is a special case of the generalized linear 
mixed model (GLMM; McCulloch & Searle, 2001). One characteristic of GLMMs is that 
they require the application of the marginal maximum likelihood estimation method (MML) 
to be applied, entailing distributional assumptions. Usually – but not necessarily – normal 
distribution is assumed. This is a basic difference to the LLTM, where a conditional ML 
estimation method (CML) is applicable (Andersen, 1970). Therefore, the present study in-
vestigates the parameter recovery of item difficulties and position effects using the general-
ized logistic regression model, when the distributional assumptions are not met. Furthermore, 
some of the extended possibilities of the generalized logistic regression model compared to 
the LLTM shall be demonstrated in a practical application. 

 
 

2. Methods and Material 
 
In the first part, we want to evaluate by means of a Monte Carlo study, to what extent es-

timates will differ if the underlying ability distribution does not fit the assumed normal dis-
tribution. Data sets were generated according to the LLTM, with a parameter ηi (describing 
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the conditional difficulty of item i) and a position parameter ηk+p for each item (note that 
subsequently p will be used for denoting the position of an item). Each data set contains five 
items and 1000 observations, the latter being split into five subgroups of equal size, display-
ing different item arrangements. For the item arrangements across the groups a latin square 
design was chosen, i.e. each item occurred at each position once (subgroup 1: item sequence: 
1,2,3,4,5; subgroup 2: item sequence 2,3,4,5,1; ...). Details of the simulation parameters are 
given in Table 1.  

 
Table 1:  

Simulation parameters of the Monte Carlo study (Note: In the generalized logistic regression 
model additive parameterisation is applied, so item easiness parameters were used for 

compatibility reasons) 
 

 n k βi βk+i θ Samples 

Design 1 1000 5 2, 1, 0, –1, –2 –2, –1, 0, 1, 2 N(0;1) 500 

Design 2 1000 5 2, 1, 0, –1, –2 –2, –1, 0, 1, 2 2
[1] 2χ −  500 

Design 3 1000 5 –1.38, 0.11, 0.54, –0.27, 1.02 1, 1, 1, –1, –2 N(0;1) 500 

Design 4 1000 5 –1.38, 0.11, 0.54, –0.27, 1.02 1, 1, 1, –1, –2 2
[1] 2χ −  500 

 
 
The first two designs contain linearly de- and increasing item difficulties βi and position 

effects βk+i respectively. Such a structure might be observable when learning takes place: an 
item decreases in difficulty (increasing βk+i) when presented at a later position. While in 
designs 1 and 3 the normal ability assumption was met, for designs two and four a skewed 
distribution was chosen (as the 2

[1]χ )distribution only realizes positive values, its theoretical 
mean of two was subtracted for a better coverage of both positive and negative values). In 
designs 1 and 2 a linear learning effect was assumed, in designs 3 and 4, a non-linear posi-
tion effect, reflecting a sudden increase of item difficulty on the last two positions, was su-
perimposed. This effect describes a situation in which the last two items show a sudden 
increase in difficulty, possibly a result of time shortage or fatigue. Comparing estimates of 
designs 1 and 2 (or 3 and 4, respectively) allows for an assessment of the effect of the viola-
tion of the distributional assumption. As this was the primary concern of this simulation 
study, we tried to warrant estimability of models by choosing the remaining simulation pa-
rameters in a fail-safe manner: in a latin-square comparably marked design position effects 
and large samples were chosen and the number of items rather low. Of course, such condi-
tions will seldom be met in real life applications. 

For the estimation of the generalized logistic regression model, effect coding for the item 
difficulty parameters and the parameters of the position effect was applied, as this method 
yields centered estimates matching the sum-zero norming of item parameters usually applied 
in Rasch measurement. Efron & Tibshirani (1993, p. 188) propose between 200 (p. 52) and 
1000 replications for different designs. So we decided to repeat each design 500 times, 
which was a reasonable trade off between precision and time consumption. 
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In order to demonstrate the capabilities of the proposed approach, the generalized logistic 
regression model was applied to a reasoning test involving 78 items (BBT, Be-
griffsbildungstest [concept forming test]; Fischer, 1991; Kubinger, Fischer, & Schuhfried, 
1993). An earlier study on this test (Alexandrowicz, 1999) found no violations of the as-
sumptions of the Rasch-model (under certain prerequisites). Due to the workload of each 
item no person would be able to work on all 78 items. Therefore, 13 groups of 12 items each 
had been generated. Across these groups each item appeared on two different positions. This 
procedure led to missings-by-design. It is one of the merits of multilevel models that no 
further steps regarding the handling of missings-by-design are required. When the item 
groups were developed, estimates from Fischer (1991) were available. These had been util-
ised to form groups of approximately equal average difficulties. Furthermore, items within 
each group were arranged in a special way: the first item was always a rather easy one, giv-
ing respondents the opportunity to become acquainted with the handling of the test. The next 
five items became increasingly difficult. The sixth item was again a rather easy one in order 
to give weaker respondents a feeling of success (cf. Häusler, 2006). Then items became 
increasingly difficult again. This principle was maintained throughout all the 13 groups.  

In this study we want to reanalyse the original data by means of the generalized logistic 
regression model in order to test whether position effects occur. Further predictors were 
included to test for gender or age specific interactions and for cross-level interactions con-
cerning test duration and test solving strategy. Data simulation was performed by means of a 
program written by the first author of this article, the generalized logistic regression model 
was estimated using the procedure xtlogit of Stata (StataCorp, 2005). The risk of a type-
I-error was chosen at 5% throughout all analyses. 

 
 

3. Results 
 

The Simulation Study 
 
The parameter estimates of the four designs are given in Table 2. The values represent 

the means and standard deviations of each parameter over the 500 replications. Parameter 
distributions were inspected through histograms and Q-Q-Plots, both of which did not reveal 
any striking aberration from normality. Furthermore, the Kolmogorov-Smirnov-Test of 
normality did not show any significant results for any of the parameter distributions under 
consideration.  

The linear position effects in designs 1 and 2 were discernible as was the training effect, 
making items gradually easier the later they are presented. The same is true for designs 3 and 
4, where the positions of the conditional item difficulties were identifiable as was the “sud-
den” increase of item difficulty at positions 4 or 5.  

All estimates are close to the true values, especially when located close to zero. For de-
signs 1 and 2, the (absolute) larger parameters seem to slightly underestimate true values, but 
mostly the difference stays within the quartiles. This effect is somewhat more pronounced 
for the skewed distributions (designs 2 and 4), though maintainable. In general, distributions 
of estimates are very narrow, no heavy outliers are observable.  
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Table 2:  
Parameter recovery for the four simulation designs (TP = true parameter) 

 
 Design 1  Design 2 Design 3 Design 4 
 TP Mean SD  TP Mean SD TP Mean SD TP Mean SD 

1η  2 1.91 0.09  2 1.87 0.09 –1.38 –1.38 0.08 –1.38 –1.35 0.10 

2η  1 0.94 0.08  1 0.88 0.08 0.11 0.11 0.07 0.11 0.10 0.08 

3η  0 0.00 0.08  0 –0.02 0.08 0.54 0.53 0.07 0.54 0.52 0.08 

4η  –1 –0.94 0.08  –1 –0.91 0.09 –0.27 –0.30 0.07 –0.27 –0.33 0.07 

5η  –2 –1.91 0.09  –2 –1.83 0.11 1.02 1.03 0.08 1.02 1.06 0.09 

6η  –2 –1.91 0.09  –2 –1.83 0.10 1 0.98 0.07 1 0.95 0.07 

7η  –1 –0.94 0.07  –1 –0.91 0.09 1 1.01 0.07 1 0.99 0.08 

8η  0 0.00 0.08  0 –0.03 0.08 1 0.99 0.07 1 0.97 0.08 

9η  1 0.94 0.08  1 0.89 0.08 –1 –0.98 0.07 –1 –0.98 0.09 

10η  2 1.91 0.09  2 1.88 0.09 –2 –2.00 0.10 –2 –1.93 0.11 
 
 

The Practical Application 
 
A total sample of 552 was obtained, two respondents had not solved a single item, there-

fore they were deleted ; no respondent solved all of the items, so an effective sample size of 
550 was available. The majority of respondents were advanced students of psychology at the 
University of Vienna. Seventy-five percent of respondents were female, the average age was 
25 years with a standard deviation of five years.  

First of all, estimates according to the Rasch-model without considering position effects 
were compared to those from the original study (Alexandrowicz, 1999). Item parameter 
estimates were satisfyingly similar (r = .93) with a maximum difference of 0.71 logits. The 
linear regression line of the current estimates (MML) on those according to Alexandrowicz 
(1999), which were obtained by means of CML estimation, had an intercept of 0.01 and a 
slope of 1.05, i.e. it closely resembled the identity line. Therefore, no systematic differences 
were detectable. This analysis was undertaken to ascertain equivalence of the two different 
methods of estimation.  

In order to test for position effects, the design matrix Xv and the fixed parameter vector β 
were extended, so that a conditional difficulty βi and a position effect βk+p were estimated. 
According to the results of Alexandrowicz (1999) the first item each respondent had worked 
on was treated as warm-up item. For better readability, position effects were dummy coded, 
the first item under consideration (i.e. the second item each respondent had worked on) was 
taken as reference category (i.e. position) and therefore was omitted from estimation. Of 
course, effect coding might have been applied as well; estimates obtained from different 
coding schemes can be transformed into one another (Bock, 1963, 1975). The estimates 
obtained are depicted in Figure 1.  
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Figure 1:  

Position effects βk+p occuring in the reasoning test  
(note: position 1 was not scored and position 2 is the omitted reference category; antennas 

represent the 95% confidence interval of the estimates) 
 
A clear-cut position effect is discernible: the values show the change in the probability of 

solving an item depending on its position compared with the reference category. Item diffi-
culty increases at positions three to six, the next item is again much easier, followed by an-
other increase in difficulty. This exactly reflects the structure of item difficulties chosen 
within groups. Here a noteworthy effect of the study design becomes visible: a certain suc-
cession of item difficulties was chosen a priori in the same manner for all groups, a structure 
that arises in the position parameters. This is attributable to the fact that possible position 
effects are perfectly confounded with the chosen item difficulties, because no variation of the 
sequence of item difficulties between groups was introduced. Nevertheless, the estimation 
revealed correct results within the frame of reference.  

In order to test for a gender effect the fixed part of the model (i.e. design matrix Xv) was 
augmented by a column for gender (thus introducing another parameter βgender). The estimate 
of the global gender effect parameter βgender was 0.23 (

0[ : 0] 0.01Hp β = = ). The reference (omit-
ted) category was female, therefore the positive parameter globally indicates a (significantly) 
higher probability of solving an item for male respondents. If we introduced an interaction 
term for each item with gender and if these terms were not of equal size, i.e. the gender 
effect turned out to be item specific, which would indicate differential item functioning (DIF; 
Holland & Wainer, 1993). The practical realization would be testing the model without 
interaction effects against the model including interaction effects by means of a likelihood 
ratio test. If the test becomes significant, this indicates that the model with interaction effects 
describes data better, hence DIF occurs. In our case this test revealed a non-significant result 
(χ2 = 77.0; df = 77; p = .48), so no DIF with respect to gender could be evidenced. 
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Furthermore, we tested for a cross-level interaction of gender and position effects, i.e. 
whether the latter are taking place gender specifically. For that purpose an interaction pa-
rameter for each position and gender was estimated (cf. fig. 2, dot-dashed line). As can be 
seen, differences compared with the global effect of gender seem rather small (from a de-
scriptive point of view). Again models are nested, therefore the gain of the additional posi-
tion specific interaction terms can be evaluated by means of a Likelihood Ratio Test. Results 
were unambiguous (LR-χ2 = 7.73, df = 10, p = .66), so there are no clues that gender groups 
behave differently on certain positions. 

The total test taking time of each respondent was available. Its effect on the probability 
of solving an item can be assessed by means of a cross level interaction. We therefore intro-
duce one parameter, βtime, and insert one more column in the design matrix Xn, containing 
each respondent’s test duration. This complies with assuming a linear effect of test taking 
time (of course, a more complex effect could be considered as well, but in this case we want 
to demonstrate how quantitative covariates can be introduced). The estimate of this parame-
ter was extremely small but significant (βtime = 0.0002, p < .001) – which at first sight may 
seem suprising, but makes perfect sense: The effect of test duration is assumed linear, so the 
parameter reflects the change in logits per unit of the predictor – which in this case were 
seconds. So for each hour a person worked on the test, an effect of 3600 × 0.0002 = 0.72 
would be obtained. This denotes an increase in odds of exp(0.72) = 2.05, This means that the 
longer a respondent worked on the test, the better his or her result would become, so accu-
rateness payed.  

 

 
Figure 2:  

Gender specific position effects  
(note: the reference category was male; full triangles depict a gender effect assumed constant 

over all positions; empty triangles depict a gender effect assumed to be position specific) 
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4. Discussion 
 
A simulation study was performed in order to investigate the estimability of position by 

means of a generalized logistic regression model, when distributional assumptions are not 
met. Four designs were analysed, exhibiting different combinations of item difficulties, 
position effects, and ability distribution. For all four designs under consideration parameter 
recovery can be seen as excellent, the initial structure is clearly identifiable and numerical 
differences were not larger than 0.2 logits. We found that (absolute) large parameters were 
somewhat underestimated. This seems to be an effect of the MML estimation, because this 
phenomenon was slightly more pronounced for the skewed conditions. Carstensen (2000, 
p. 137) reported a similar phenomenon: in a comparison of MML and CML estimates the 
former also showed the same tendency while the latter did not, which further evidences our 
explanation. Parameter estimates did not reveal any deviances from normality, which is in 
line with maximum likelihood estimation theory. Marked position effects and large samples 
have been chosen and only five items were taken in order to warrant detectability and es-
timability. It remains to be investigated systematically which sample size is required to en-
sure detectability of relevant effects and to what extent distributional assumptions play a role 
then. 

In an application to a reasoning test a clear cut position effect could be detected. This ap-
plication is a distinctive indication for the importance of carefully choosing an appropriate 
design regarding the succession of items in different compilations. In the present case, items 
were arranged according to a priori known item difficulties, therefore, position effects at-
tributable to change of item difficulty during test taking were confounded with this prede-
fined structure of item difficulties. A more meaningful design would be to put items in as 
many different positions as possible; of course, the chosen latin square design of the simula-
tion study is not realistic for longer scales.  

We could have estimated position effects by means of the LLTM, but by using the gen-
eralized logistic regression model quantitative covariates and its polynomials could be in-
cluded in a straightforward manner. In the present case, total test taking time was analyzed 
and did reveal a significant influence on the probability of solving an item. When applying 
the LLTM for such a problem, test duration would have to be split into groups, which on the 
one hand would cause loss of information and on the other hand the outcome of such an 
analysis stands or falls with the appropriateness of the cut-off(s) chosen. The generalized 
logistic regression model is a special case of the generalized mixed model. This allows for 
further extensions, such as introducing a weight λi to model the slope, i.e. to adopt the idea of 
the 2PL (Birnbaum, 1968; Rabe-Hesketh, Skrondal, & Pickles, 2004, p. 72). This would 
further allow to test for the underpinning assumption of equal item discrimination of the 
Rasch family of models within the same model framework. 

One crucial aspect essential for applying the Rasch-model must not be missed, viz. the 
fact that this model allows for specific objective comparisons, which in turn are the founda-
tion for testing model validity. Andersen (1973) showed a way of testing the model by 
means of evaluating the assumption of indifferent parameter estimates across subgroups 
(formed by a split variable S) through a likelihood ratio test. This test could be approximated 
in the generalized mixed model framework by checking whether interaction effects of item 
parameters and βS occur, i.e. whether the effect of the split criterion is item specific (Verhelst 
& Verstralen, 2001, p. 99). 
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As a disadvantage of this approach it might be seen that parameter estimation is based 
upon the marginal maximum likelihood estimation technique, which introduces distributional 
assumptions concerning the trait under consideration. Mostly normal distribution is assumed, 
but Micceri (1989) has bad news in finding that normality can seldom be assumed. On the 
other hand, Rost (2004, p. 310) states that the procedure is rather robust for misspecification 
of the distribution, so estimates at least approximately allow for the right conclusions. Our 
results support the latter view, differences of parameter estimates compared over the two 
distributions chosen seemed tolerable – although the 2

[1]χ  is far from normality (γ1 = 23/2df -1/2 
~ 2.86 and γ2 = 3 + 12/df = 15; Evans, Hastings & Peacock, 2000, p. 53). So due to its general-
ity, the generalized mixed model framework might prove a valuable tool for a differentiated 
item analysis. 
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