铱(III)离子催化铈(IV)离子氧化四氢糠醇的动力学及机理^{*}

宋文玉 赵荣慧 降青梅

(河北大学化学与环境科学学院,河北保定 071002)

摘要 在酸性介质中用氧化还原滴定法研究了铈(IV)离子在痕量铱(III)离子催化作用下,于 298~313 K 区间氧 化四氢糠醇(THFA)的反应动力学.结果表明,反应对铈(IV)离子为一级,对铱(III)离子也为一级,对四氢糠醇的 表观反应级数为正分数.准一级速率常数 k_{obs} 随[H⁺]增加而增大,而随[HSO₄]增加而减小.在氦气保护下,反应 能引发丙烯腈聚合,说明在反应中有自由基产生.通过 k_{obs} 与[HSO₄]的依赖关系,找到本反应体系的动力学活 性物种是 Ce(SO₄)₂,并计算出平衡常数,速控步骤的速率常数及相应的活化参数.

关键词: 铱(III)离子,铈(IV)离子,四氢糠醇,催化剂,动力学,机理中图分类号: O643,O634

Cu(III)离子^{III}、Ni(IV)离子^{III}和 Ce(IV)离子^{III}等高 氧化态过渡金属离子的配合物在适当条件下都是良 好的氧化剂,但这些配合物与某些有机物的氧化还 原反应根本不能进行,或反应速率非常慢.当反应体 系中加入痕量(约 10⁻⁶ mol·L⁻¹)某些过渡金属离子如 Ru(III)^{III}、Ir(III)^{III}、Cr(III)^{III}等后,使反应速率明显加 快,产生了高效的催化作用.现代化工生产中对催化 剂的选择性提出了更为苛刻的要求,而现代物理方 法对活化中心结构的研究还不能对复杂分子的反应 途径进行预测,必须通过各种基元步骤的反应机理 来分析影响选择性的因素.因此,通过对催化剂反应 的基础研究,可以为改进催化剂的选择性和发展高 效催化剂提供依据.国内在这方面研究的还较少.本 文研究了铈(IV)离子在铱(III)离子的催化作用下氧 化四氢糠醇的反应动力学.

1 实验部分

1.1 试剂和仪器

Ce(SO₄)₂、H₂SO₄、IrCl₃(美国进口)、NaNO₃、四氢 糠醇(THFA)、Fe(NH₄)₂(SO₄)₂均为A.R.级试剂.将 Ce(SO₄)₂溶于1mol·L⁻¹H₂SO₄得到Ce(IV)储备液, 以菲咯啉离子为指示剂,用标准硫酸亚铁铵溶液对 其进行标定.将IrCl₃溶解在1mol·L⁻¹H₂SO₄中得到 Ir(III)储备液(约10⁻³mol·L⁻¹),注意约需40℃维持 几天时间方能溶解. 在 Ir(III)的溶液中加入2,4,6-三 氨基嘧啶,用分光光度法准确测量其浓度⁶⁰. 所有溶液 均用二次蒸馏水配制. Ce(IV)溶液、Ir(III)溶液及四 氢糠醇溶液在使用前均由储备液重新配制. 反应体 系的离子强度由 NaNO₃ 调节.

超级恒温槽(HS-6型,成都仪器厂)带有冷冻装置,便于控温,温度波动范围±0.15℃.

1.2 动力学测定方法

在一定温度下,将选定的 Ce(IV)、Ir(III)、H₂SO₄ 和 NaNO₃ 混合液 25 mL 与已知浓度的四氢糠醇溶 液 25 mL 分别置于 λ 型反应器的上、下两支管内恒 温,待温度恒定后迅速将两者混合均匀,每隔一段时 间从反应体系中吸取一定体积反应液,加到含有过 量标准硫酸亚铁铵 (Fe(NH₄)₂(SO₄)₂)溶液的锥形瓶中 使反应骤熄,再以菲咯啉离子为指示剂,用标准 Ce(IV)溶液回滴未反应的 Fe(II),以求得反应体系每 一时刻下 Ce(IV)的浓度,由此可得到反应体系的动 力学信息.

1.3 产物鉴定与自由基检测

点滴实验[□]鉴定四氢糠醇的氧化产物为四氢糠 醛,将醛转化为2,4-二硝基苯肼的衍生物沉淀,用 重量法测定 Ce(IV)与四氢糠醇反应的物质的量之比 为2:1.再取作用完的反应液3滴于蒸发皿中,加3 滴3% H₂O₂和3滴氨水,溶液由无色变为黄色,可知

²⁰⁰⁴⁻¹²⁻¹³ 收到初稿, 2005-03-07 收到修改稿. 联系人:宋文玉(E-mail:songwenyu @ 126.com; Tel:0312-5052543). *河北大学自然 科学基金(2003Z09)资助项目

Ce(IV)的还原产物为 Ce(III)¹⁸. 反应体系在氮气保护 下加入丙烯腈溶液,有白色沉淀生成,说明反应过程 中有自由基中间物生成.

2 结果与讨论

2.1 准一级速率常数的求算

在[THFA]》[Ce(IV)]条件下, ln[Ce(IV)], 对时 间 t([Ce(IV)], 为 t 时刻 Ce(IV)的浓度)线性回归, 或 ln(V_x - V_t)对时间 t线性回归, 相关系数 r 总是大于 0.997, 表明反应速率对[Ce(IV)]为一级. 这里 V_x 和 V_t 分别代表反应终止和时间 t 时用标准 Ce(IV)溶液 回滴未反应的 Fe(II)时所消耗的体积. 准一级速率 常数 k_{obs} 用最小二乘方法求得. 为准确得到 k_{obs} ,通常 在 Ce(IV)反应掉 80%以上的范围内, 取 8~10 个 V_t 值参加拟合. 本文的 k_{obs} 为二次平行实验的平均值, 相对误差小于 5%.

2.2 [THFA]、[Ir(III)]对反应速率的影响

在恒定[Ce(IV)]、[Ir(III)]、[H₂SO₄]、离子强度(μ) 和温度条件下,增大还原剂[THFA], k_{obs} 也随之增大. 从 k_{obs} 求得的[THFA]表观反应级数 n_{ap} 为正分数. 且 发现不同温度下 $1/k_{obs}$ 对 1/[THFA]的图均为具有正 截距的直线($r \ge 0.9976$)(图 1).

在恒定[THFA]、[Ce(IV)]、[H₂SO₄] 和温度条件下,如果不加入 Ir(III),反应几乎不能进行(图 2A), 但只要加入微量 Ir(III),则反应速率明显加快(图2B). 增大[Ir(III)], k_{obs} 亦随之增大,反应对 Ir(III)的表观 反应级数为一级. 且发现 $1/k_{obs}$ 对 1/[Ir(III)]的图为过

temperatures

 $[Ce(IV)]=2.5\times10^{-3} \text{ mol} \cdot L^{-1}, \ [Ir(III)]=4\times10^{-6} \text{ mol} \cdot L^{-1},$ $[H_2SO_4]=1.0 \text{ mol} \cdot L^{-1}, \ \mu=1.0 \text{ mol} \cdot L^{-1}$

原点的直线(图3). 在反应体系中如只加入 Ir(III)而 不加入 Ce(IV),则反应不能进行.

2.3 [HSO4]对反应速率的影响

保持[H₂SO₄]+[HClO₄] ≈ [H⁺]=1.0 mol·L⁻¹,及其 它条件不变,当改变 [H₂SO₄] 时,因为 [H₂SO₄] ≈ [HSO₄](强酸性溶液中,忽略 HSO₄的电离),实际上 就是改变[HSO₄].当[HSO₄]增大时, k_{obs} 随之减小,反 应对 HSO₄的表观反应级数为负分数 (-0.79). k_{obs} 与 [HSO₄]的关系可用下式表示:

表 1 [H ⁺]对 K _{obs} 的影响				
Table 1 Effect of $[H^+]$ on k_{obs}				
$[\mathrm{HSO}_{4}^{-1}] \ / \ \mathrm{mol} \boldsymbol{\cdot} \mathrm{L}^{-1}$	$10^2 k_{ m obs}$ / ${ m min}^{-1}$			
1.0	1.41			
1.0	1.95			
1.0	2.32			
1.0	2.64			
1.0	3.81			
	1 [H ⁺]対 K _{obs} 附京 e 1 Effect of [H ⁺] ([HSO ₄] / mol·L ⁻¹ 1.0 1.0 1.0 1.0 1.0			

式中 a_xb_xc 均为常数(实验条件下). 且发现 k_{obs}^{-1} 对 [HSO₄]的图是一条直线(r=0.999)(图4).

2.4 [H⁺]对反应速率的影响

保持 [H₂SO₄]+[NaHSO₄] ≈ [HSO₄]=1.0 mol·L⁻¹, 及其它条件不变,当改变[H₂SO₄]时,因为[H⁺] ≈ [H₂SO₄] (强酸性溶液中,忽略 HSO₄电离出的 H⁺),实 际上就是改变[H⁺]. 当增大[H⁺]时, k_{obs} 随之增大,反 应对 H⁺的表观反应级数为正分数(0.65).

2.5 反应机理

由于 1/k_{obs} 对 1/[THFA]的图是具有正截距的直线,符合 Michaelis-Menten 过程^[9],预示可能存在一个 THFA 与 Ir(III)间生成 1:1 加成物的前期平衡.因为发现本反应的活性物种为 Ce(SO₄)₂,又注意到有自由基生成的事实,提出以下反应机理:

THFA+Ir(III)
$$\longrightarrow$$
 Ir(III) •THFA(adduct) (2)
Ir(III) •THFA+Ce(SO₄)₂ \xrightarrow{k} Ir(IV) •THFA+
Ce(III)+2SO₄²⁻ (3)

$$Ir(IV) \cdot THFA \xrightarrow{\text{tast}} Ir(III) + \bigvee_{O} \xrightarrow{\text{thom}} H^{+} (4)$$

$$\bigcup_{O} \xrightarrow{\text{thom}} H^{+}Ce^{*}(IV) \xrightarrow{\text{fast}} \bigcup_{O} CH=O_{+}$$

$$Ce(III)+H^+$$
 (5)

式中 Ce*(IV)代表四价铈离子的任何一种形式.反应(3)是速控步骤.

 $\frac{-d[Ce(IV)]_{T}}{dt} = 2k[adduct]_{e}[Ce(SO_{4})_{2}]_{T}$

图 4 303 K 时 1/k_{obs} 对[HSO₄]的图

Fig.4 Plot of $1/k_{obs} vs$ [HSO₄] at 303 K [Ce(IV)]= $2.5 \times 10^{-3} mol \cdot L^{-1}$, [H₂SO₄]= $1.0 mol \cdot L^{-1}$, μ =1.0

 $mol \cdot L^{-1}$, [Ir(III)]=4×10⁻⁷ mol · L⁻¹, [THFA]=0.05 mol · L⁻¹

$$=2k[\text{adduct}]_{e} f [\text{Ce(IV)}]_{T}$$
$$=2kf[\text{adduct}]_{e} [\text{Ce(IV)}]_{T}$$
(6)

应用下列平衡关系及式(2)、(3)得 [Ir(III)]_T=[Ir(III)]_e+[adduct]_e

=[adduct]_e
$$(\frac{1+K[THFA]_{T}}{K[THFA]_{T}})$$
 (7)

式中下标 T、e 分别表示总的和平衡时的浓度.f 为 动力学上活性物种 Ce(SO₄)₂ 所占 Ce(\mathbb{N})总浓度的 分数.将式(7)带入式(6)得:

$$\frac{-d[Ce(IV)]_{T}}{dt} = \frac{2kfK[THFA]_{T}[Ir(III)]_{T} \cdot [Ce(IV)]_{T}}{1 + K[THFA]_{T}}$$

$$=k_{\rm obs}[{\rm Ce}({\rm IV})]_{\rm T} \tag{8}$$

$$k_{obs} = \frac{2kfK[THFA]_{T}[Ir(III)]_{T}}{1+K[THFA]_{T}}$$
(9)

对式(9)整理得:

$$\frac{1}{2kfK[Ir(III)]_{T}} \cdot \frac{1}{[THFA]_{T}} + \frac{1}{2kf[Ir(III)]_{T}} (10)$$

$$\frac{1}{k_{obs}} = \frac{1 + K[\text{THFA}]_{\text{T}}}{2kfK[\text{THFA}]_{\text{T}}} \cdot \frac{1}{[\text{Ir}(\text{III})]_{\text{T}}}$$
(11)

表 2 平衡常数、速率常数和活化函数值

	Table 2 Eq	Equilibrium constants, rate constants, and actively functional values		
<i>T /</i> K	K	$10^{-3} k_n / \text{mol}^{-1} \cdot \text{L} \cdot \text{min}^{-1}$	Actively functional values (298 K)	
298	48.1	1.60		
303	76.9	2.85	$E_{a}^{*}=74.87 \text{ kJ} \cdot \text{mol}^{-1}, \Delta H^{\neq}=72.39 \text{ kJ} \cdot \text{mol}^{-1}$	
308	81.1	5.71	$\Delta S^{\neq}=59.36 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}, \Delta G^{\neq}=54.70 \text{ kJ}\cdot\text{mol}^{-1}$	
313	109.2	7.19		

*r=0.99, B=-9005, A=34.57 for the linear regression of $\ln k_n vs T^{-1}$

 $n_{ap}[Ir(III)]_{T}=1.0, 0 < n_{ap}[THFA]_{T} < 1.0, 这些推论皆与实验结果相符. 式(10)为图 1 所证实,式(11)表明<math>k_{obs}^{-1}$ 对 $1/[Ir(III)]_{T}$ 为一截距为零的直线,这也为图 3所证实.

式(10)代表的直线的截距 $A=1/(2kf[Ir(III)]_r)$,利 用图 1 中直线的截距可算出在不同温度下的平衡常 数 K,速率常数 $k_n(k_n=fk, f=0.14)$ 值,以及相关的活化 参数,均列于表 2.

由于 Ir(III)是惰性的^{III},预测开始生成的加合物 应是外层配合物,紧接着会被 Ce(IV)氧化为 Ir(IV) 的内层配合物.因为 Ir(IV)是非常不稳定的^{III},促使 Ir(IV)与四氢糠醇间发生电子转移而得到自由基,从 而 Ir(III)又复原,完成 Ir(IV)/Ir(III)催化循环.

在硫酸介质中, Ce(IV)与 SO²-形成不同的配离 子,存在着一系列生成配离子的平衡,并测定了 298 K 时相应的平衡常数^[4,12]:

$Ce^{4+}+HSO_4^-=Ce(SO_4)^{2+}+H^+$	$\beta_1 = 3500$
$Ce(SO_4)^{2+}+HSO_4^{-}=Ce(SO_4)_2+H^+$	$\beta_2 = 200$
$Ce(SO_4)_2 + HSO_4 = HCe(SO_4)_3$	$\beta_3=3.4$

在 Ce(IV)的不同物种中,推算哪种是反应的活 性物种,不能依据其浓度大小,而要依据实验数据进 行分析和推断^{III}.为了说明[HSO₄]对反应速率的影 响,结合 Ce(IV)各种不同物种的浓度进行分析,找 到了本反应的活性物种是 Ce(SO₄)₂.在本反应体系 中,Ce(SO₄)₂的浓度可通过上述平衡常数近似计算 求得.因为 Ce(IV)的总浓度[Ce(IV)]_r 应等于 Ce(IV) 各物种平衡浓度之和,所以有下面等式:

 $[Ce(IV)]_T = [Ce^{4+}] + [Ce(SO_4)^{2+}] +$

 $[Ce^{4+}] = [Ce(SO_4)_2][H^+]^2 / \beta_4 \beta_2 [HSO_4^-]^2,$ $[Ce(SO_4)^{2+}] = [Ce(SO_4)_2][H^+] / \beta_2 [HSO_4^-],$ $[HCe(SO_4)_3^-] = \beta_3 [HSO_4^-][Ce(SO_4)_2]$ $[Ce(SO_4)_3^-] = \beta_4 [HSO_4^-][Ce(SO_4)_2]$

所以[Ce(IV)]_T = $\frac{[Ce(SO_4)_2][H^+]^2}{\beta_4\beta_2[HSO_4]^2} + \frac{[Ce(SO_4)_2][H^+]}{\beta_2[HSO_4]} +$ [Ce(SO_4)_2]+ $\beta_3[HSO_4][Ce(SO_4)_2]$ 因为 $\beta_1 \gg \beta_2 \gg \beta_3$, 在本实验条件下, $\frac{[Ce(SO_4)_2][H^+]^2}{\beta_4\beta_2[HSO_4]^2}$ 和 $\frac{[Ce(SO_4)_2][H^+]}{\beta_2[HSO_4]}$ 是很小的值,

所以

$$\begin{split} [\operatorname{Ce}(\mathrm{IV})]_{\mathrm{T}} &\approx [\operatorname{Ce}(\mathrm{SO}_{4})_{2}] + \beta_{3}[\mathrm{HSO}_{4}^{-}][\operatorname{Ce}(\mathrm{SO}_{4})_{2}] \\ &= [\operatorname{Ce}(\mathrm{SO}_{4})_{2}](1 + \beta_{3}[\mathrm{HSO}_{4}^{-}]) \\ [\operatorname{Ce}(\mathrm{SO}_{4})_{2}] &\approx \frac{[\operatorname{Ce}(\mathrm{IV})]_{\mathrm{T}}}{1 + \beta_{3}[\mathrm{HSO}_{4}^{-}]} = f[\operatorname{Ce}(\mathrm{IV})]_{\mathrm{T}} \end{split}$$

$$f = \frac{1}{1 + \beta_3 [\text{HSO}_{\bar{4}}]} \tag{12}$$

将式(12)代入式(9)得:

$$k_{\text{obs}} = \frac{2kK[\text{THFA}]_{\text{T}}[\text{Ir}(\text{III})]_{\text{T}}}{(1+K[\text{THFA}]_{\text{T}})(1+\beta_{3}[\text{HSO}_{4}^{-}])}$$
(13)

$$\Rightarrow m = \frac{2kK[\text{THFA}]_{\text{T}}[\text{Ir}(\text{III})]_{\text{T}}}{1+K[\text{THFA}]_{\text{T}}}$$

则式(13)变为:

$$k_{\rm obs} = \frac{m}{1 + \beta_3 [\rm HSO_4^-]} \tag{14}$$

或
$$\frac{1}{k_{\text{obs}}} = \frac{1}{m} + \frac{\beta_3}{m} [\text{HSO}_4^-]$$
 (15)

式(14)与式(1)形式相同,均表明- $1 < n_{ap}$ [HSO₄]<0, 此推论与实验结果完全符合.式(15)还表明 k_{obs}^{-1} 对 [HSO₄] 为线性关系,这也为图 4 所证实.由 k_{obs}^{-1} 对 [HSO₄]直线的截距求得m,再将m代入直线的斜率 (β_3/m)求得 β_3 =6.3,此值与以前文献中报导的非常 吻合^[12].以上所有这些结论和推论皆缘于 Ce(SO₄)₂浓 度计算的正确,这也恰说明了 Ce(SO₄)₂ 是本反应的 活性物种.

由于反应体系的复杂性,多种物质均与[H⁺]存 在依赖关系^[3-4],[H⁺]的影响显得不太确定.然而定性 地看,[H⁺]增大,反应速率加快,这是由于酸度变大, 活性物种 Ce(SO₄)₂上正电荷增加,使四氢糠醇向 Ce(IV)转移电子变得容易所致^[13].

对于溶液中的反应,分子间短程力的吸引限制了 其运动自由度,使活化熵趋于多变.本文的 $\Delta S^{\neq}>0$, 这可能是由于活化络合物的溶剂化程度低于反应物 的溶剂化程度所致.

References

- Song, W. Y.; Li, Z. H.; Wang, A. Z. Chem. J. Chin. Univ., 1997, 18: 1842 [宋文玉,李振华,王安周. 高等学校化学学报 (Gaodeng Xuexiao Huaxue Xuebao), 1997,18: 1842]
- Song, W. Y.; Bai, S. Y.; Zhang, L. M. Chin. J. Inorg., 2002, 18(5):
 451 [宋文玉, 白素英, 张良苗. 无机化学学报(Wuji Huaxue Xuebao), 2002, 18(5): 451]
- 3 SuKhnandan, P.; Jitendra, C. Indian J. Chem., 1979, 17A: 167
- 4 Das, A. K.; Das, M. Int. J. Chem. Kinet., 1995, 27: 7
- 5 Song, W. Y.; Li, H. B.; Liu, H. M. Acta Phys.-Chim. Sin., 2004, 20
 (8): 801 [宋文玉,李红变,刘红梅. 物理化学学报(Wuli Huaxue Xuebao), 2004,20(8): 801]
- 6 Chimatadar, S. A.; Nandibewoor, S. T.; Sambrani, M. I. J. Chem.

Soc. Dalton Trans., 1987: 573

- Feigl, F. Spot test in organic analysis. New York : Elsevier
 Publishing Co., 1956: 280
- 8 Department of Chemisty, Hangzhou University. Handbook of analytical chemistry. Beijing: Chemical Industry Press, 1982:618
 [杭州大学化学系.分析化学手册.北京:化学工业出版社, 1982: 618]
- 9 Moore, J. W.; Pearson, R. G. Kinetics and mechanism. New York:

John Willey and Sons, 1981: 379

- Wang, A. Z.; Shi, T. S. Acta Chim. Sin., 1988, 46: 207 [王安周, 石铁生. 化学学报(Huaxue Xuebao), 1988, 46: 207]
- 11 Wlkins, R.G. The study of kinetics and mechanism of reaction of transition metal complexes. Baston:Allyn & Bacon, 1974: 518
- 12 Misra, S. K.; Gupta, Y. K. J. Chem. Soc. (A), 1970: 2918
- 13 LaKshmi, S.; Ranganathan, R. Int. J. Chem. Kinet., 1996, 28: 713

Kinetics and Mechanism of Iridium(III) Catalyzed Oxidation of Tetrahydrofurfuryl Alcohol by Cerium(IV) in Aqueous Sulphuric Acid Medium^{*}

SONG, Wen- YuZHAO, Rong-HuiJIANG, Qing-Mei(College of Chemistry and Environmental Science, Hebei University, Baoding 071002)

Abstract The kinetics of trace Ir(III) catalyzed oxidation of tetrahydrofurfuryl alcohol(THFA) by Ce(IV) in aqueous sulphuric acid medium was studied by titrimetric technique of redox in the temperature range of 298~313 K. The order was found to be unity with respect to both Ce(IV) and Ir(III), and for tetrahydrofurfuryl alcohol the apparent reaction order was a positive fraction. It was found that the pseudo first order ([THFA] \gg [Ce(IV)]) rate constant, k_{obs} , increased with the increase of [H⁺] but decreased with the increase of [HSO₄]. Under the protection of nitrogen, however, the reaction system could induce polymerization of acrylonitrile, indicating the generation of free radicals. A reasonable mechanism involving a preequilibrium was proposed. From the relation between k_{obs} and [HSO₄⁻], Ce(SO₄)₂ was found to be the kinetically active species. The equilibrium constants and rate constants of the rate-determining step along with the activation parameters were evaluated.

Keywords: Iridium(III) ion, Cerium(IV) ion, Tetrahydrofurfuryl alcohol, Catalyst, Kinetics, Mechanism

Received: December 13, 2004; Revised: March 7, 2005. Correspondent: SONG, Wen-Yu (E-mail: songwenyu @126.com; Tel: 0312-5052543). *The Project Supported by NSF of Hebei University (2003Z09)