纳米结构 TiO₂/聚 3-己基噻吩多孔膜电极光电性能研究*

郝彦忠 1,2 蔡春立 2

(1河北科技大学理学院; 2河北科技大学化学与制药工程学院,石家庄 050018)

摘要 用光电流作用谱、光电流-电势图等光电化学方法研究了ITO/聚3-己基噻吩(ITO/P3HT)膜和纳米结构TiO₄/ 聚3-己基噻吩(TiO₂/P3HT)复合膜的光电转换性质.结果表明,P3HT膜的禁带宽度为1.89 eV,价带位置为-5.4 eV. 在 ITO/TiO₄/P3HT 复合膜电极中存在 *p-n* 异质结,在一定条件下异质结的存在有利于光生电子-空穴对的分离. P3HT 修饰 ITO/TiO₂ 电极可使光电流发生明显的红移,从而提高了宽禁带半导体的光电转换效率.

关键词: 纳米结构 TiO₂/P3HT 电极, 光电化学, 聚 3-己基噻吩 中图分类号: O646

导电聚合物敏化宽禁带半导体集光吸收和电荷 传输功能于一体,具有在近红外及可见光区吸收大, 且稳定性好,导电率高,易于制备及掺杂,电化学可 逆性强等特点.其中噻吩及其衍生物是用做光伏电 池的理想材料,广泛应用于纳米太阳电池^[14]、发光二 极管^[6]、电容器^[6]等领域.本实验室对纳米结构 TiO₂/ 聚3-甲基噻吩^[7]、3-甲基噻吩与2-噻吩甲酸的共聚 物^[8]、染料敏化3-甲基噻吩等进行了研究.对于聚 3-己基噻吩的光电性能研究在国内还很少见报道,本 文用电化学的方法在纳米尺度 TiO₂ 多孔膜电极上 修饰了 3-己基噻吩敏化层,对其敏化效果进行了表 征,并探讨了光电化学机理.

1 实验部分

1.1 电极的制备

ITO 电极与 ITO/TiO₂ 电极的制备方法参照文 献[7]. 以 ITO 电极和 ITO/TiO₂ 电极为工作电极,在 含 0.01 mol·L⁻¹氟硼酸四丁基铵和 0.1 mol·L⁻¹ 3-己 基噻吩单体的乙腈溶液中,以 Ag/AgCl 电极为参比 电极,以 Pt 电极为对电极,在 2 mA·cm⁻² 恒电流密 度下,电化学聚合不同膜厚的 ITO/P3HT 电极和纳 米结构 TiO₂/P3HT 电极.

1.2 光电化学实验仪器与试剂

光电化学实验采用带石英窗口的三室电解池, 工作电极为 ITO/ P3HT 电极、ITO/TiO₂ 电极、纳米 结构 TiO₂/P3HT 电极. 参比电极为饱和甘汞电极或 Ag/AgCl 电极, 对电极为 Pt 电极. 在聚合和测定光 电流时用恒电位仪(Po-tentiostat/Galvanostat Model 263A)进行电位控制, 并经计算机采样处理. 以 200 W 氙灯为光源, 通过单色仪(WDG30)照射在工作电 极上. 光强用 LPE-1A 型激光功率/能量计标定.

用紫外-可见分光光度计(Spectrum 756PC)测定 其吸收光谱,所用试剂除乙腈为色谱纯外,其它均为 分析纯,未经进一步纯化,所有溶液均用二次去离子 水配制.

1.3 光电流的测定

以制得的 ITO/P3HT 电极和纳米结构 TiO₂/ P3HT 电极为工作电极,以饱和甘汞电极为参比电极,以 Pt 电极为对电极,以 0.04 mol·L⁻¹ 邻苯二甲酸 氢钾溶液为底液, 0.1 mol·L⁻¹ KSCN 溶液为支持电 解液,在一定电极电位下,记录其在不同波长单色光 下的光电流.

2 结果与讨论

图 1 为 TiO₂、P3HT、TiO₂/P3HT 的紫外-可见 吸收光谱.由图1可知,TiO₂只是在紫外范围内有较 弱的吸收;P3HT在可见及红外范围内(300~650 nm) 有较强的吸收带;而 TiO₂/P3HT 在整个范围内都有 很强的吸收,且吸收带范围明显拓宽,表明P3HT 对 TiO₂起到了一定的敏化作用.

²⁰⁰⁵⁻⁰⁵⁻¹⁷ 收到初稿, 2005-08-15 收到修改稿. 联系人: 郝彦忠 (E-mail: yzhao@hebust.edu.cn; Tel: 0311-88632215, 0311-88632184). * 国家自然科学基金(20203008), 河北省自然科学基金(202351)及河北省教育厅博士基金(110611)资助项目

图 1 TiO₂ (a)、P3HT(b)、TiO₂ /P3HT(c) 吸收光谱 Fig.1 UV-Vis spectra of TiO₂ (a), P3HT(b), TiO₂ /P3HT(c)

图2(A) 为以 ITO/TiO2电极、纳米结构TiO₄P3HT 电极作为工作电极,在弱酸性的0.1 mol·L⁻¹KSCN+ 0.04 mol·L⁻¹ KHC₈H₄O₄ 溶液(pH=4.00)中测量得到 的光电流作用谱.其中, IPCE 为入射光子-电流转换 效率. 计算公式¹⁹如下:

IPCE=1241×*j*_{ph}/λ×*I* 式中*j*_{ph} 为入射光电流密度 (A・cm⁻²), λ 为入射光波 长(nm), *I* 为入射光通量(W・cm⁻²).

由图 2(A)可知, ITO/TiO₂ 电极只是在紫外区有 较强的光电流, 而经 P3HT 敏化后在紫外区的光电 流明显增强, 并且光电响应拓展到了可见光区, 光吸 收截止波长发生了明显的红移, 这表明 P3HT 明显 起到了敏化作用.

图 2(B)为(*I*_{ph}·*hv*)² 和 *hv* 的关系曲线. 半导体在 光照下有两种跃迁模式, 用公式^[7]表示为(*I*_{ph}·*hv*)ⁿ²= const(*hv*-*E*^{opt}_g), 式中*I*_{ph}为光电流, *hv*为入射光子能量, E^{pu}为用光电流谱法测得的半导体禁带宽度.对于间接跃迁模式, n=1,直接跃迁模式, n=4. 假设 P3HT 膜符合直接跃迁模式, 由图 2(B)可以看出, (I_{ph}·hν)² 和 hν 具有很好的线性关系, 其禁带宽度为 1.89 eV(640 nm), 这与 Al-Ibrahim 等¹⁰⁰报道的禁带宽度 1.9 eV基本一致, 说明 P3HT 膜符合直接跃迁模式.

为了确定 P3HT 膜的导带和价带位置,在-0.2~ 1.4 V 测定 P3HT 膜的循环伏安曲线见图 3(A). 由图 可知, P3HT 膜的氧化峰为 1.08 V,还原峰为 0.70 V, 由公式: *E*=-4.5-φ (式中φ为相对于NHE的电极电势) 得其价带为-5.4 eV(相对真空能级),禁带宽度为 1.89 eV,故其导带为-3.6 eV(相对真空能级).

TiO₂多孔膜为 n 型半导体膜, 其禁带宽度为 3.26 eV, 导带位置为E_c=-4.0 eV, 能级结构图如图3 (B)所示. P3HT膜的导带位置为E_c=-3.6 eV, 高于TiO₂ 的导带位置.由于在纳米 TiO₂多孔膜电极中, 能带 不弯曲, 带边随电位的变化而移动^[11], 并且由于在纳 米 TiO₂ 与 P3HT 之间形成 *p*-*n* 异质结, 所以在较负 的极化电位下, 光激发 P3HT 导带上产生的光生电 子注入到电解液中与电解液中的氧化还原对反应, 而价带中的空穴则注入到 TiO₂ 的价带中, 进而传输 到块体电极形成阴极光电流向外电路传输.

图 4 为聚合时间 40 s 的 P3HT 膜用计算机采集 到的在 430 nm 波长单色光照射下的瞬态光电流图. 由图可知, P3HT膜在光照(on)瞬间产生阴极光电流, 在挡光的瞬间(off), 光电流迅速降到起始值, 表明 P3HT 膜为 p 型半导体膜. 而 TiO₂ 为 *n*-型半导体, 从而在 P3HT 与 TiO₂ 之间可能形成 *p-n* 异质结.

图 5 为纳米结构 TiO₂/P3HT 复合膜线性扫描

图 2 ITO/TiO₂(a)、纳米结构 TiO₂/P3HT(b)电极的光电流作用谱(A)和 P3HT 膜(*I*_{ph}·*hv*)² 与 *hv* 关系曲线(B) Fig.2 Photocurrent action spectra of ITO/TiO₂ nanoporous film electrode (a) and nanostructured TiO₂/P3HT film electrode(b) (A), relationship between (*I*_{ph}·*hv*)² and *hv* of the ITO/P3HT film electrode in electrolyte (B) electrode potential: -0.2 V(*vs* SCE); *I*_p: photocurrent; *hv*: photon energy; IPCE: incident monochromatic photon-to-current conversion efficiency

potential range: $-0.2 \sim 1.4 \text{ V}(vs \text{ Ag/AgCl})$; scan rate: 20 mV·s⁻¹; E_c : energy level of conduction band, E_v : energy level of valence band, E_{vw} : energy level of vacuum

图. 由图可知: 在较正的外加电位下, 光照 TiO₄/ P3HT 膜产生阳极光电流; 在较负的外加电位下, 光 照 TiO₂/P3HT 膜产生阴极光电流. 不论在光照还是 在暗态条件下, 纳米结构 TiO₂/P3HT 电极都表现出 了明显的 *p-n* 异质结的整流特性, 表明在纳米结构 TiO₂/P3HT 电极中存在 *p-n* 异质结. 而 *p-n* 异质结的 存在能够使光生电子和空穴有效地分离, 有效地抑 制了电荷的反向复合, 而 TiO₂ 作为载体也起到了接 受空穴和及时分离电子-空穴对的作用, 从而增大了 光电流, 提高了光电转换效率.

为了更清楚地了解在可见光区光电流的变化情况,我们在 470 nm 单色光照射下,测量并对比了电流随电势的变化(如图 6 所示).由图可知,两种电极的光电流随外加电势的变化都经历了先增大后减小

图 4 P3HT 膜瞬态光电流图

Fig.4 Photocurrent transients of P3HT film illuminated at 430 nm

eletrode potential: -0.2 V(vs SCE); current density: 2 mA·cm⁻²; polymerization time: 40 s; illuminating light intensity: 537 μ W·cm⁻²

图 5 TiO₂/P3HT 膜线性扫描

(a) in the dark, (b) under illumination; scanning rate: $20 \text{ mV} \cdot \text{s}^{-1}$

- 图 6 ITO/P3HT 电极(a)、纳米结构 ITO/TiO₂/P3HT 电极(b)在 470 nm 光照下光电流随电极电势的变化 曲线
- Fig.6 Plots of photocurrent *versus* potential of the ITO/P3HT electrode(a), nanostructured ITO/ TiO₂/P3HT porous film electrode(b) at 470 nm

的过程. ITO/P3HT 电极在-0.8 V 处光电流达到最 大值, 纳米结构 TiO₂/P3HT 电极在-0.6 V 处光电流 达到最大值, 当外加电势达到 0.6 V 时, 由于 P3HT 的氧化态已是绝缘体, 不利于光生载流子的分离, 两 种电极光电流急剧减小. 当外加电势大于-0.7 V 时, ITO/TiO₂/P3HT 多孔膜电极光电流明显大于 ITO/P3HT 电极光电流, 表明敏化后的电极产生明 显光电流的电势范围拓宽了, 这可能是 TiO₂ 的纳米 多孔膜结构增加了 P3HT 膜的吸光面积, 从而增加 了吸光效率和电子传递效率.

3 结 论

通过光电化学方法确定了 P3HT 膜的禁带宽度 为 1.89 eV, 价带位置为-5.4 eV. 纳米结构 TiO₂/ P3HT 复合膜电极在可见光区及红外区有明显的光 电流. 当用可见光和红外光激发复合电极时, 便可产 生电子-空穴对, 使空穴注入到 TiO₂ 膜的价带, 由此 使 P3HT 起到敏化作用.

References

 Brabec, C. J.; Johansson, H.; Padinger, F.; Neugebauer, H.; Hummelen, J. C.; Sariciftci, N. S. Solar Energy Materials and Solar Cells, 2000, 61(1): 19

- Zhang, F. L.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganas, O. Advanced Materials, 2002, 14 (9): 662
- Grant, C. D.; Schwartzberg, A. M.; Smestad, G. P.; Kowalik, J.;
 Tolbert, L. M.; Zhang, J. Z. *Journal of Electroanalytical Chemistry*, 2002, 522: 40
- 4 Huynh, W. U.; Dittmer, J. J.; Alivisatos, P. A. Science, 2002, 295: 2425
- 5 Gazotti, W. A.; Girotto, E. M.; Nogueira, A. F.; De Paoli, M. A. Solar Energy Materials and Solar Cells, 2001, 69: 315
- 6 Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A. Jouranl of Electrochemical Society, 2000, 147 (2): 407
- 7 Hao, Y. Z.; Wu, W. J. Acta Chimica Sinica, 2005, 63: 215 [郝彦 忠, 武文俊. 化学学报(Huaxue Xuebao), 2005, 63: 215]
- 8 Hao, Y. Z.; Wu, W. J. Chemical Journal of Chinese Universities,
 2005, 26: 1098 [郝彦忠, 武文俊. 高等学校化学学报(Gaodeng Xuexiao Huaxue Xuebao), 2005, 26: 1098]
- 9 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grötzel, M. J. Am. Chem. Soc., 1993, 115: 6382
- Al-Ibrahim, M.; Roth, H. K.; Zhokhavets, U.; Gobsch, G.; Sensfuss, S. Solar Energy Materials and Solar Cells, 2005, 85: 13
- Hao, Y. Z.; Yang, M. Z.; Yu, C.; Cai, S. M. Acta Phys. -Chim. Sin., 1998, 14: 309 [郝彦忠, 杨迈之, 余 赪, 蔡生民. 物理化学学报 (Wuli Huaxue Xuebao), 1998, 14: 309]

A Photoelectrochemical Study of the Nanostructured TiO₂/P3HT Film Electrode*

HAO, Yan-Zhong^{1,2} CAI, Chun-Li² (¹College of Science; ²College of Chemical & Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018)

Abstract The photon-current conversion properties of ITO/poly(3-hexylthiophene) (ITO/P3HT) and nanostructured TiO₂/P3HT film electrode were studied by using the photocurrent action spectra, the photocurrent dependence of potential and UV-Vis absorption spectra. The bandgap of P3HT film is 1.89 eV. The diagram of energy level of P3HT film was determined with cyclic voltammetry and photoelectrochemical method. The conduction band of P3HT film is -5.4 eV. The nanostructured TiO₂/P3HT electrode can enlarge the visible optical absorption region and obviously increase the photocurrent in visible region. The *p-n* heterojunction exists in the TiO₂/P3HT nanostructured electrode which favors the separation of electron/hole pairs. Thus, the photon-electron conversion efficiency could be improved.

Keywords: Nanostructured TiO₂/P3HT electrode, Photoelectrochemistry, Poly(3-hexylthiophene)

Received: May 17, 2005; Revised: August 15, 2005. Correspondent: HAO, Yan-Zhong (E-mail : yzhao@hebust.edu.cn; Tel: 0311-88632215, 0311-88632184). *The Project Supported by NSFC(20203008), NSF of Hebei Province (202351) and Doctoral Fund of Education Department of Hebei Province(110611)