介质阻挡放电等离子体脱除氮氧化物的发射光谱研究^{*}

刘晶 牛金海 徐勇 朱爱民 孙琪 聂龙辉

(大连理工大学等离子体物理化学实验室,大连 116024)

摘要 在大气压下, NO/N₂体系中, 利用发射光谱技术对 50 Hz 和 5 kHz 交流介质阻挡放电等离子体在 200~900 nm 范围内进行了诊断. 在 632、674.5、715.5 和 742 nm 等处测得了 N 原子的谱线. 利用化学发光法 NO_x分析仪, 模块式红外吸收气体分析检测仪, 大气压下直连质谱多种检测手段对放电前后的稳定物种进行了分析, 观察到 O₂ 的生成. 初步讨论了无氧条件下介质阻挡放电等离子体中 NO 脱除的反应机制.

关键词: 大气压, 介质阻挡放电, 等离子体, NO, N 原子, 发射光谱, 质谱 中图分类号: O643

来源于汽车尾气中的氮氧化物对环境造成的危 害已不容忽视. 随着富氧燃烧的贫燃发动机和柴油 机的推广和使用,以及由此带来尾气温度的降低,原 有的"三效"催化剂无法在富氧气氛中正常使用,使 得尾气中氮氧化物的脱除变得更加困难. 近些年来 利用低温等离子体技术脱除大气污染物,如 NO,, SO_x及 VOC 等引起了人们极大的关注. 介质阻挡放 电作为一种可以在常压下产生的非平衡等离子体技 术,已成功应用于臭氧的大规模工业生产及其他等 离子体工艺过程中.在气体放电等离子体中,因为能 产生大量的电子、原子、离子、自由基和激发态物种 等活性基团,进而引发气相中的化学反应,为在低温 下脱除有害的污染物开辟了新途径.但是同时,等离 子体中这种大量粒子的存在也使得这种体系变得更 加复杂,这给研究等离子体中的化学反应带来了一 定的困难.科学工作者多利用质谱、红外等技术手段 测得放电后的稳定产物进而推测等离子体中产生了 哪些活性物种来研究脱除氮氧化物的作用机制.目 前,普遍认为等离子体单独作用下,N原子是直接分 解 NO 的活性物种^[1-3].发射光谱技术是一种原位、实 时、在线的等离子体诊断方法,对体系没有扰动,时 空分辨性能良好,可以用来获得气体放电体系中激 发态物种的相关信息. Vinogradov 等¹⁴、Sun 等¹⁵利用 发射光谱对 NO/N₂, 纯 N₂ 体系板-板, 线-筒式介质 阻挡放电等离子体进行了诊断研究,但是都没有观 测到氮原子的谱线. Luo 等¹⁰利用线-筒式介质阻挡 放电在 NO/He 的体系中于 747 nm 测得了由 NO 分 解产生的 N 原子激发跃迁谱线. 到目前为止, 大气 压下线-筒式 NO/N₂ 介质阻挡放电等离子体中尚未 有人通过发射光谱探测到 N 原子的谱线. 本研究利 用发射光谱技术, 在 NO/N₂ 体系中, 对 50 Hz 和 5 kHz 交流介质阻挡放电等离子体进行了诊断, 于 632、674.5、715.5 nm 等处测得了氮原子的谱线, 利 用大气压下直连质谱等检测手段对交流介质阻挡放 电等离子体处理后尾气中的稳定物种进行了分析. 进一步讨论了介质阻挡放电等离子体中的活性物种 对脱除氮氧化物的作用.

1 实验部分

实验装置如图 1 所示. 介质阻挡放电反应器是 内径 10 mm、厚 1 mm 的光学石英管,其中心有一直 径 2 mm 的不锈钢棒与交流高压电源输出端相连. 管外以铝箔(铝箔长度控制放电空间大小)紧密缠绕, 铝箔与交流高压电源的接地端相连,铝箔上开有小 孔,以便有光透出.电源为50 Hz,电压0~40 kV(大连 理工大学特种电源厂制)和5~20 kHz, 0~40 kV(CTP-2000K,南京苏曼电子有限公司)交流高压电源.

实验所用气体为高纯(纯度 > 99.999%)N₂和O₂, 及用高纯气配置的混合气NO/N₂ (大连光明特种气 体研究所). NO和NO₂浓度用氮氧化物分析仪

²⁰⁰⁵⁻⁰⁴⁻¹³ 收到初稿, 2005-06-24 收到修改稿. 联系人:徐 勇(E-mail: labplpc@dlut.edu.cn; Tel: 0411-84708548-803). *国家"十五" "863" 计划青年基金(2002AA649140)、国家自然科学基金(20077005)和辽宁省科学技术基金(20022112) 资助项目

Fig.1 Schematic diagram of the experimental apparatus

(ML98401AS,美国 Monitor 公司)测定. N₂O 用红外 气体分析仪(S710,德国Sick/Maihak 公司)检测. 采 用大气压直连质谱(Omistar422,德国 Balzers 公司) 在线监测 O₂ 及其他成分.

对气体放电等离子体进行发射光谱(200~900 nm, SP-300i, 美国Acton公司)原位测定. 光栅为 1200 groove·mm⁻¹, 闪耀波长为 435.8 nm, 分辨率为 0.1 nm, 用光纤将等离子体放电产生的光传导入单色仪, 输入计算机, 经过软件处理得到发射光谱图.

2 结果与讨论

2.1 介质阻挡放电等离子体脱除氮氧化物的质谱 分析

实验中反应气体为 φ =0.040%的 NO/N₂, 流量为 360 mL·min⁻¹.待气体平衡后, 在室温下(293 K)分别 利用工频、中频交流电源放电, 在线监测了 NO、NO₂ 以及 N₂O 的浓度变化, 实验结果见表 1. 利用工频电 源(50 Hz)放电, 输入电压 16 kV 时, NO 总的脱除率 为 47%, 放电后尾气中含有 3.05×10⁻⁵ 的 NO₂ 和 1.07×10⁻⁵ 的 N₂O. NO₂、N₂O 的生成选择性分别为 16%和 5.6%. 利用中频电源(5 kHz)放电, 输入电压

表 1 50 Hz和5 kHz 电源放电氮氧化物的转化及生成的产物

Table 1Conversion of NO and its products in dielectric barrier
discharge (DBD) plasmas with a.c. 50 Hz and

5 kHz frequencies

	$arphi_{ m in}$ (NO)	$arphi_{ ext{out}}$ (NO)	X (NO)	$arphi_{ ext{out}} \ (ext{NO}_2)$	S (NO ₂)	$arphi_{ ext{out}} \ (ext{N}_2 ext{O})$	S (N ₂ O)
50 Hz	4.0×10^{-4}	2.1×10^{-4}	47%	3.05×10^{-5}	16%	1.07×10^{-5}	5.6%
5 kHz	4.0×10^{-4}	1.0×10^{-6}	100%	1.84×10 ⁻⁶	0.5%	5.60×10^{-7}	0.1%
		0.0100	110 11	0			

reaction conditions: 0.040% NO+N₂, gas flow rate: 360 mL·min⁻¹, GHSV=3000 h⁻¹, 5 kHz, U_p =12.5 kV; 50 Hz, U_p =16 kV

 φ_{in} : inlet concentration, φ_{out} : outlet concentration;

 $S(\text{NO}_2) = \varphi_{\text{out}}(\text{NO}_2) / (\varphi_{\text{in}}(\text{NO}) - \varphi_{\text{out}}(\text{NO})) \times 100\%,$

 $S(N_2O) = \varphi_{out}(N_2O) / (\varphi_{in}(NO) - \varphi_{out}(NO)) \times 100\%,$

 $X(\text{NO}) = (\varphi_{\text{in}}(\text{NO}) - \varphi_{\text{out}}(\text{NO})) / \varphi_{\text{in}}(\text{NO}) \times 100\%$

12.5 kV 时, NO 的脱除率几乎达到 100%, NO₃、N₂O 的生成选择性分别只有 0.5%和 0.1%. 从实验结果 来分析,单从 NO 的转化率来看,中频放电要明显好 于工频放电;从产物分布来看, NO2 和 N2O 也比工 频放电后的生成明显减少.为了进一步分析放电前 后的产物,利用大气压直连质谱对质荷比分别为 30、32、44 和 46 在放电前后的离子流强度变化进行 了监测, 见图 2.由图可见, 工、中频放电体系中, 质荷 比为 30 的离子流强度在放电后都有下降.在 NO/N。 体系中, 质荷比为 30 的离子流可来自 NO, 或 N₂O 和 NO₂的解离碎片,其中 N₂O 和 NO₂为生成物,而 图中质荷比为 30 的离子流强度是下降的,说明质荷 比为 30 的离子流主要与 NO 对应. 与工频放电相 比,中频放电时质荷比为30的离子流强度下降得更 明显. 质荷比为 32、44 和 46 的离子流则分别对应 O₂、N₂O 和 NO₂. 在中频放电时, NO₂ 和 N₂O 的离子 流强度几乎没有变化, 而工频放电时, 略有增加, 这 与表1中NO。和NoO的浓度变化规律是一致的.另 外,在两种放电情况下都观察到了 O, 的生成, 而且 中频放电生成的 O₂ 更多. 尽管 N₂ 为背景气无法判 断 N₂的生成,但由氧气的生成可以推断在 NO/N₂ 体系中放电,氮氧化物的脱除主要通过分解途径,即 被分解为氮气和氧气,而且,中频放电更有利于氮氧 化物的分解而非转化为氮的其他氧化物.

2.2 介质阻挡放电等离子体发射光谱诊断研究

介质阻挡放电脱除氮氧化物的质谱分析表明, 在无氧体系中,氮氧化物的脱除主要通过分解通道, 为了进一步理解其分解机理,我们测得了工、中频放 电等离子体发射光谱,见图 3,其谱线归属见表 2.两 种放电条件下,在波长 200~450 nm 范围内都观测

Fig.2 Mass spectra of NO/N₂ in DBD plasma

reaction conditions: 0.040%NO+N₂, gas flow rate: 360 mL· min⁻¹, GHSV=3000 h⁻¹, 5 kHz, U_p =12.5 kV; 50 Hz, U_p =16 kV

图 3 NO/N₂ 介质阻挡放电等离子体发射光谱

Fig.3 Emission spectra of NO/N₂ in DBD plasma reaction conditions: 0.040% NO+N₂, gas flow rate: 360 mL·min⁻¹, GHSV=3000 h⁻¹, 5 kHz, U_p = 12.5 kV; 50 Hz, U_p =16 kV

到了激发态 $N_2(C^3\Pi_u - B^3\Pi_e^*)$ 和 NO($A^2\Sigma^* - X^2\Pi$)的振动 谱线. 工频放电体系中, N_2 的发射谱线对应 $N_2(C^3\Pi_u, 0) \rightarrow N_2(B^3\Pi_e^*, 0-4)$ 和 $N_2(C^3\Pi_u, 1) \rightarrow N_2(B^3\Pi_e^*, 0-5)$ 的 跃迁; 中频放电体系中,除了在工频放电体系中 观测到的振动跃迁谱线外,也看到了 $N_2(C^3\Pi_u, 2) \rightarrow$ $N_2(B^3\Pi_e^*, 4-7)$ 的发射谱线,同时谱线强度也明显增强. 究其原因,中频放电体系中,注入了更多的能量,电 子密度增大,使更多的 N_2 分子激发. 在等离子体中 激发电位低于 $N_2(C^3\Pi_u)$ 的其他 N_2 激发态分子,即 $N_2(W^1\Delta_u) \setminus N_2(a^{-1}\Pi_g) \setminus N_2(a^1\Sigma_u) \setminus N_2(B^{-3}\Pi_e^*),$ $N_2(A^3\Sigma_u)$ 在等离子体中都可能存在. 但这些激发态分

子跃迁到较低能级时发射的谱线都在紫外或远红外 区,超出本实验的测量范围.在其他测量条件下,上 述这些激发态跃迁谱线都曾被观测过^[7]. 对于 NO 的 激发, 工频放电体系中, 观测到了 NO($A^2\Sigma^+$, 0)→NO (X²*Π*, 1-6), NO(A²*Σ*⁺, 1) →NO(X²*Π*, 2-5)的振动跃迁; 中频放电体系中,只测得了 NO $(A^2\Sigma^+, 0) \rightarrow NO(X^2\Pi,$ 2-6)的发射谱线,且强度有所降低,这是因为中频放 电体系中更多的 NO(~100%)被分解,体系中只有极 少量的 NO, 所以 NO(A-X)的谱线强度相对于工频 放电时弱,但在中频放电中仍然能看到 NO 的 γ 带 跃迁,也说明 NO 在等离子体中被有效地激发,这种 激发来自 NO 与 N₂(A)的碰撞^[8]. 在 600~900 nm 范 围内,出现了一些较尖锐的谱线,在整个扫描范围 内,它们的强度与 N₂(C-B)、NO(A-X)相比较弱. 与工 频放电相比,中频放电体系中此波段范围内的谱线 较多、强度较强. 中、工频放电体系中都出现了 632、 674.5、715.5、742、751 和 761 nm 这六条谱线. Clay 等¹⁹在 CH₄N₂ 射频放电等离子体中曾测得过 632、 674.5 和 715.5 nm 这三条谱线,并将其归属为 N 原 子的激发跃迁.742 nm 在低气压、大气压下和在中 频放电体系中出现,但没有在工频放电中出现的 868.5 nm 谱线都曾多次被观测过, 属于激发态氮原 子谱线[911]. 尽管 N*离子的激发跃迁在 600~900 nm 范围内也会发生,但是发生这种跃迁的能量需要 25.1 eV, 远高于 N 原子跃迁所需要的能量(14.54 eV),因此在本实验条件下,笔者认为 600~900 nm

表 2	NO/N	2介质阻挡	当放电等	离子(本中激发	态物种
Table 2	2 Ex	cited-state	species	in NO	N ₂ DBD	plasma

50 Hz				5 kHz			
$\frac{N_2(C-B)}{(v',v'') \lambda/nm}$	NO(A-X) $(v',v'') \lambda/nm$	N transitions	λ/nm	$\frac{\mathrm{N}_2(C\text{-}B)}{(v',v'') \ \lambda/\mathrm{nm}}$	NO(A-X) $(v',v'') \lambda/nm$	N transitions	λ/nm
(0, 0) 337	(0, 1) 237	$6s^4P_{1/2}-3p^4S^0_{3/2}$	632	(0, 0) 337	(0, 2) 247.5	$6s^4P_{5/2}-3p^4S^0_{3/2}$	627.5
(0, 1) 357.5	(0, 2) 247.5	$4d^4P - 3p^4P^0$	674	(0, 1) 357.5	(0, 3) 259	$6s^4P_{1/2}-3p^4S^0_{3/2}$	632
(0, 2) 380.5	(0, 3) 259	—	715.5	(0, 2) 380.5	(0, 4) 271.5	$4d^4P-3p^4P^0$	674
(0, 3) 406	(0, 4) 271.5	$3p^4S^0-3s^4P$	742	(0, 3) 406	(0, 5) 285	$3p^4S^0-3s^4P$	742
(0, 4) 434.5	(0, 5) 285	$5s^2P-3p^2D^0$	751	(0, 4) 434.5	(0, 6) 296.5	—	715.5
(1, 0) 316	(0, 6) 296.5	_	761	(1, 0) 316	_	$5s^2P-3p^2D^0$	751
(1, 2) 354	(1, 3) 244.5	—		(1, 2) 354	_	_	761
(1, 3) 375.5	(1, 4) 255.5	_		(1, 3) 375.5	_	$3p^4D^0-3s^4P$	868.5
(1, 4) 400	(1, 5) 267.5	_		(1, 4) 400	—	_	
(1, 5) 427	(1, 6) 280.5	_		(1, 5) 427	—	—	
—	(1, 7) 294.5	_		(2, 4) 371	—	—	
—	_	_		(2, 5) 394.5	—	_	
_	—	_		(2, 6) 420	_	_	
—	_	_		(3, 7) 414	_	_	

范围内的谱线为 N 原子激发跃迁谱线. 中频电源放 电体系中较强的 N 原子谱线表明, 这种体系中解离 出了更多的 N 原子. 在等离子体作用下, 基态 N₂ 以 及N₂(A)等激发态N₂分子与电子碰撞可解离出N原子 (表 3 中 R1- R6). N(⁴S)为基态 N 原子, N(²D)和 N(²P) 为 N 原子的亚稳态, 分别高于基态 N 原子 2.38 eV 和 3.58 eV. Cosby^[12], Walter 等^[13]认为, N₂ 预离解为 N(⁴S)和 N(²D)为 N₂ 的主要解离机制.

2.3 NO/N₂体系介质阻挡放电等离子体脱除氮氧 化物机理探讨

介质阻挡放电等离子体中产生的高能电子虽可 直接分解 NO, 但是通常认为低浓度的 NO 与放电 中产生的高能电子碰撞几率很小, 高能电子主要与 背景气 N₂碰撞, 使之激发、解离产生激发态 N₂ 分子 和 N 原子活性物种, 活性物种再与基态或激发态的 NO 作用, 使 NO 转化. 前文讨论过, 等离子体中除 了N₂($C^{3}\Pi_{u}$), 还可能存在其他几种N₂激发态分子. 在 可能与 NO 发生反应的 N₂ 激发态分子中, N₂ ($A^{3}\Sigma_{u}^{*}$) 和 N₂($a'^{1}\Sigma_{u}^{*}$)的自发辐射系数较小, 分别为 0.526 和

表 3 NO/N₂ 介质阻挡放电等离子体中与 NO_x转化有关的 反应和速率常数

Table 3 Reactions and rate constants relevant to NO_x

conversion in NO/N₂ DBD plasma

	-		
Chemical reaction	ı k	No.	Ref.
$e+N_2 \rightarrow N(^4S)+N(^4S)+e$	2.0×10^{-11} cm ³ ·molecule ⁻¹ ·s ⁻¹	R1	[22, 23]
$e+N_2 \rightarrow N_2(A)+e$	$1.1 \times 10^{-10} \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$	R2	[22, 23]
$e+N_2(A) \rightarrow N({}^4S)+N({}^4S)+e$		R 3	
$e+N_2^* \rightarrow N(^4S)+N(^2D)+e$		R4	
$e+N_2^* \rightarrow N(^4S)+N(^2P)+e$		R5	
$e+N_2^* \rightarrow N(^2D)+N(^2D)+e$		R6	
$NO(X)+N_2(A) \rightarrow NO(A)+N_2(X)$	(6.5~7.8)×10 ⁻¹¹ cm ³ ·s ⁻¹	R7	[24]
$N(^{4}S)+NO \rightarrow N_{2}+O$	$3.1 \times 10^{-11} \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$	R8	[25]
$0+0+M \rightarrow 0 \rightarrow M$	$2.76 \times 10^{-31} \text{ cm}^{6} \cdot \text{molecule}^{-2} \cdot \text{s}^{-1}$	R9	[22]
$NO+O+M \rightarrow NO_2+M$	$1.0 \times 10^{-31} \text{ cm}^6 \cdot \text{molecule}^{-2} \cdot \text{s}^{-1}$	R10	[22, 26]
$2NO+O_2 \rightarrow 2NO_2$	$1.4 \times 10^{-38} \text{ cm}^{6} \cdot \text{molecule}^{-2} \cdot \text{s}^{-1}$	R11	[23, 27]
$NO_2 + N \rightarrow N_2O + O$	$3.0 \times 10^{-12} \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$	R12	[22, 28]
$N_2(A)+N_2O \rightarrow 2N_2+O$	6.2×10^{-12} cm ³ ·molecule ⁻¹ ·s ⁻¹	R13	[29]
$N(^{4}S)+NO_{2} \rightarrow N_{2}+O_{2}$	7.0 ×10 ⁻¹³ cm ³ ·molecule ⁻¹ ·s ⁻¹	R14	[14]
$N(^{4}S)+NO_{2} \rightarrow N_{2}+2O$	$9.1 \times 10^{-13} \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$	R15	[14]

43.5 s⁻¹,其他几种激发态 N₂分子其自发辐射系数都 在10² s⁻¹以上^[14-20],较容易发生自发辐射跃迁;在本实 验 NO/N₂体系中, N₂浓度是 NO 的 2.5×10³ 倍,要使 这些激发态分子与 NO 发生反应,其速率常数要高 于被 N₂淬灭速率常数 3 个数量级.经过以上考察分 析,我们认为 N₂(A³Σ^{*}₄)和 N₂(a^{'1}Σ^{*}₄)可能是 NO/N₂等 离子体中对 NO 脱除起作用的激发态 N₂分子.

发射光谱中N原子的谱线有力证明了体系中 N 原子的存在, 体系中主要存在 N(⁴S)和 N(²D). Zhao 等^[21]实验和计算表明, $N_2(a' \Sigma_{a})$ 、 $N(^2D)$ 对 NO 转化的 贡献可以忽略,只有基态 N 原子和 N₂(A)对 NO₄ 的 脱除起重要作用. 我们知道 N₂(A)容易被 NO 分子淬 灭,回到N₂基态,NO则被激发至NO(A),但是NO不能 进一步发生解离等反应,如(表3中R7)所示.由此分 析得知, NO 的分解反应主要通过表 3 中 R8, 即与 基态 N 原子的碰撞. 在工频放电中, 我们观察到了 少量 NO₂、N₂O 的生成,主要通过表 3 中 R10-R12 反 应生成. 而在中频放电体系中, 几乎没有生成 NO₂ 和 N₂O. 这可解释为工频放电中产生的 N 原子不足 以分解全部的 NO, 而体系中没有被转化的 NO 必 然会使对NO2、N2O脱除起重要作用的N2(A)淬灭,从 而使得工频放电中有少量 NO2、N2O 生成; 中频放电 中,生成了较高浓度的 N₂(A)和 N 原子, 使 NO 大部 分被分解掉,而未被转化的N₂(A)和N原子对 NO₂和 N₂O 的生成起到了抑制作用(表 3 中 R13-R15).

3 结 论

(1)利用 50 Hz 电源放电的 NO/N₂中, NO 脱除 率为 47%;利用 5 kHz 电源放电的 NO/N₂中, NO 脱 除率为 100%.利用中频电源,有利于 NO 的脱除,生 成的副产物少.质谱分析表明,利用两种电源放电体 系中都有 O₂生成, NO 的脱除主要是通过分解途径.

(2)利用中频电源放电的 NO/N₂体系中,等离子体发射光谱中增强的 N 原子激发跃迁谱线和较小浓度的 NO 较强的 γ 带跃迁表明生成了较多的 N 原子和 N₂(A).

(3) 在 NO/N₂ 体系中, 介质阻挡放电分解 NO 的 主要活性物种是N(⁴S), 而N(A), N(⁴S)对副产物 NO₂、 N₂O 的生成起到抑制作用.

References

- 1 Mok, Y. S.; Ham, S. W. Chem. Eng. Sci., 1998, 53: 1667
- Hazama, H.; Fujiwara, M.; Tanimoto, M. Chem. Phys. Lett., 2000, 323: 542
- 3 Babayan, S. E.; Ding, G.; Hicks, R. F. Plasma Chem. Plasma

Process, 2001, 21: 505

- 4 Vinogradov, I. P.; Wiesemann, K. Plasma Sources Sci. Technol., 1997, 6: 307
- 5 Sun, Q.; Zhu, A. M.; Niu, J. H.; Xu, Y.; Song, Z. M. Acta Phys.-Chim. Sin., 2005, 21(2): 192 [孙 琪, 朱爱民, 牛金海, 徐 勇, 宋志 民. 物理化学学报 (Wuli Huaxue Xuebao), 2005, 21(2): 192]
- 6 Luo, J.; Suib, S. L.; Marquez, M.; Hayashi, Y.; Matsumoto, H. J. Phys. Chem. A, 1998, 102: 7954
- 7 Huber, K. P.; Herzberg, G. Molecular spectra and moleculaer structure IV. Constants of diatomic molecules. New York: Van Nostrand Reinhold Company, 1979: 412
- 8 Shimizu, K.; Oda, T. Sci. Technol. Adv. Mater., 2001, 2: 577
- 9 Clay, K. J.; Speakman, S. P.; Amaratunga, G. A. J.; Silva, S. R. P. J. Appl. Phys., **1996**, **79**(9): 7227
- McCullough, R. W.; Geddes, J.; Croucher, J. A.; Woolsey, J. M.;
 Higgins, D. P.; Schlapp, M.; Gibody, H. B. *J. Vac. Sci.*, **1996**, **14** (1): 152
- Yang, X.; Moravej, M.; Nowling, G. R.; Babayan, S. E.; Panelon,
 J.; Chang, J. P.; Hicks, R. F. *Plasma Sources Sci. Technol.*, 2005,
 14: 314
- 12 Cosby, P. C. J. Chem. Phys., 1993, 98(12): 9544
- Walter, C. W.; Cosby, P. C.; Helm, H. J. Chem. Phys., 1993, 99: 3553
- 14 Kossyi, I. A.; Kostinsky, A. Y.; Matveyev, A. A; Silakov, V. P. Plasma Sources Sci. Technol., 1992, 1: 207
- 15 Piper, L. G. J. Chem. Phys., 1992, 97: 270

- Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.;
 Puech, V.; Rousseau, A. *Plasma Sources Sci. Technol.*, 2002, 11:
 152
- 17 Piper, L. G. J. Chem. Phys., 1987, 87: 1625
- 18 Marinelli, W. J.; Kessler, W. J.; Green, B. D.; Blumberg, W. A. M. J. Chem. Phys., **1989**, **90**: 2167
- 19 Sa, P. A.; Loureiro, J. A. J. Phys. D: Appl. Phys., 1997, 30: 2320
- Simek, M.; DeBenedictis, S.; Dilecce, G.; Babicky, V.; Clupek, M.; Sunka, P. J. Phys. D: Appl. Phys., 2002, 35: 1981
- 21 Zhao, G. B.; Hu, X. D.; Argyle Morris, D. A.; Maciej, R. Ind. Eng. Chem. Res., 2004, 43: 5077
- 22 Mäzing, H. Advances in chemical physics. New York: Wiley, LXXX, 1991, 80: 315
- 23 Eichwald, O.; Yousfi, M.; Hennad, A.; Benabdessadok, M. D.*J. Appl. Phys.*, **1997**, **82**: 4781
- 24 Golde, M. F. Int. J. Chem. Kinetics, 1988: 75
- Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, J. R. F.; Kerr, J. A.; Troe, J. J. Phys. Chem. Ref. Data., 1989, 18: 881
- 26 Tsang, W. J.; Anderson, G. D.; Weisenstein, K. J. Phys. Chem. Ref. Data., 1991, 20: 609
- Atkinson, R.; Baulch, D. L.; Hampson, Jr. R. F.; Kerr, J. A.; Troe,
 J. J. Phys. Chem. Ref. Data, 1992, 21: 1125
- 28 Wennberg, P. O.; Anderson, J. G.; Weisenstein, D. K. J. Geophys. Res., 1994, 99: 18839
- Herron, J. T.; Green, D. S. *Plasma Chem. Plasma Process.*, 2001, 21: 459

Optical Emission Spectroscopy Diagnosis on Decomposition of NO in NO/N₂ Mixtures in Dielectric Barrier Discharge Plasma*

LIU, Jing NIU, Jin-Hai XU, Yong ZHU, Ai-Min SUN, Qi NIE, Long-Hui (Laboratory of Plasma Physical Chemistry, Dalian University of Technology. Dalian 116024)

Abstract The optical emission spectroscopy of NO/N₂ in dielectric barrier discharge (DBD) plasmas using a. c. with frequeucies of 50 Hz and 5 kHz has been studied at atmospheric pressure. Excited-state nitrogen atom was detected at 632, 674.5, 715.5 and 742 nm. The concentrations of the mixtures were measured by using chemilluminescence NO_x analyzer and N₂O infrared gas analyzer; the production of O₂ was also monitored by an on-line mass spectrograph after the discharge. The reaction mechanism of the removal of NO in N₂ in DBD plasma was discussed.

Keywords: Atmospheric pressure, Dielectric barrier discharge, Plasma, NO, Nitrogen atom, Optical emission spectroscopy, MS

Received: April 13, 2005; Revised: June 24, 2005. Correspondent: XU, Yong: (E-mail: labplpc@dlut. edu. cn; Tel: 0411-84708548-803). *The Project Supported by NSFC (20077005), the National High Technology Research and Development Program ("863" Programm) of China (2002AA649140) and the Grants of Science and Technology of Liaoning Province(20022112)