聚丙烯酸酯类 T_g 的量子化学-神经网络研究^{*}

刘万强¹ 王学业¹ 李新芳¹ 龙清平¹ 文小红¹ 李建军² (湘潭大学化学学院,湘潭 411105;²江苏出入境检验检疫局,南京 210005)

摘要 用密度泛函方法在6-31G(*d*)基组上优化了 38 种聚丙烯酸酯类的结构单元,得到了其单元的量子化学参数,探讨了这些参数与聚丙烯酸酯类玻璃化温度(*T_g*)的关系. 计算表明,影响聚丙烯酸酯类 *T_g* 的主要因素有结构单元的侧链长度、侧链的分支数、最高占据轨道能级、极化率、偶极矩、等体积热容和热力学能等参数. 用模式识别方法(偏最小二乘法)讨论了这些参数与 *T_g* 的定性关系,两类 *T_g* 大小不同的聚合物基本分布在不同区域,用逐步回归和人工神经网络方法建立了这些参数与 *T_g* 的定量关系, 2 种方法的预测结果与实验值的相关系数分别为 0.9753、0.9985,标准偏差分别为 18.42、4.25,预报结果与实验值基本一致.

关键词: 聚丙烯酸酯, 玻璃化温度, 量子化学参数, 定量结构-性质关系, 人工神经网络中图分类号: O604, O631, O641

高聚物的玻璃化温度(T_)是高分子链段由冻结 到开始运动时的温度,在此温度附近,高聚物的许 多物理性能发生了急剧的变化.T。决定了高聚物的 用途及加工工艺,是衡量高分子材料耐热性和其他 性能的重要指标和重要性质凹因此研究高聚物的玻 璃化温度对于高分子材料具有重要的意义.近年来, 高聚物的结构与性能关系的研究愈来愈受到人们 的关注[27],随着量子化学方法本身的不断完善和计 算机技术的迅猛发展,量子化学方法在定量结构-活性/性质关系(quantitative structure-activity/property relationships, QSAR/QSPR)研究领域也越来越多地 得到应用[8-12]. 量子化学参数本身已隐含了分子几何 结构、化学结构和电子结构等信息,计算得到的参 数物理意义明确,因而可以从理论方面对分子的性 质进行解释和预测.聚丙烯酸酯类是广泛使用的具 有广泛用途的高分子材料,对其T。的研究可为聚丙 烯酸酯类分子设计和改性提供理论指导,同时也可 为其他类高分子的结构与性能的定量关系的研究 提供方法.本文用密度泛函方法计算得到聚丙烯酸 酯类的量子化学参数,通过计算分析找出影响聚丙 烯酸酯类T。的因素,并用模式识别、逐步回归和人 工神经网络等方法建立了结构与性能的定性或定 量关系,达到可以预测聚丙烯酸酯类T。的目的.

1 研究方法

1.1 计算模型

高分子链是结构单元的重复排列,它的某一性 质可以近似认为是结构单元的特定性质的某种形 式的总和.由于高聚物分子含有的原子数目巨大, 目前对完整的高聚物用量子化学从头算很难完成, 因此可设想用结构单元的性质来模拟高聚物的性 质.对于聚丙烯酸酯类,本文取其一个结构单元,末 端用氢封闭使结构单元完整^{13]},分子模型如图1表示, 这样既保持了高聚物结构的主要价键特点又便于 建模和计算.密度泛函理论(DFT)考虑了电子相关 能,在相同的水平上可以得到较高精度的计算结果, 本文采用Gaussian03W量子化学程序,用B3LYP方 法在6-3G(*d*)水平上进行分子的结构优化和获取量 子化学参数.

1.2 变量的筛选和QSPR建模方法

Fig.1 The model of polymers for the calculation

²⁰⁰⁴⁻¹⁰⁻¹⁵收到初稿, 2004-12-10 收到修改稿. 联系人:王学业(E-mail:wxueye@xtu.edu.cn; Tel:0732-8292206). *湖南省自然科学基金(02JJY2019)和湖南省中青年科技基金(01JZY2099)资助项目

图2 T_e和侧链长度L的相关性

Fig.2 Relationship between T_g and the length (L) of side chain

 T_{g} : glass transition temperature

用逐步回归方法筛选变量.逐步回归从一个自变量开始,视自变量对因变量作用的显著程度,从 大到小依次逐个将自变量引入回归方程.但当已引 入的自变量由于后面引入的变量而变得不显著时, 将其噪声剔除掉.这个过程反复进行,直至既无不 显著的变量从回归方程中剔除,又无显著变量可引 入回归方程时为止.然后用化学模式识别方法和人 工神经网络方法(ANN)建立这些变量与聚合物性质 之间的定量关系^[14].模式识别采用自编的软件完成, 逐步回归和ANN采用DPS(data processing system)数 据处理系统完成,*T*。的实验数据取自文献[15].

2 结果与讨论

2.1 侧链长度(L)对 T_g 的影响

以聚丙烯酸正烷基酯为例研究侧链长度(L)对

 T_{g} 的影响. L为主链C₂原子到取代基R₆上最远原子的 距离. 当R₆=C_nH_{2n+1}(n为聚丙烯酸酯类侧链上正烷基 的碳原子个数, $n=1, 2, \dots, 10, 12, 14, 16$), T_{g} 随L变 化曲线如图2所示, 部分量子化学参数的计算结果 和 T_{g} 的实验值见表1.

如图2所示,随着L的增加,T。先降低然后升高. 根据Flory的自由体积理论^[1],高聚物中存在未被分子 真正占有的自由体积,正是这些自由体积的存在, 高分子链才有空间进行构象的调整而发生玻璃化 转变,自由体积越大,T。越低.侧链越长,推开了主 链,使高分子的主链之间的距离增大,主链间的作 用力减小,同时自由体积增大,T。越低;但侧链增大, 导致结构单元的极化率(α), 偶极矩(μ)增大, 侧链之 间的作用力增大,同时链段发生相对滑移时带动的 原子数目增大,内旋转时阻力增大,T。升高,因此L 对T。的影响应该是随着L的增加,T。先降低然后升 高. 在L=1.335 nm(n=8)时, T。降低到最小, 此时处于 这个距离时自由体积和分子间作用力对T。的影响达 到平衡, 以L=1.335 nm作为T。最小时的侧链长度, 而 大于或小于该值, T。都会升高. 计算表明, 以 (L-1.335) 绝对值作为参数, 其与T。的相关系数达到 0.8629. 同时也可以观察到随L的增大,极化率(α), 偶极矩(µ)增大(见表3),表明相邻的侧链之间分子 间作用力逐渐增大, 使T。升高.

侧链对T_g的影响已有两种观点¹¹,一种认为高分子主链带有庞大的侧链时,由于空间位阻使内旋转

		Table 1 Th	he effect of the I	ength(L) of side	chain on $T_{\rm g}$		
D	L	L-1.335	E (and)	E (a.u.)	$\Delta E(a,y)$	()	$T_{\rm g}$
\mathbf{K}_{6}	nm	nm	$L_{\rm HOMO}(a.u.)$	$E_{LUMO}(a.u.)$	$\Delta E_{g}(a.u.)$	α(a.u.)	K
CH ₃	0.437	0.898	-0.26907	0.01613	0.28520	47.70	283
C_2H_5	0.568	0.767	-0.26625	0.01810	0.28435	58.90	249
$n-C_3H_7$	0.692	0.643	-0.26579	0.01853	0.28432	69.83	2
n-C ₄ H ₉	0.824	0.511	-0.26540	0.01881	0.28421	80.85	219
$n-C_5H_{11}$	0.948	0.387	-0.26518	0.01898	0.28416	91.91	216
$n-C_{6}H_{13}$	1.079	0.256	-0.26506	0.01908	0.28414	102.99	216
$n-C_7H_{15}$	1.204	0.131	-0.26499	0.01912	0.28411	114.09	213
$n-C_8H_{17}$	1.335	0.000	-0.26494	0.01917	0.28411	125.22	208
$n - C_9 H_{19}$	1.460	0.125	-0.26490	0.01918	0.28408	136.36	215
$n - C_{10}H_{21}$	1.591	0.256	-0.26488	0.01921	0.28409	147.51	233
$n - C_{12}H_{25}$	1.847	0.512	-0.26486	0.01923	0.28409	169.84	270
$n - C_{14}H_{29}$	2.104	0.769	-0.26483	0.01924	0.28407	192.21	297
$n - C_{16} H_{33}$	2.360	1.025	-0.26482	0.01925	0.28407	214.59	308
$*R_{T_{g}}$	0.4724	0.8629	-0.2482	-0.2459	0.2530	0.4741	

*: R_{T_g} represents the related coefficient between descriptor and T_g .

	· .	Table 2 The e	ffect of the nur	mber (B) of braining	nched chain o	of isomers on T_g	ţ.	
R	R	L	<i>E</i> (a.11.)	E(a 11.)	ΔF (a.u.)	C_{v}	E	$T_{\rm g}$
	Б	nm	2 HOMO(arai)	2 LUMO(and I)	<u>–</u> D _g (and)	$J \cdot mol^{-1} \cdot K^{-1}$	kJ∙mol ⁻¹	K
<i>n</i> -butyl	1	0.824	-0.26540	0.01881	0.28421	162.00	567.89	219
iso-butyl	2	0.693	-0.26626	0.01792	0.28418	164.64	566.47	249
sec-butyl	2	0.649	-0.26473	0.01927	0.28400	164.89	566.60	251
t-butyl	3	0.566	-0.25926	0.01875	0.27801	169.87	563.58	316
<i>n</i> -pentyl	1	0.948	-0.26518	0.01898	0.28416	43.55	154.53	216
3-methylbutyl	2	0.827	-0.26683	0.01811	0.28494	44.00	154.32	228
2-methylbutyl	2	0.822	-0.26588	0.01819	0.28407	44.17	154.28	241
3-pentyl	2	0.689	-0.26088	0.01754	0.27842	44.20	154.14	267
neopentyl	3	0.675	-0.26326	0.01480	0.27806	44.98	153.87	295
$R_{T_{\rm g}}$	0.9155	-0.8628	0.8138	-0.4538	-0.8818	0.1716	0.1407	

表2 侧链异构体的支链分支数B对 T_g 的影响 ble 2 The effect of the number (B) of branched chain of isomers on

位垒增加,从而使T_g升高;另一种则认为长而柔的 侧链推开相邻的分子链,使链段易于运动,反而会 降低T_g.通过以上的研究分析可以看出,在侧链较长 时符合前一种观点,而在侧链较短时则符合后者, 以上的理论模型较合理地解释这两类情况,统一了 这两种观点.

2.2 分支数(B)对Tg的影响

分支数(*B*)是指取代基R₆上的支链个数.由于侧链长度对T_g有明显的影响,因此分两种情况讨论侧链的分支数(*B*)对T_g的影响.

2.2.1 取代基异构对Tg的影响

对4种聚丙烯酸丁酯和5种聚丙烯酸戊酯的异 构体进行优化计算,得到的部分量子化学参数以及 *T*。的实验数据列于表2.

从表2中的4种聚丙烯酸丁酯和5种聚丙烯酸戊 酯同分子异构体的 T_g 与各参数的相关系数可以看出, T_g 与侧链 R_6 上的B有很高的正相关性,相关系数 R_{T_g} 为 0.9155,与L为负相关,相关系数 R_{T_g} 为-0.8628,表明 对侧链异构体,B增大,L就会减小,在一定的侧链 长度范围内 T_g 升高. 表3列出了L基本相等的5种聚丙烯酸酯的部分 量子化学参数以及T。的实验数据.

从表3可以看出,当L基本相等时,5种聚丙烯酸 酯的B和T_g的相关系数为0.9212,表明支链数目增 加,T_g升高.从表3还可以看出,随着B的增大,极化 率(a)增大,说明B增大,分子更容易发生极化而使 静电作用力增强,分子间作用力增大,T_g升高.热力 学参数与T_g也有很高的相关性,从表3可见,等体积 比热容(C_v)和内能(E)与T_g的相关系数分别为0.9011 和0.8714.内能(E)为分子内部的一切能量,包括系 统的平动能、转动能、振动能、电子结合能、原子核 能等,E可以衡量分子运动的剧烈程度,E越小,C_v越 大,表明分子的基态更稳定,则通过加热使分子热 运动加剧到同种程度所需要的能量更多,所需的温 度更高,则T_g越高.

2.3 不同取代基对Tg的影响

分析讨论了当 R_6 为CH₂-CN, CH₂-F, CH₂-CH₃, CH₂CH₂-CN, CH₂CH₂-OH, CH₂CH₂-CH₃等不同取 代基时聚丙烯酸酯类 T_8 的变化规律, 它们的量子化 学计算结果和 T_8 实验数据列于表4.

2.2.2 L基本相等时B对Ta的影响

从表4可以看出,在L基本相等的情况下,Tg与

表3 侧链长度L相等时分支链数B对T _g 的影响	
-------------------------------------	--

Table 3	The effect of th	e number of b	branched chains	on $T_{\rm g}$ at the same	length of side chain

R	R		Eugano(a.u.)	$E_{\rm unio}(a.u.)$	$\Delta E_{\rm s}(a_{\rm H})$	$10^{30}\mu$	<i>α</i> (a.u.)	C_V	E	$T_{\rm g}$
0	Б	nm	-HOMO((()))	-LUMO()	_ g(u.u.)	C∙m	u(u.u.)	$J \cdot mol^{-1} \cdot K^{-1}$	$J \cdot mol^{-1}$	Κ
<i>n</i> -propyl	1	0.692	-0.26579	0.01853	0.28432	6.36	69.829	141.921	489.126	236
iso-butyl	2	0.693	-0.26626	0.01792	0.28418	6.39	80.263	164.640	566.463	249
sec-butyl	2	0.649	-0.26473	0.01927	0.28400	5.79	80.003	164.887	566.597	251
3-pentyl	2	0.689	-0.26088	0.01754	0.27842	6.52	90.339	184.498	646.173	267
neopentyl	3	0.675	-0.26326	0.01480	0.27806	6.85	90.170	188.196	643.817	295
R_{T_g}	0.9212	-0.1574	0.6175	-0.9029	-0.8865	0.6613	0.8715	0.9011	0.8714	

表4 不同的取代基对T。的影响

Table 4 The effect of different substituent on T_g						
D	L	E (a.v.)	q_{O_4}	$10^{30}\mu$	T_{g}	
\mathbf{R}_{6}	nm	$L_{HOMO}(a.u.)$	(a.u.)	C·m	K	
CH_2 – CN	0.567	-0.29410	-0.46608	9.65	433	
CH ₂ –F	0.518	-0.28223	-0.47346	3.95	288	
CH_2 – CH_3	0.571	-0.26625	-0.47833	6.13	249	
CH ₂ CH ₂ -CN	0.715	-0.28471	-0.46580	14.85	388	
CH ₂ CH ₂ -OH	0.665	-0.27257	-0.46971	6.17	258	
$CH_2CH_2-CH_3$	0.692	-0.26579	-0.47830	6.37	236	
$R_{T_{\rm g}}$	-0.0469	-0.9312	0.8515	0.7261		

最高占据轨道能级(E_{HOMO}), O₄原子上的负电荷(q_{O_4}), 偶极矩(μ)有较高的相关系数, 而极性取代基–CN、 –OH、–F等使 E_{HOMO} 降低, μ 升高, 使 T_g 升高.

2.4 结构与Tg的定量关系

2.4.1 模式识别-偏最小二乘分析

将38种聚丙烯酸酯按T_g大小分为2类, T_g小于 260 K的20个样本作为第1类样本,大于和等于260 K的18个样本为第2类样本,对计算所得到的量子化 学和其他结构参数进行筛选删除影响较小的参数, 留用IL-1.335I, E_{HOMO}, E_{LUMO}, q_{C1}, α等5个参数作为偏 最小二乘分析(partial least squares, PLS)方法的特征 变量进行计算,计算结果见图3. 从图3可见, T_g较低 的聚合物(●)分布在左边PLS1值较小的区域, PLS 的表达式的各项系数为标准化系数, 其绝对值越大, 表明对PLS的贡献越大. IL-1.335I对PLS1影响最显 著且为正相关, IL-1.335I越大, T_g越高, 表明L大于或

 Fig. 3
 The classification of T_g (PLS method)

 PLS1=8.60×|L-1.335|-0.357 E_{LLMO} +0.261 q_{C1} +

 0.241 E_{HDMO} +0.0048 α ; PLS3=-2.88×|L-1.335|

 0.923 E_{LLMO} -0.129× q_{C1} -0.195 E_{HOMO} +0.0094 α ;

 $\bullet: T_g < 260$ K; $\bigcirc: T_g \ge 260$ K

小于1.335 nm时, *T*_g都会升高. 其次为*E*_{LUMO}, *E*_{LUMO}与 *T*_g负相关, *E*_{LUMO}越小, 电子越易从HOMO迁移到 LUMO发生分子间电荷转移, 使分子间相互作用越 强; 因此PLS1表达式中的*E*_{LUMO}的系数为负, *q*_{C1}系数 为正, 表明C₁上的电荷越正, 静电作用越强, *T*_g升高. 2.4.2 逐步回归

将38种聚丙烯酸酯分为两组,一组为33种聚合物,作为训练集,其余5种作为测试集,对训练集用逐步回归方法得到的关于T_g的回归方程:

 T_{g} =-1277.42+96.4320×|L-1.335|-3362.95 E_{HOMO} -

 $1086.2622 \ q_{\rm Cl} + 4.1011 \times C_V - 1.00478 \ E \tag{1}$

回归方程(1)的相关系数R=0.9801,标准偏差S= 15.45,统计量F=84.71,对于测试集,预报结果与实 验结果的相关系数R=0.9753, S=18.42, F=58.55.根 据方程(1), T_s的计算值见图4.

回归方程(1)中, *L*、*C_v*、*E*对*T*g的影响与在前面讨论的一致.方程还表明, 主链上C₁原子所带的负电荷越多, 则*T*g升高, 说明主链上C₁原子与其他原子的静电作用使主链碳原子的内旋转位垒升高, *T*g升高. 2.4.3 人工神经网络

由于影响T。的因素不仅复杂,而且可能是非线

Fig.5 Plot of calculated *versus* experimental *T_s* values by ANN

表5 逐步回归和人工神经网络建立的QSPR的统计品质

Table 5Statistic quality of QSPR models for the stepwise

and ANN n	nethods			
Methods	Sets	R	F	S
stanuisa ragrassian	train	0.9801	84.71	15.45
stepwise regression	test	0.9753	58.55	18.42
ANTNI	train	0.9989	14940.37	3.30
AININ	test	0.9985	1019.25	4.25

R: coefficient of correlation; F: fisher significant test;

S: standard deviation

性关系,而人工神经网络方法是处理这类问题的一种有效方法.本文采用3层反向人工神经网络,以B、 L-1.3351、E_{HOMO}、E_{LUMO}、ΔE_g、q_{C1}、E、C_V、α等9个参数 作为输入变量,隐含层取6个结点,训练次数为 10000次,以相同的33个样本做训练集,然后用训 练好的网络对测试集5种样本的T_g进行预报,人工 神经网络T_g的计算值见图5.

2.4.4 逐步回归和 ANN 结果的比较

表 5 列出了逐步回归、人工神经网络所建立的 QSPR 模型的统计参数,其中 R 为拟合值与实验值 的相关系数, F 为显著性检验, S 为标准偏差,从表 5 可以看出,无论拟合结果还是预报结果, ANN 方 法均好于逐步回归方法, ANN 的预报结果的标准 偏差为 4.25,在实验允许的误差范围之内.

3 结 论

用DFT/6-31G(d)方法优化和计算了 38 种聚丙 烯酸酯类结构单元的量子化学参数,用模式识别, 线性回归和人工神经网络方法分析了影响聚丙烯 酸酯类的 T_g的因素.计算表明,影响 T_g的主要结构 因素有侧链长度、支链数、最高占据轨道能级、最低 空轨道能级、极化率、主链碳原子所带的电荷以及 等体积热容、内能等参数.模式识别不同范围内的 *T*_g基本分布在不同的区域,逐步回归和人工神经网 络方法的计算结果与实验值的相关系数分别为 0.9753、0.9985,标准偏差分别为 18.42、4.25,预报结 果与实验值基本一致,且人工神经网络方法的结果 优于线性逐步回归的结果.量子化学参数可以对物 质性能的本质进行合理的解释,并能对性能进行定 量预报,可望进一步用于其他聚合物结构-性能定 量关系的研究以及作为高分子设计的参考依据.

References

- He, M. J.; Chen, W. X.; Dong, X. X. Physical of macromolecules. Shanghai: Fudan University Press, 2001: 34 [何曼君, 陈维孝, 董 西侠. 高分子物理. 上海: 复旦大学出版社, 2001: 34]
- Dai, J. F.; Liu, S. L.; Chen, Y.; Cao, C. Z. Acta Polymerica Sinica,
 2003, 1: 343 [戴静芳, 刘胜利, 陈 勇, 曹晨忠. 高分子学报 (Gaofenzi Xuebao), 2003, 1: 343]
- Chen, H.; Han, L. J.; Xu, P.; Luo, P. Y. Acta Phys.-Chim. Sin.,
 2003, 19(11): 1020 [陈 洪, 韩利娟, 徐 鹏, 罗平亚. 物理化学 学报(Wuli Huaxue Xuebao), 2003, 19(11): 1020]
- Brian, E. M.; Peter, C. J. J. J. Chem. Inf. Comput. Sci., 2004, 44(3):
 912
- 5 van Krevelen, D. W. Properties of polymer. 3rd ed. New York: Elsevier, 1990: 34
- Bicerano, J. Prediction of polymer properties. New York: Marcel Dekker Inc., 1993: 1
- 7 Wang, B. L.; Ma, N.; Wang, J. G.; Ma, Y.; Li, Z. M.; Li, Y. H. Acta Phys.-Chim. Sin., 2004, 20(6): 577 [王宝雷, 马 宁, 王建 国, 马 翼, 李正名, 李永红. 物理化学学报(Wuli Huaxue Xuebao), 2004, 20(6): 577]
- Yeong, S. K.; Jae, H. K.; Jung, S. K. J. Chem. Inf. Comput. Sci., 2002, 42(1): 75
- 9 Errol, F. M.; Matthew, J. S. J. Chem. Inf. Comput. Sci., 2003, 43
 (2): 545
- Jane, D. D.; Svava, O. J. Carbohydrate Research, 2004, 339(1):
 269
- Tan, Y. Q.; Huang, W. J.; Wang, X. Y. *Tribology International*, 2002, 35: 381
- Jane, D. D.; Kjeld, R.; Svava, O. J. J. Mol. Model., 2002, 8(9):
 277
- Zhang, G. L.; Dai, B. Q.; Wei, Y. D.; Dong, S. S. Chem. J. Chinese Universities, 2002, 23(2): 249 [张桂玲, 戴柏青, 韦永

德, 董绍胜. 高等学校化学学报 (Gaodeng Xuexiao Huaxue Xuebao), 2002, 23(2): 249]

14 Chen, N. Y.; Qin, P.; Chen, R. L.; Lu, W. C. Applications of pattern recognition in chemistry and chemical industry. Beijing: Science Press, 2000: 23 [陈念贻, 钦佩, 陈瑞亮, 陆文聪. 模式 识别方法在化学化工中的应用. 北京: 科学出版社, 2000: 23]

Brandrup, J. Polymer handbook (VI). 4th ed. New York: Wiley, 1999: 198

Quantum Chemistry-ANN Methods Study on T_g of Polyacrylates^{*}

LIU, Wan-Qiang¹ WANG, Xue-Ye¹ LI, Xin-Fang¹ LONG, Qing-Ping¹ WEN, Xiao-Hong¹ LI, Jian-Jun² (¹College of Chemistry, Xiangtan University, Xiangtan 411105; ²Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing 210005)

Abstract The mechanism and affecting factors of the glass transition for polymers have been analyzed. The structural units of thirty-eight polyacrylates have been optimized and their quantum chemical descriptors have been obtained by DFT/6-31G(*d*) method. The calculated results indicate that the length of side chain, number of side chains, polarizability, dipole moment, E_{HOMO} , heat capacity at constant volume, and thermal energy are the main factors affecting glass transition temperature(T_g). The regularity of T_g for polyacrylates are discussed by the pattern recognition method (PLS) with quantum chemical descriptors as features. The two classes of polymers with different T_g distribute in different regions. The quantitative relationship have been studied between these descriptors and T_g by stepwise regression and BP-ANN (back propagation artificial neural network) methods. The correlation coefficients between the predicted and experimental T_g for the two methods are 0.9753 and 0.9985, and the standard deviations are 18.42 and results 4.25, respectively.

Keywords: Polyacrylates, Glass transition temperature, Quantum-chemical descriptors, QSPR, ANN

Received: October 15, 2004; Revised: December 10, 2004. Correspondent: WANG, Xue-Ye(E-mail: wxueye@xtu.edu.cn; Tel: 0732-8292206). *The Project Supported by NSF of Hunan Province (02JJY2019) and the Mid-youth Science and Technology Foundation of Hunan Province(01JZY2099)