[Article]

www.chem.pku.edu.cn/whxb

柠檬酸溶胶-凝胶法制备的Ce_{1-x}Zr_xO₂:结构及其氧移动性

叶青 王瑞璞 徐柏庆*

(清华大学化学系,有机光电子与分子工程教育部重点实验室,分子催化与定向转化研究室,北京 100084)

摘要 采用 XRF、XRD、Raman、XPS、H₂-TPR 以及与氩离子刻蚀相结合的 XPS 等表征技术对柠檬酸溶胶-凝胶 法制备的 Ce_{1-x}Zr_xO₂(0 $\leq x \leq$ 1)样品的结构及其氧移动性进行了研究. 结果表明, Ce_{1-x}Zr_xO₂样品的晶型结构对其 中氧的移动性有明显影响. 当 $x \leq$ 0.15 时, Ce_{1-x}Zr_xO₂ 以立方 CeO₂ 相 Ce-Zr-O 固溶体存在, 随着 Zr 含量的逐渐 增加, CeO₂ 晶胞体积减小、氧空位浓度增加, 氧移动性逐渐增强; 当 x > 0.15 时, 形成四方 ZrO₂ 相和立方 CeO₂ 相 Ce-Zr-O 固溶体的混合物, 随着 Zr 含量的逐渐增加, 四方 ZrO₂ 相的含量增加、氧空位浓度减小, 氧移动性逐渐减 弱. 因此, Ce_{0.85}Zr_{0.15}O₂ 样品具有最高的氧移动性.

关键词: Ce₁₋₃Zr₃O₂,溶胶-凝胶法,氧移动性,氧空位,CeO₂基固溶体 中图分类号: O643

Structure and Oxygen Mobility of Ce_{1-x}Zr_xO₂ Prepared by Citric Acid Sol-gel Method

YE, Qing WANG, Rui-Pu XU, Bo-Qing*

(Innovative Catalysis Program, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China)

Abstract The structure and oxygen mobility of $Ce_{1-x}Zr_xO_2$ ($0 \le x \le 1$) samples prepared by citric acid sol-gel method were characterized by XRF, XRD, Raman, XPS, Ar⁺ etching-XPS and H₂-TPR. The data showed that the crystalline structure of $Ce_{1-x}Zr_xO_2$ can significantly affect the oxygen mobility. When $x \le 0.15$, the samples were found to exist as cubic Ce-Zr-O solid solutions. An increase in *x* resulted in a shrinking of the crystal unit volume, an increasing in the number of oxygen vacancies, and an increasing in the oxygen mobility as well. When x > 0.15, $Ce_{1-x}Zr_xO_2$ existed in a mixed phases of tetragonal and cubic Ce-Zr-O solid solutions; the percentage of tetragonal phase increased, oxygen vacancies decreased and oxygen mobility reduced with increasing *x* in these samples. Therefore, this present work shows that oxygen mobility in the $Ce_{045}Zr_{015}O_2$ sample is the highest.

Keywords: Ce_{1-x}Zr_xO₂, Sol-gel method, Oxygen mobility, Oxygen vacancy, CeO₂-based solid solution

自 20 世纪 90 年代以来, CeO₂ 被广泛应用于各种催化剂体系中, 其作用主要集中在: (1)促进贵金属的分散性和稳定性^[1]; (2)通过Ce⁴⁺/Ce³⁺变换2CeO₂=Ce₂O₃+1/2O₂(氧化气氛中为CeO₂,还原气氛中为Ce₂O₃)^[2],表现出优良的储氧能力(OSC),有助于消除汽车尾气中的NO_x、CO和碳氢化合物(HC).因此, CeO₂

成为 CO 氧化¹³,水煤气变换(WGS)和三效催化转化 技术中的有效添加剂.但由于 CeO₂本身的热稳定性 较差,容易烧结,使其储氧性能受损¹⁴,限制了CeO₂的 应用效果,因此提高其热稳定性和储氧能力具有重 要的意义.人们发现在 CeO₂ 中添加过渡金属和非 金属¹⁵⁻⁰,如: Al³⁺, Si⁴⁺, Ti⁴⁺, Zr⁴⁺,可以改善CeO₂的热稳

Received: June 15, 2005; Revised: July 12, 2005. *Correspondent, E-mail: bqxu@mail. tsinghua. edu. cn; Tel&Fax: 010-62792122. 国家自然科学基金(20125310, 20590360)资助项目

©Editorial office of Acta Physico-Chimica Sinica

定性和储氧能力,其中以 Ce_{1-x}Zr_xO₂ 为最好.而且 Ce_{1-x}Zr_xO₂本身对 CO、CH₄和 C₂H₆的催化氧化具有 较好的活性^[7-11].有关CeO₂-ZrO₂的氧化还原性和储 氧能力(OSC)的报道很多^[12-13],但对其氧移动性研 究较少,而氧化物的氧移动性对催化氧化反应和抑 制催化剂失活起着重要的作用.例如: Ce部分取代La 形成具有高氧移动性的缺陷结构La_{1-x}Ce_xCoO₃,可 明显提高甲烷催化燃烧反应活性^[14].有高氧移动性 的Ph/Pr-Ce对N₂O分解反应的活性明显高于 Rh/CeO₂ ^[15].Ce_{1-x}Zr_xO₂ 的制备方法有很多,如:高能球磨法、 共沉淀法、溶胶-凝胶法和水热法等^[1617],其中溶胶-凝 胶技术制备了系列 Ce_{1-x}Zr_xO₂样品,研究了它们的 组成、结构和氧移动性的关系.

1 实验部分

将不同比例的 Ce(NO₃)₃·6H₂O(分析纯, 北京新 华化学试剂厂)和 ZrO(NO₃)₂·2H₂O(分析纯, 北京刘 李店化工厂)溶液加入到等摩尔的柠檬酸(分析纯, 北 京益利精细化学品有限公司)溶液中, 得混合液. 将 混合液在 95~100 ℃搅拌下蒸发至透明凝胶, 将凝胶 在 120 ℃烘干, 然后再在 800 ℃焙烧 5 h, 得到不同 组成 Ce_{1-x}Zr_xO₂ 样品.

采用日本岛津生产的 XRF-1700 型 X 荧光分析 仪测定样品组成,用 Rh 靶作为激发源,40 kV、70 mA,质量比为 1:1 纯 CeO₂和 ZrO₂为标定物,结果 (表 1)表明测得组成与投料组成相一致; XRD 测试 在 Bruker 公司 D8 型 X 射线粉末衍射仪上进行,Cu K_{α} 射线,Ni滤光源,光源波长为 λ =0.15418 nm,扫描 速率为0.02 (°)·s⁻¹,管压40 kV,管流30 mA. Raman 光谱测定在Renishaw 的 RM2000 型共焦显微拉 曼仪上进行,He-Ne 激光(623.8 nm),扫描范围为50~ 1000 cm⁻¹, 扫描步长为1 cm⁻¹; X射线光电子能谱 (XPS)在AEM PH15300型X射线光电子能谱仪上进 行, Al K_{α} 靶, 分辨率大于0.1 eV, 利用污染碳(C 1*s*, E_{B} =284.6 eV) 为内标校正能量标尺, 1.33×10⁻⁷ Pa. 样品在测量前预先在650 ℃用CO₂处理20 min; Ar 离子刻蚀-XPS(Ar⁺刻蚀-XPS), 在 Leybold-Heraeus-Shenyang SKL-12 生产的 VG CLAM4 能谱仪上完 成. 样品测试采用 Al K_{α} (1486.5 eV), 仪器腔内压强 1.07×10⁻⁷ Pa. 采用 AG21Ar⁺离子枪对样品做大束斑 刻蚀, 加速电压 2~3 kV, 工作电流 20 µA.

H₂-TPR 测试在自制的程序升温还原装置上进 行, 热导池检测, 样品用量 50 mg, 样品在 Ar 气中 600 ℃ 预处理 2 h, 以脱除表面吸附的碳酸根^[18], 降至 室温后, 切换流速为20 mL • min⁻¹ 的 5% H₂/N₂ 混合 气, 以 15 ℃ • min⁻¹ 的速率升温至 950 ℃, 然后保持 恒温 30 min.

2 结果与讨论

2.1 Ce_{1-x}Zr_xO₂的结构特点

通常在温度低于 1400 ℃时, Ce_{1-x}Zr_xO₂ 可以立 方相、四方相、单斜相以及 t、t'、t'亚稳相形式存在.由 于阳离子(Ce⁴⁺和 Zr⁴⁺)的扩散速率远小于氧离子(O²⁻) 的扩散速率^[19], 文献中有关 Ce_{1-x}Zr_xO₂ 样品晶相组成 的数据差别较大.我们采用 XRD、Raman 和 Ar⁺刻 蚀-XPS 对 Ce_{1-x}Zr_xO₂ 的晶相结构进行了表征.

2.1.1 X-ray diffraction (XRD)

图 1 和表 1 为 XRD 结果. 可以看出, $x \le 0.15$ 时, 只出现立方 CeO₂ 相(PDF34-0394), 相应的 CeO₂ 相衍射峰从 x=0 时的 $2\theta \approx 28.6^{\circ}$, 47.68°位移至 x= 0.15 时的 $2\theta \approx 29^{\circ}$, 48°, 晶胞参数 "*a*"从 0.5427 nm 减少到 0.5391 nm, 这是由于离子半径小于 Ce⁴⁺ (0.094 nm)的 Zr⁴⁺(0.086 nm)^[20]进入 CeO₂晶格中, 使

$\overline{\alpha}$ I $Ce_{1-x}Cr_xU_2$ 件吅的组成、比衣囬怀、U IS-AFS 他还尽行	表 1	$Ce_{1-x}Zr_xO_2$ 样品的组成、比表面积、O 1s-XPS 和还原特点
--	-----	---

		_				_	
Sample	<i>x</i> *	$S_{\text{BET}}/(\text{m}^2 \cdot \text{g}^{-1})$	a/nm	O 1 <i>s</i> -XPS ^{**}			TPR
				A_1	A_2	A_2/A_1	Y(%)***
ZrO_2	0.99	2.63	-	26141	12612	0.48	_
$Ce_{\scriptscriptstyle 0.2}Zr_{\scriptscriptstyle 0.8}O_{\scriptscriptstyle 2}$	0.80	3.00	0.5176	27416	23040	0.84	97.2
$Ce_{0.5}Zr_{0.5}O_2$	0.51	17.1	0.5289	-	-	-	43.8
$Ce_{0.75}Zr_{0.25}O_2$	0.25	32.1	0.5426	28620	30014	1.05	70.7
$Ce_{0.85}Zr_{0.15}O_2$	0.16	34.3	0.5391	31823	36266	1.14	74.9
$Ce_{0.95}Zr_{0.05}O_2$	0.06	23.1	0.5418	28446	28686	1.01	66.6
CeO_2	0.00	8.90	0.5427	30850	21943	0.71	37.4

Table 1 Composition, surface area, O 1s-XPS and H_2 -TPR data of $Ce_{1-x}Zr_xO_2$ samples

*x in Ce₁₋₃Zr₂O₂ measured by XRF; **A₁ and A₂ denote the XPS peak area shown in Fig.4; *** reduction percentage of CeO₂(%)

图 1 $Ce_{1-x}Zr_xO_2$ 样品的 X 射线衍射图

Fig.1 XRD patterns of Ce_{1-x}Zr_xO₂ samples

(1) *x*=0; (2) *x*=0.05; (3) *x*=0.15; (4) *x*=0.25; (5) *x*=0.5; (6) *x*=0.8; (7) *x*=1

CeO₂晶胞收缩所致, 表明此时形成了具有立方CeO₂ 相结构的Ce-Zr-O固溶体. 这与Roitti等^[21]的研究结 果相一致. 当样品中x > 0.15时, 衍射峰呈现不对称 性, 对峰形解叠表明在这些样品中同时存在四方 ZrO₂相和立方CeO₂相, CeO₂相的衍射峰从x=0.25时的 $2\theta \approx 29^{\circ}$, 47.8°移至x=0.8时的 $2\theta \approx 29.8^{\circ}$, 49.6°, 晶格参数"*a*"从 0.5426 nm 减少到 0.5176 nm. 表明此时的立方CeO₂相实际上也是Ce-Zr-O固溶 体相. 因此, x > 0.15时, 样品为四方ZrO₂相和立方 CeO₂相Ce-Zr-O固溶体的混合物. 纯ZrO₂(x=1)以四 方相和单斜相(28.1°和31.3°)混合相存在.

2.1.2 Raman 和 Ar+ 刻蚀-XPS

XRD 技术对高分散和低浓度组分敏感性较低, 难以测定 Ce_{1-x}Zr_xO₂ 结构中可能存在的 *t*、*t*'和*t*"亚稳 相^[22].考虑到Raman技术对于M—O伸缩有较好的敏

图 2 Ce_{1-x}Zr_xO₂样品的 Raman 谱图

- Fig.2 Raman spectra of $Ce_{1-x}Zr_xO_2$ samples
 - (1) *x*=0; (2) *x*=0.05; (3) *x*=0.15; (4) *x*=0.25; (5) *x*=0.5; (6) *x*=0.8; (7) *x*=1

感性^[23],我们对 Ce_{1-x}Zr_xO₂ 样品的结构采用 Raman 技术进行了表征,结果见图 2.可以看出,当 $x \le 0.15$ 时,只在465 cm⁻¹处显示了 F_{2g} 立方结构特征峰(*Fm3m* 空间点群)^[24];而在x > 0.15时,不仅有465 cm⁻¹处的立 方结构特征峰,而且在142、254、316、455、590和 613 cm⁻¹处出现了与 $A_{1g}+2B_{1g}+3E_{g}$ 振动有关的四方ZrO₂相 的Raman 特征峰(空间点群*P*42/*nmc*)^[25].图中未出现 $t,t'和t''亚稳相^[19].纯ZrO_2(x=1)中只存在四方相(146、$ 266、317、333、456、474、641 cm⁻¹)和单斜相(178、191、222、348、503、537、562、617 cm⁻¹),不存在立方相,这与XRD和Ce_{1-x}Zr_xO₂相图^[20]结果相一致.

为进一步验证以上结果,对 Ce_{1→}Zr_xO₂ 进行了 Ar⁺刻蚀-XPS 分析,结果见图 3. 由图 3 可以看出,对 于 Ce_{0.2}Zr_{0.8}O₂,随着刻蚀时间增加, *n*_Z /*n*_C 比值迅速 减少,然后基本保持稳定,表明此样品的表面"浅层" 部分 ZrO₂较多,而深层部分 *n*_Z /*n*_C 比变化较小表明 形成了均匀的Ce-Zr-O固溶体.对于Ce_{0.5}Zr_{0.5}O₂, *n*_Z / *n*_C 比只是在开始部分缓慢减少,然后保持稳定,表 明此时 ZrO₂较少,样品主要以 Ce-Zr-O 固溶体形式 存在.对于 Ce_{0.85}Zr_{0.15}O₂, *n*_Z /*n*_C 比例随着刻蚀时间增 加保持不变,表明 Ce 和 Zr 分布均匀,它们完全形 成了 Ce-Zr-O 固溶体,这与 XRD 和 Raman 的结果 相一致.

2.2 Ce_{1-x}Zr_xO₂的氧移动性

2.2.1 O 1s-XPS

由于氧在CeO2中的扩散是空位机理¹²⁰,所以氧空 位与氧的移动性密切相关,而氧空位可以通过O 1*s*-XPS检测.图4为Ce_{1-x}Zr_xO2的O 1*s*-XPS谱图,由图可 见,O 1*s*-XPS由双峰组成,结合能较低的峰(*E*_b=529.5

Fig.3 Curves of n_{Zr}/n_{Ce} vs Ar⁺-etching time of Ce_{1-x}Zr_xO₂ samples

(3) x=0.15; (5) x=0.5; (6) x=0.8

图 4 Ce_{1-x}Zr_xO₂样品的 O 1s-XPS 谱图

Fig.4 O 1*s*-XPS spectra of Ce_{1-x}Zr_xO₂ samples (1) *x*=0; (2) *x*=0.05; (3) *x*=0.15; (4) *x*=0.25; (6) *x*=0.8; (7) *x*=1

eV)为表面晶格氧,结合能较高的峰(E_b =532.3 eV) 为吸附氧(吸附水的-OH^[27]和CO₃⁻的C—O^[27]). 因为 Ce_{1-x}Zr_xO₂样品在测量前已用 CO₂在 650 °C 处理, 所以应该没有吸附水的XPS 信号.表 1 给出了由高 斯解析得到的晶格氧(A_1)和吸附氧(A_2)的 XPS 面积 结果. Palmqvist 等^[28]认为吸附氧的 XPS 峰源于氧 空位捕获的碳酸根物种,通过比较吸附氧的 XPS 峰 强度可以比较氧空位的量. 当 $x \le 0.15$ 时, Ce_{1-x}Zr_x-O₂ 以立方结构存在,随 x 逐渐减小,吸附氧峰面积 A_2 (或 A_2/A_1 比值)逐渐降低,即氧空位浓度降低;当x> 0.15 时, Ce_{1-x}Zr_xO₂ 以立方和四方相的混合物存在, 随着 x 减少,吸附氧面积 A_2 或(A_2/A_1)增加,即氧空位 增多. 因此, Ce₀₄₅Zr₀₁₅O₂样品具有最高的吸附氧峰面 积 A_2 (或最高的 A_2/A_1 比值),表明其氧空位最多. 2.2.2 H₂TPR

图 5 为 Ce_{1-x}Zr_xO₂ 的 H₂-TPR 结果. 纯 ZrO₂(x=1) 本身没有还原峰(图中未显示), 纯 CeO₂(x=0)的 TPR 谱线上出现了 Ce⁴⁺/Ce³⁺两个还原峰, 峰温分别为 550 和 880 °C; 其中的低温峰归属为表层 Ce⁴⁺/Ce³⁺的 还原, 高温峰归属为体相 Ce⁴⁺/Ce³⁺的还原^[3]. 有趣的 足, TPR 上出现的还原峰数目与样品中 Zr 浓度密切 相关, 当 x < 0.5 时, 在 548~640 °C和 741~850 °C存 在两个还原峰; $x \ge 0.5$ 时, 只存在一个低温还原峰, 表明此时表面和体相中的 Ce⁴⁺同时被还原. 样品中 Ce⁴⁺还原程度随 Zr 浓度增加而增加, 从纯 CeO₂ 的 37.4% 增加到 Ce_{0.2}Zr_{0.8}O₂ 的 97.2%.

TPR 谱线上的还原峰温度的高低表征了样品 中氧的移动性,还原峰温越低说明氧的移动性越高.

图 5 Ce_{1-x}Zr_xO₂样品的 TPR 谱图

Fig.5 TPR profiles of $Ce_{1-x}Zr_xO_2$ samples

(1) x=0; (2) x=0.05; (3) x=0.15; (4)x=0.25; (5) x=0.5;
(6) x=0.8. 950 °C/30 min on the abscissa indicates that the temperature was kept constant at 950 °C for 30 min.

Ce_{1-x}Zr_xO₂ 低温还原峰温(LT)和高温还原峰温(HT) 与 Zr 浓度和样品结构密切相关. 立方相固溶体结构的 Ce_{1-x}Zr_xO₂ 样品($x \le 0.15$)随着 Zr 浓度增加, LT 和 HT 均向低温方向移动, 并在以 x=0.15 时移动最大, 即氧移动性随 x 增加而增大. 对于四方和立方相 混合的 Ce_{1-x}Zr_xO₂ 样品(x > 0.15)随 Zr 浓度增加, LT 逐渐向 HT 靠拢, 并最初终变为一个高温峰, 清楚地 表明氧的移动性随 x 增大而降低. 因此, 在本研究中 Ce₀₃₅Zr₀₁₅O₂ 表现出最低的 LT 和 HT, 即具有最高氧 移动性.

对于立方结构Ce1-xZrxO2,随着Zr含量的增加,氧 移动性增强,这可能是因为离子半径较小的Zr++部分 取代Ce4+,缩小了CeO,的晶胞体积,产生了缺陷,使 氧空位增加(图4)的结果,由于氧在立方CeO2中的扩 散符合空位机理^[20],所以随着Zr含量的逐渐增加,氧 离子迁移能减少,有利于氧的移动. Balducci等网的 理论模型结果表明,在立方相结构的Ce1-,Zr,O2中, Zr4+的存在能有效地降低氧移动的活化能,且随着 Zr+的增多活化能呈线性下降.对于混合晶相结构的 Ce₁₋₇Zr₂O₂, 氧移动性则是随Zr含量的增加而减弱. Fair研究了B-Si体系^[30]和Power等研究了多晶相 B-Al₂O₃体系^[31],认为对于多晶混合型化合物,由于颗粒 边界存在多相异性,氧在边界的扩散是氧移动的控 制步骤,所以对于混合晶型结构的Ce1-xZrxO2,随着四 方结构成分的增加,多相异性增加,氧移动的活化能 增加,而且另一方面,在混合晶相的Ce_{1-x}Zr_xO₂样品 体系中,氧空位浓度随 Zr 含量增加而减少 (图 4),也 导致了氧的移动性降低.

3 结 论

(1) 采用柠檬酸溶胶-凝胶法制备的Ce_{1-x}Zr_xO₂中, 当 $x \le 0.15$ 时, Ce 和 Zr 形成立方 CeO₂ 相 Ce-Zr-O 固溶体; 当 x > 0.15 时, Ce 和 Zr 形成四方 ZrO₂ 和立 方 CeO₂ 相 Ce-Zr-O 固溶体的混合物.

(2) Ce_{1-x}Zr_xO₂ 的O 1s-XPS和H₂-TPR结果表明, x ≤ 0.15 时,随着 Zr 含量的增加,氧空位和氧移动 性增加; x > 0.15 时,随着 Zr 含量增加,氧空位和氧 移动性降低. Ce₀₂₅Zr_{0.15}O₂样品中的氧移动性为最高.

References

- Harrison, B.; Diwell, A. F.; Hallett, C. *Platinum Metals Rev.*, **1988**, 32: 73.
- 2 Yao, H. C.; Yu Yao, Y. F. J. Catal., 1984, 86: 254.
- 3 Oh, S. H.; Eickel, C. C. J. Catal., **1988, 112**: 543.
- 4 Schmieg, S. J.; Belton, D. N. Appl. Catal. B, 1995, 6: 127
- 5 Liu, Y.; Zhong, B.; Peng, S. Y.; Wu, D., Fan, Y. Z.; Fan, W. H. Acta Phys.-Chim. Sin., 1996, 12(3): 265 [刘 源, 钟 炳, 彭少 逸, 吴 东, 樊彦贞, 范文浩. 物理化学学报 (Wuli Huaxue Xuebao), 1996, 12(3): 265]
- 6 Shangguan, R. C.; Ge, X.; Zhang, H. L. Acta Phys. -Chim. Sin.,
 1999, 15(6): 568 [上官荣昌, 葛 欣, 张惠良, 物理化学学报
 (Wuli Huaxue Xuebao), 1999, 15(6): 568]
- 7 Li, C. L.; Fu, Y. L.; Bian, G. Z. Acta Phys.-Chim. Sin., 2003, 19:
 902 [李春林, 伏义路, 卞国柱. 物理化学学报 (Wuli Huaxue Xuebao), 2003, 19: 902]
- Chen, K. D.; Yan, Q. J. Acta Phys.-Chim. Sin., 1996, 12: 990
 [陈开东, 颜其洁. 物理化学学报(Wuli Huaxue Xuebao), 1996, 12: 990]
- 9 Zhang, J. J.; Liu, Y. J.; Li, N.; Lin, B. X. Acta Phys.-Chim. Sin.,
 1999, 15: 15 [张继军, 刘英俊, 李 能, 林炳雄. 物理化学学报 (Wuli Huaxue Xuebao), 1999, 15: 15]
- Li, C. L.; Fu, Y. L.; Tu, K. Chinese Journal of Catalysis, 2004, 25
 (6): 450 [李春林, 伏义路, 屠 兢. 催化学报(Cuihua Xuebao), 2004, 25(6): 450]
- Wang, W. D.; Lin, P. Y.; Meng, M.; Hu, T. D.; Xie, Y. N.; Liu, T. Journal of the Chinese Rare Earth Society, 2002, 20(3): 265
 [汪文栋,林培琰, 孟 明, 胡天斗, 谢亚宁, 刘 涛. 中国稀土学报(Zhongguo Xitu Xuebao), 2002, 20(3): 265]
- 12 Xu, D. P.; Wang, Q. Y.; Zhang, G. M.; Li, L. P.; Su, W. H.

Chemical Journal of Chinese Universities, **2001**, **22**(4): 524 [许大鹏, 王权泳, 张弓木, 李莉萍, 苏文辉. 高等学校化学学报 (Gaodeng Xuexiao Huaxue Xuebao), **2001**, **22**(4): 524]

- Fornasiero, P.; Di Monte, R.; Ranga Rao, G.; Kaspar, J.; Meriani,
 S.; Trovarelli, A.; Graziani, M. J. Catal., 1995, 151: 168
- 14 Kirchnerova, I.; Alifanti, M.; Delmon, B. C. Appl. Catal. A, 2002, 231: 65
- 15 Imamura, S.; Tadani, J.; Saito, Y.; Okamoto, Y.; Jindai, H.; Kaito, C. Appl. Catal. A, **2000**, **201**: 121
- 16 Feng, C. G., Zhang, J. S., Wang, Y. J. Chinese Journal of the Ceramic Society, 2004, 32 (4): 502 [冯长根, 张江山, 王亚军. 硅酸盐学报(Guisuanyan Xuebao), 2004, 32(4): 502]
- 17 Luo, M. F.; Zhou, B.; Lin, R.; Chen, M.; Yuan, X. X.; Zheng, X. M. *Chinese Journal of Rare Earths*, 2000, 18(4): 275 [罗孟飞, 周 碧, 林 瑞, 陈 敏, 袁贤鑫, 郑小明. 稀土化学学报(Xitu Huaxue Xuebao), 2000, 18(4): 275]
- Laachir, A.; Perrichon, V.; Badri, A.; Lamotte, J.; Catherine, E.;
 Lavalley, J. C.; Fallah, J. El; Hilaire, L.; Normand, F. Le; Quemere,
 E.; Sauvion, G. N.; Touret, O. *J. Chem. Soc., Faraday Trans.*,
 1991, 87: 1601
- 19 Stubican, V. S.; Hellmann, J. R. Phase equilibria in some zirconia systems. Columbus: The American Ceramic Society, 1981: 25-36
- 20 Shannon, R. D. Acta Crystallogr. A, 1976, 32: 751
- 21 Roitti, S.; longo, V. Ceramurgia Int., 1972, 2(2): 97
- 22 McHale, A. E. Phase Diagrams for Ceramists Annual, 1991: 20
- 23 Knozinger, H.; Mestl, G. Top. Catal., 1999, 8: 45
- 24 Lin, X. M.; Li, L. P.; Li, G. S.; Su, W. H., Mater. Chem. Phys., 2001, 69: 236
- 25 Lopez, E. F.; Escribano, V. S.; Panizza, M.; Carnasciali, M. M.; Busca, G. J. *Mater. Chem.*, **2001**, **11**: 1891
- 26 Kofstad, P. Nonstoichiometry, diffusion, and electrical conductivity in binary oxides. New York: Wiley, 1972
- 27 Moulder, J.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy. 2nd. Eden Prairie: Perkin-Elmer Corporation, 1992
- 28 Palmqvist, A. E. C.; Wirde, M.; Gelius U.; Muhammed, M. NanoStructured Materials, 1999, 11(8): 995
- 29 Balducci, G.; Kaspar, J.; Fornasiero, P.; Graziani, M.; Islam, M. S.; Gale, J. D. J. Phys. Chem. B, **1997**, **101**(10): 1750
- 30 Fair, R. B. J. Electrochem. Soc., 1975, 122: 800
- 31 Power, R. W.; Mitoff, S. P. Solid electrolytes general principles, characterization, materials, application. New York: Academic Press, 1978: Chap. 9