[Article]

www.whxb.pku.edu.cn

LiNi_{0.05}Mn_{1.95}O₄的合成及其对Li⁺的离子交换热力学

董殿权* 刘维娜 刘亦凡

(青岛科技大学化工学院,山东青岛 266042)

摘要: 以乙酸锂、乙酸锰和乙酸镍为原料,采用溶胶-凝胶法合成出掺镍的尖晶石型锂锰氧化物 LiNi_{0.05}Mn_{1.95}O₄ 用 0.5 mol·L⁻¹ 的过硫酸铵对其进行酸改性后制得锂离子筛(记作 LiNiMn-H). 经测定 LiNi_{0.05}Mn_{1.95}O₄ 在酸改性过 程中Mn²⁺的溶出率仅为0.31%(*w*,质量分数), LiNiMn-H对锂离子的饱和交换容量达5.29 mmol (36.72 mg) Li⁺/g 离 子筛. 测定了 15、25、35、45 °C LiNiMn-H 在 H⁺-Li⁺体系吸附锂的离子交换等温线,并利用 Pitzer 电解质溶液理论 计算出该离子交换体系的活度系数,得到 H⁺-Li⁺交换的平衡常数 K_a 、 ΔG_m 、 ΔH_m 和 ΔS_m 等热力学参数. 结果表明, K_a 随温度的升高而降低, LiNiMn-H 对 Li⁺的选择性大于原来可交换阳离子(H⁺)的选择性, 吸附锂的过程是自发 过程($\Delta G_m < 0$), 该离子交换反应是放热反应.

关键词: LiNi_{0.05}Mn_{1.95}O₄; 锂离子筛; 热力学; Pitzer 电解质溶液理论 中图分类号: O642

Synthesis of LiNi_{0.05}Mn_{1.95}O₄ and Its Ion-Exchange Thermodynamics for Li⁺

DONG Dian-Quan* LIU Wei-Na LIU Yi-Fan

(College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong Province, P. R. China)

Abstract: A spinel lithium manganese oxide doped with nickel (LiNi_{0.05}Mn_{1.95}O₄) was prepared by a sol-gel method using acetic lithium, nickel and manganese as raw materials. The lithium ion-sieve (denoted as LiNiMn-H) was obtained by acidification of the obtained LiNi_{0.05}Mn_{1.95}O₄ with 0.5 mol·L⁻¹ (NH₄)₂S₂O₈. After testing, we found that the dissolution ratio of Mn²⁺ from LiNi_{0.05}Mn_{1.95}O₄ during the acid-modification process was only 0.31% (*w*, mass fraction) and the saturation ion-exchange capacity of LiNiMn-H for Li⁺ was 5.29 mmol (36.72 mg) Li⁺/g ion-sieve. The exchange isothermal curves of LiNiMn-H in the H⁺-Li⁺ system were measured at 15, 25, 35 and 45 °C and the average activity coefficients of the electrolyte were calculated using Pitzer electrolyte solution theory. Other thermodynamic constants, such as the equilibrium constants K_a , $\Delta G_{ns} \Delta H_{ms}$ and ΔS_{ns} were calculated during the exchange process. We conclude that the increase in temperature and that the selectivity of LiNiMn-H for Li⁺ is higher than the original ion H⁺. The exchange process is exothermic and the adsorption process occurs spontaneously ($\Delta G_m < 0$).

Key Words: LiNi_{0.05}Mn_{1.95}O₄; Lithium ion-sieve; Thermodynamics; Pitzer electrolyte solution theory

尖晶石型锂锰氧化物(LiMn₂O₄),因为其价格低 廉、毒性小以及具有离子记忆性能等优点,近年来引 起国内外学者的广泛关注,积极探索其在可充电电 池、催化剂、以及从海水、盐湖卤水等低浓度液态锂 资源中提取锂等领域的应用^[1-6].其中,在从低浓度 液态锂资源中提取锂的实际应用中,LiMn₂O₄表现

Received: January 13, 2009; Revised: March 16, 2009; Published on Web: April 23, 2009.

^{*}Corresponding author. Email: dqdong@qust.edu.cn; Tel: +86-532-84022953.

The project was supported by the National Natural Science Foundation of China (29376245), Young and Middle-aged Scientist Reward Foundation of Shandong Province, China (2008BS09004) and Scientific Research Starting Foundation of Qingdao University of Science and Technology, China (0022322).

国家自然科学基金(29376245)、山东省中青年科学家科研奖励基金(博士基金, 2008BS09004)和青岛科技大学科研启动基金(0022322)资助项目

出吸附容量大、洗择性高、吸附速度快等优势,被认 为是最有前途的提锂吸附剂.但是在工业化生产中 仍存在亟待解决的问题,最突出的就是酸浸过程中 锰的溶出问题^[7].因此如何保持锂锰氧化物的结构 稳定性是当前研究的热点,许多研究者已在这方面 做了大量工作,赵丽丽等^[89]用过硫酸铵替代盐酸作 改性剂来抽取锂效果较好, 酸浸过程中锰的溶出率 较小,但是其原料 γ-MnO₂ 纳米材料制备工艺比较 复杂. 在锂离子电池领域, 目前最有希望的方法是在 锂锰氧化物中掺杂其它金属离子(Li+、Ni²⁺、Mg²⁺、 Al3+、Zn2+、Fe2+等)[10-15], 且已取得相当大进展. 但将掺 杂Ni²⁺的锂锰氧化物用作锂离子筛的研究还未见相 关报道.本文采用溶胶-凝胶法合成出掺镍的尖晶石 型锂锰氧化物 LiNiousMnusO4, 酸改性后制得锂离子 筛 LiNiMn-H, 测定了不同温度下 LiNiMn-H 对锂的 离子交换热力学.

1 实验部分

1.1 实验原料与仪器

实验所用试剂乙酸锂、乙酸锰、乙酸镍、柠檬酸、 过硫酸铵、硝酸、氨水等均为分析纯试剂,蒸馏水.

D/max-rA型X射线衍射仪(日本理学公司,测试 条件为,管电压 40 kV,管电流 100 mA, Cu K_{α} 射线, λ =0.15405 nm,扫描范围 10°-80°). Cen-trifuge5804 型高速冷冻离心机,德国 Eppendorf 公司. pHS-3C 型精密 pH 计,上海雷磁仪器厂. DX-120 型离子色 谱仪,美国戴安公司.

1.2 锂离子筛的合成

将一定浓度的乙酸锂、乙酸锰和乙酸镍溶液按 照结构式 LiNi₀₀₅Mn_{1.95}O₄ 计量比混合,在不断搅拌下 加入氨水或硝酸溶液调节混合溶液的 pH 值约为 5, 得淡蓝色澄清溶液,加入螯合剂柠檬酸(柠檬酸的 摩尔数与阳离子的总摩尔数相同)继续搅拌一段时 间后得半透明溶胶,放入 80 ℃恒温水浴中反应 4 h 得凝胶,然后在 120 ℃烘干 12 h,得黄色干凝胶,经 研磨得离子交换剂前驱体.在空气条件下,将前驱体 在 700 ℃下加热 8 h,热结晶制得 LiNi₀₀₅Mn_{1.95}O₄.

对合成的 LiNi_{0.05}Mn_{1.95}O₄ 进行 XRD 分析, 确定 其是否为尖晶石结构.

称取 0.2000 g LiNi_{0.05}Mn_{1.95}O₄, 放入 50 mL、浓度 为 0.5 mol·L⁻¹ 的过硫酸铵溶液中, 在 90 ℃下恒温 振荡浸取 1 h, 然后洗涤、分离, 70 ℃干燥至恒重, 即 得锂离子筛, 简记为 LiNiMn-H.

1.3 饱和交换容量

准确称取 1 份 0.1000(±0.0002) g LiNiMn-H, 置 于 pH≈8 的 50 mL、0.1 mol·L⁻¹ 的 LiCl-LiOH 溶液 中, 25 ℃下恒温振荡浸取 7 d^{no-19}(一般 5 d 即达到饱 和), 测定上清液中碱金属离子 Li+的浓度, 由交换 前、后Li+的浓度差计算出锂离子筛LiNiMn-H对 Li+ 的饱和交换容量.

1.4 锂离子筛的离子交换热力学

分别称取 0.0500、0.1000、0.2000、0.4000、0.8000 和 1.6000 g 的锂离子筛 LiNiMn-H, 浸入 pH≈8 的 50 mL、0.1 mol·L⁻¹ 的 LiCl-LiOH 溶液中,在 15 ℃下 恒温振荡平衡(7 d),离心分离,测定上清液中 Li⁺的 浓度.交换剂相的 Li⁺量(即被交换的 Li⁺量)可由溶液 初始 Li⁺浓度与平衡后溶液 Li⁺浓度之差算出.以平 衡时锂离子筛相中 Li⁺的摩尔分数 Y 对平衡液相 Li⁺ 的摩尔分数X作图,可得到15 ℃时锂离子筛LiNiMn-H 吸附 Li⁺的离子交换等温线图^[17,18,20,21].

改变平衡温度分别为 25、35 和 45 ℃, 可得到 25、35 和 45 ℃锂离子筛 LiNiMn-H 吸附 Li+的离子 交换等温线图.

由 Pitzer 的电解质溶液理论^[22-24], 对阴阳离子均为一价、有共同阴离子X的两种电解质MX和NX(M和N为阳离子, X为阴离子)组成的溶液, 其平均活度系数如下:

$$\ln\gamma_{\pm MX} = f^{r}(I) + m\{(2-y)B_{MX} + (1-y)IB'_{MX} + y(B_{NX} + IB'_{NX}) + m[(\frac{3}{2} - y)C^{\phi}_{MX} + yC^{\phi}_{NX}]\}$$
(1)

 $\ln \gamma_{\pm NX} = f^{T}(I) + m\{(1+y)B_{NX} + yIB'_{NX} + (1-y)(B_{MX} + yIB'_{NX})\}$

$$IB'_{MX} + m[(\frac{1}{2} + y)C^{*}_{NX} + (1 - y)C^{*}_{MX}]\}$$
(2)

式中, *I*为离子强度, $I=\frac{1}{2}\sum m_i z_i^2$; m_i 为离子i的质量摩尔浓度(mol·kg⁻¹); z_i 为离子 i 的化合价.

$$f^{\mathrm{r}}(I) = -A^{\circ} \left[\frac{I^{1/2}}{1 + bI^{1/2}} + \frac{2}{b} \ln(1 + bI^{1/2}) \right]$$
$$B_{\mathrm{ca}} = \beta_{\mathrm{ca}}^{(0)} + \frac{2\beta_{\mathrm{ca}}^{(1)}}{\alpha^2 I} \left[1 - (1 + \alpha I^{1/2}) \mathrm{e}^{-\alpha I^{1/2}} \right]$$

其中, c表示阳离子, a表示阴离子.

$$B'_{ca} = \frac{2\beta_{ca}^{(1)}}{\alpha^2 I^2} [1 - (1 + \alpha I^{1/2}) e^{-\alpha I^{1/2}}] + \frac{\beta_{ca}^{(1)}}{I} e^{-\alpha I^{1/2}}$$
$$y = \frac{m_{NX}}{m}, \ 1 - y = \frac{m_{MX}}{m}, \ m = m_{MX} + m_{NX}$$

其中, α=2.0 kg^{1/2}·mol^{-1/2}, b=1.2 kg^{1/2}·mol^{-1/2}, 其他参数 A^s, C^s, β⁽⁰⁾, β⁽¹⁾可以从文献[22-24]中查得.

锂离子筛 H+-Li+交换的平衡常数及其它热力学

函数按下列公式计算[17,20,21]:

$$X_{\rm Li} = \frac{m_{\rm Li}}{m_{\rm Li} + m_{\rm H}} = \frac{C}{C_0}$$
(3)

$$Y_{\rm Li} = \frac{n_{\rm Li}}{n_{\rm Li} + n_{\rm H}} = \frac{(C_0 - C)V}{WQ} \tag{4}$$

$$K_{\rm tH}^{\rm Li} = \frac{Y_{\rm Li} \cdot X_{\rm H}}{Y_{\rm H} \cdot X_{\rm Li}} \tag{5}$$

$$K_{cH}^{Li} = K_{tH}^{Li} \frac{\gamma_{\pm HCI}^2}{\gamma_{\pm LiCI}^2}$$
(6)

$$\ln K_{\rm aH}^{\rm Li} = \int_{0}^{1} \ln K_{\rm cH}^{\rm Li} dY_{\rm Li}$$
(7)

$$\Delta G_{\rm m} = -RT \ln K_{\rm aH}^{\rm Li} \tag{8}$$

$$\Delta S_{\rm m} = \frac{\Delta H_{\rm m} - \Delta G_{\rm m}}{T} \tag{9}$$

式中, X_{Li} 为平衡液相中 Li⁺的摩尔分数, Y_L 为平衡时 交换剂相中 Li⁺的摩尔分数, C 为平衡后 Li⁺浓度 (mg·L⁻¹); C₀ 为 Li⁺的初始浓度(mg·L⁻¹), W 为交换剂 的质量(g), V 为交换溶液的体积(L), Q 为饱和交换 容量(mg Li⁺/g 交换剂); K^La为质量作用商, 对一价与 一价离子的交换, 又叫选择系数; K^La为 Kielland 商, 对一价与一价离子之间的交换, 又称为校正选择系 数; K^La为热力学平衡常数; ΔG_m 为离子交换过程的 Gibbs 摩尔自由能变化(J·mol⁻¹); ΔH_m 为离子交换过程

3000

的摩尔自由熵变化(J·mol⁻¹·K⁻¹).

2 实验结果与讨论

2.1 锂离子筛的合成

2.1.1 LiNi_{0.05}Mn_{1.95}O₄的合成及表征

图 1 为在不同温度下制得锂离子筛前驱体 LiNi₀₀₅Mn_{1.95}O₄ 的 X 射线衍射图. 由图 1 可见, 500-700 ℃热结晶后得到的锂离子筛前驱体均为尖晶石 型结构,其 XRD 图与 LiMn₂O₄ 的 JCPDS 标准谱图 (89-0107)基本相同. 由于镍离子半径比锰小, 镍离子 部分取代了尖晶石结构 16d 位置的 Mn, 且 Ni—O 键的键能比 Mn—O 键的键能大^[25], 使锂锰氧化物的 结构稳定性增强. 由图 1 还可以看出: 500 ℃下制得 的锂离子筛前驱体的衍射峰强度还比较弱; 600 ℃ 时, 衍射峰强度明显增加, 但衍射峰较宽, 不够尖锐; 到 700 ℃时衍射峰型已相当完好, 强度高且尖锐, 说 明 700 ℃时的晶体结构已很完整. 800 ℃时, 样品 在 2*θ*=30°附近出现焦化杂峰, 经分析为 Mn₃O₄ 的衍 射峰.

2.1.2 LiNi_{0.05}Mn_{1.95}O₄的酸改性

LiNi_{0.05}Mn_{1.95}O₄在不同浓度(NH₄)₂S₂O₈溶液中 Mn²⁺的溶出率见图 2. 由图 2 可以看出,用过硫酸铵 做改性剂时, Mn²⁺的溶出率均小于 0.6%,并且随过 硫酸铵浓度的增大呈现先减小后增大的趋势,在

3000

图 1 不同温度下 LiNi_{0.05}Mn_{1.95}O₄ 的 X 射线衍射图 Fig.1 XRD patterns of LiNi_{0.05}Mn_{1.95}O₄ at various temperatures

图 2 LiNi_{0.05}Mn_{1.95}O₄在不同浓度(NH₄)₂S₂O₈溶液中 Mn²⁺的溶出率

过硫酸铵浓度为 0.5 mol·L⁻¹时 Mn²⁺的溶出率最 小, 仅为 0.31%(w), 比文献值 5%(w)^[26]小. 这是因为, 对于LiNi_{0.05}Mn_{1.95}O₄(其中锰离子是变价离子, 具有 Mn³⁺和 Mn⁴⁺两个价态), 在用酸抽锂过程中, Mn³⁺发 生岐化反应生成 Mn⁴⁺和 Mn²⁺, 同时伴有 Mn²⁺的溶 出, 如方程式(i)^[89]所示:

 $4Li[Mn^{III}Mn^{IV}]O_4+8H^+\rightarrow 3[Mn^{IV}_2]O_4+$

 $4Li^{+}+2Mn^{2+}+4H_2O$ (i)

所以酸的浓度增大时, H*的浓度增加, 反应向右 进行, 因此 Mn²⁺的溶出率增大. 在用过硫酸铵酸浸 时, 过硫酸铵在水溶液中加热分解, 如方程式(ii)和 (iii)所示:

 $2(NH_4)_2S_2O_3+2H_2O \rightarrow 4NH_4HSO_4+O_2$ (ii)

$$NH_4HSO_4 \rightarrow NH_4SO_4^- + H^+$$
(iii)

方程式(iii)中H⁺起到酸的作用,从LiNi₀₀₅Mn_{1.95}O₄ 中抽出Li⁺,溶出Mn²⁺,而方程式(ii)中氧气起到氧化 作用,抑制LiNi_{0.05}Mn_{1.95}O₄中Mn³⁺发生岐化反应(溶 出Mn²⁺),所以Mn²⁺的溶出率较低,但是如果过硫酸 铵的浓度过大,使一部分Mn³⁺氧化成Mn⁷⁺溶出(用 1.0 mol·L⁻¹的过硫酸铵改性时,溶液呈现Mn⁷⁺的特 征紫色),导致锰的溶出率增加.所以,本实验选择用 0.5 mol·L⁻¹的过硫酸铵作为抽锂剂.

2.2 饱和交换容量

锂离子筛 LiNiMn-H 对 0.1 mol·L⁻¹ Li⁺的饱和 交换容量为 5.29 mmol·g⁻¹(36.72 mg·g⁻¹), 这个数值 和LiNi₀₀₅Mn_{1.95}O₄的理论含锂量(5.52 mmol·g⁻¹)相近, 说明 LiNiMn-H 对 Li⁺有较高的饱和交换容量, 也说 明镍的加入没有影响到 LiNiMn-H 对 Li⁺的离子记 忆性. 影响离子筛 LiNiMn-H 离子记忆性的因素^[321] 主要有:(1)离子筛的晶体结构,LiNi₀₀₅Mn_{1.95}O₄具有 尖晶石结构,锂离子(或H⁺)主要占据尖晶石结构的 四面体空隙中,由于空隙很小,除锂和氢外不易接纳 其它半径较大的阳离子或水分子等;(2)尖晶石基本 骨架中孔道和空隙的大小和数量是影响交换剂饱和 交换容量和离子记忆性的主要因素,LiNi₀₀₅Mn_{1.95}O₄ 酸改性后由于H⁺取代了目的离子Li⁺,H型交换剂 中孔道和空腔的大小更有利于Li⁺进入.所以,离子 筛LiNiMn-H对Li⁺具有离子记忆性.

2.3 锂离子筛对Li*的离子交换热力学

2.3.1 H+-Li+的离子交换等温线图

不同温度下, H*-Li*体系的离子交换等温线图见 图 3. 从图 3 可以看出, 离子交换反应达到平衡时, 锂离子筛相中 Li*的摩尔分数 Y 随平衡液相中 Li*摩 尔分数 X 的增大而增大, 即平衡液相中 Li*的浓度 越高, 平衡时离子筛相中 Li*的含量越高. 在实验温 度范围内, LiNiMn-H 的 H*-Li*交换等温线均位于对 角线的上方, 且偏离较大, 说明锂离子筛对 Li*具有 较好的选择性. 从图还可以看出, 平衡液相中 Li*摩 尔分数 X 相同时, 温度越低, 平衡时离子筛相中 Li* 的含量越高, 说明低温对该离子交换反应有利. 2.3.2 活度系数及 H*-Li*离子交换体系热力学函数的计算

首先,由 H*-Li*离子交换体系的离子交换等温 线数据,并用 Pitzer 电解质溶液理论的公式(1)和(2) 计算出 H*-Li*离子交换体系的电解质平均活度系数 γ_{±li}α、γ_{±t}α.再由 H*-Li*离子交换体系的离子交换等 温线数据和公式(3)、(4)和(5),可以计算出 15、25、35 和 45 ℃时的 K^{la}.由上述计算的电解质平均活度系

图 3 15、25、35 和 45 ℃时锂离子筛 LiNiMn-H 的 H⁺-Li⁺ 交换等温线图

Fig.3 Exchange isothermal diagram of H⁺·Li⁺ system on LiNiMn-H at 15, 25, 35, and 45 ℃

 X_{Li} : molar fraction of Li⁺ in solution phase; Y_{Li} : molar fraction of Li⁺ in solid ion-sieve phase

表 1 15 和 25 ℃时 H⁺-Li⁺离子交换体系电解质活度系数 Table 1 Electrolytic activity coefficients of H⁺-Li⁺ ion exchange system at 15 and 25 ℃

T/℃	$X_{ m Li}$	$Y_{\rm Li}$	$\gamma_{\pm ext{LiCl}}$	$\gamma_{\pm ext{HCL}}$	$K_{ m cH}^{ m Li}$	$\ln K_{\rm cH}^{\rm Li}$
15	0.9335	0.9890	0.8287	0.8307	6.4475	1.8637
	0.8690	0.9736	0.8288	0.8307	5.6026	1.7232
	0.7446	0.9494	0.8289	0.8309	6.4721	1.8675
	0.5329	0.8682	0.8291	0.8311	5.8045	1.7586
	0.2915	0.6585	0.8294	0.8313	4.7086	1.5494
	0.1671	0.3871	0.8295	0.8315	3.1622	1.1512
25	0.9334	0.9890	0.8218	0.8230	6.4572	1.8652
	0.8687	0.9757	0.8217	0.8230	6.0886	1.8064
	0.7455	0.9460	0.8217	0.8230	5.9972	1.7913
	0.5366	0.8614	0.8216	0.8229	5.3877	1.6841
	0.3083	0.6429	0.8215	0.8228	4.0522	1.3993
	0.1890	0.3769	0.8215	0.8227	2.6028	0.9566

 $\gamma_{\pm LiCi}$: average activity coefficient of electrolyte LiCl; $\gamma_{\pm HCi}$: average activity coefficient of electrolyte HCl; K_{eff}^{Li} : Kielland quotient (revisional selection coefficient)

表 2 Kielland 图的多项式回归结果

 Table 2
 Results of polynomial regression of Kielland diagram

T/℃	Result of polynomial regression	R^2
15	$\ln K_{cH}^{Li} = 1.1054 \overline{Y}_{Li} + 0.7632$	0.9381
25	$\ln K_{cH}^{Li} = 1.4325 \overline{Y}_{Li} + 0.4397$	0.9948
35	$\ln K_{cH}^{Li} = 2.3119 \overline{Y}_{Li} = 0.1764$	0.9934
45	$\ln K_{cH}^{Li} = 0.8104 \overline{Y}_{Li} = 0.4786$	0.9775

数 γ_{±iα}、γ_{±iα} 和 K^L_a可以由公式(6)计算出 K^L_a.本文 列出 15 和 25 ℃的计算结果(其他温度处理方法相同), 见表 1.

以ln*K*^{Li}_{cH}−*Y*_{Li}作图(即Kielland图)^[21], 15、25、35和 45 ℃时 Kielland 图的回归结果如表 2 所示.

将 ln*K*^{Li}的回归结果带入公式(7), 计算出 ln*K*^{Li}_a. 再由公式(8)求出 Δ*G*_m.

作 $\ln K_a - \frac{1}{T}$ 图(见图4), 是一条直线, 由直线的斜

 Fig.4
 Relation of equilibrium constant lnK_a and temperature

表 3	不同温度下锂离子筛(LiNiMn-H)吸附 Li⁺的			
		热力学数据		
Table 3		Thermodynamic data of LiNiMn-H for		
		Li ⁺ at different temperatures		

	······							
T/℃	$\ln K_{\scriptscriptstyle\mathrm{aH}}^{\scriptscriptstyle\mathrm{Li}}$	$\Delta G_{\rm m}/({ m J} \cdot { m mol}^{-1})$	$\Delta S_{\rm m}/(\mathbf{J} \cdot \mathrm{mol}^{-1} \cdot \mathbf{K}^{-1})$	$\Delta H_{\rm m}/({\rm J}\cdot{\rm mol}^{-1})$				
15	1.3159	-3480.69	-25.6027	-10858.1				
25	1.1560	-2865.39	-26.8077					
35	1.0279	-2633.31	-26.6909					
45	0.8838	-2337.74	-26.7810					
K_{aH}^{Li} : thermodynamic equilibrium constant of H ⁺ -Li ⁺								

ion-exchange reaction

率计算出 ΔH_{m} . 离子交换反应的 ΔS_{m} 由公式(9)计算 得出. ΔG_{m} 、 ΔH_{m} 和 ΔS_{m} 的计算结果见表 3.

由表 3 可以看出,该离子交换反应的平衡常数 随着温度的升高而降低,低温有利于吸附锂.该离子 交换反应的 Gibbs 自由能 ΔG_m 为负值,说明该离子 交换反应是沿着使体系 Gibbs 自由能减少的方向进 行,即表明锂离子筛(LiNiMn-H)对进入离子(Li⁺)的 选择性大于原来可交换阳离子(H⁺)的选择性.该离 子交换反应的 ΔH_m 为负值,说明该离子交换反应是 放热反应.

3 结 论

(1) 采用溶胶-凝胶法合成的 LiNi_{0.05}Mn_{1.95}O₄ 为 尖晶石结构, 用0.5 mol·L⁻¹的(NH₄)₂S₂O₆酸改性制得 的锂离子筛 LiNiMn-H 对 Li⁺的饱和交换容量较高, 达到 5.29 mmol·g⁻¹, 且在酸浸过程中 Mn²⁺的溶出率 较小, 仅为 0.31%(*w*), 可用作锂离子筛.

(2) 测定了 15、25、35 和 45 ℃时在锂离子筛上 进行的 H⁺-Li⁺离子交换等温线. 采用 Pitzer 电解质 溶液理论计算出该离子交换体系的活度系数, 得到 H⁺-Li⁺交换的平衡常数 K_a 、 ΔG_m 、 ΔH_m 和 ΔS_m 等热力 学函数. 结果表明, 平衡常数随着温度的升高而 降低, 锂离子筛(LiNiMn-H)对进入离子(Li⁺)的选择 性大于原来可交换阳离子(H⁺)的选择性, 吸附锂 的过程是自发过程(ΔG_m <0), 该离子交换反应是放热 反应.

References

- Huang, J. J.; Jiang, Z. Y. Acta Phys. -Chim. Sin., 2008, 24: 1563
 [黄俊杰, 江志裕. 物理化学学报, 2008, 24: 1563]
- Xue, Y.; Chen, Y.; Zhang, M. L. Chin. J. Inorg. Chem., 2007, 23: 109 [薛 云,陈 野,张密林. 无机化学学报, 2007, 23: 109]
- Wei, Y. J.; Kim, K. B.; Chen, G. *Electrochimica Acta*, 2006, 51: 3365
- 4 Du, K.; Qi, L.; Hu, G. R.; Peng, Z. D. Chin. J. Inorg. Chem., 2007,

23: 21 [杜 柯, 其 鲁, 胡国荣, 彭忠东. 无机化学学报, **2007**, **23**: 21]

- 5 Fan, M. S.; Lei, X. L.; Wu, N. N.; Qi, L. Acta Phys. -Chim. Sin., 2007, 23: 36 [范茂松, 雷向利, 吴宁宁, 其 鲁. 物理化学学报, 2007, 23: 36]
- 6 Wu, K.; Wang, Y. P.; Wang, J.; Li, Y. W.; An, P.; Qi, L. Acta Phys. -Chim. Sin., 2007, 23:5 [吴 可, 王印萍, 王 剑, 李永伟, 安 平, 其 鲁. 物理化学学报, 2007, 23:5]
- 7 Yoon, Y. K.; Park, C. W.; Ahn, H. Y.; Kim, D. H.; Lee, Y. S.; Kim, J. Journal of Physics and Chemistry of Solids, 2007, 68: 780
- Zhao, L. L.; Wang, R. S. Acta Phys. -Chim. Sin., 2003, 19: 933
 [赵丽丽, 王榕树. 物理化学学报, 2003, 19: 933]
- 9 Zhao, L. L.; Wang, R. S. Acta Phys. -Chim. Sin., 2002, 18: 197
 [赵丽丽, 王榕树. 物理化学学报, 2002, 18: 197]
- Lee, Y. S.; Kumada, N.; Yoshio, M. *Journal of Power Sources*, 2001, 96: 376
- 11 Jeong, I. S.; Kim, J. U. Journal of Power Sources, 2001, 102: 55
- 12 Lee, K. S.; Seung, T. Electrochimica Acta, 2007, 52: 5201
- Kim, J. H.; Myung, S. T.; Sun, Y. K. *Electrochimica Acta*, 2004, 49: 219
- 14 Wu, X. L. Journal of Power Sources, 2002, 109: 53
- Ji, Y.; Wang, Z. X.; Yin, Z. L.; Guo, H. J.; Peng, W. J.; Li, X. H. Chin. J. Inorg. Chem., 2007, 23: 597 [季 勇, 王志兴, 尹周澜, 郭华军, 彭文杰, 李新海. 无机化学学报, 2007, 23: 597]
- 16 Dong, D. Q.; Zhang, F. B.; Zhang, G. L.; Liu, Y. F. Chin. J. Inorg. Chem., 2004, 20: 1126 [董殿权, 张凤宝, 张国亮, 刘亦凡.

无机化学学报, 2004, 20: 1126]

- 17 Dong, D. Q. Ph. D. Dissertation. Tianjin: Tianjin University, 2006
 [董殿权. 博士学位论文. 天津: 天津大学, 2006]
- Dong, D. Q.; Zhang, F. B.; Zhang, G. L.; Liu, Y. F. Acta Phys. -Chim. Sin., 2007, 23: 950 [董殿权, 张凤宝, 张国亮, 刘亦凡. 物理化学学报, 2007, 23: 950]
- 19 Dong, D. Q.; Zhang, F. B.; Zhang, G. L.; Liu, Y. F. Front. Chem. China, 2006, 1: 268
- Jiang, Z. X.; Chen, J. Q.; Song, Z. X. Ion exchange separation engineering. Tianjin: Tianjin University Press, 1992: 77–120
 [姜志新, 谌竟清, 宋正孝. 离子交换分离工程. 天津: 天津大学出 版社, 1992: 77–120]
- 21 Zhang, Q. C.; Yang, H. R.; Han, C. Ion exchange behavior and application of natural zeolite. Beijing: Sciences Press, 1986: 73–133 [张铨昌, 杨华蕊, 韩 成. 天然沸石离子交换性能及其应用. 北京: 科学出版社, 1986: 73–133]
- 22 Pitzer, K. S.; Kim, J. J. J. Am. Chem. Soc., 1974, 96: 5701
- 23 Pitzer, K. S.; Mayorga, G. J. Phys. Chem., 1973, 77: 2300
- Li, Y. G.; Lu, J. F. Electrolyte solution theory. Beijing: Tsinghua University Press, 2005: 79–98 [李以圭, 陆九芳. 电解质溶液理 论. 北京: 清华大学出版社, 2005: 79–98]
- 25 Chen, M.; Yang, C.; Xiao, B. *Chemical Engineer*, 2006: 11
 [陈 猛, 杨 闯, 肖 斌. 化学工程师, 2006: 11]
- 26 Wang, L.; Ma, W.; Han, M.; Meng, C. G. Acta Chimica Sinica,
 2007, 65: 1135 [王 禄, 马 伟, 韩 梅, 孟长功. 化学学报,
 2007, 65: 1135]