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Partially invariant solutions of the 241
dimensional nonlinear Schrédinger equations

HE Wen-li, LIU Ruo-chen, ZHANG Shun-li, ZHAI Jiang-tao

(Department of Mathematics, Northwest University, Xi'an 71006, China)

Abhstract: The results of the 2+1 dimensional nonlinear schradinger equations for the wave amplitude deep wa-
ter waves have been extended. Partially invariant solutions of a class of 241 dimensional nonlinear Schradinger
equations are explicitly obtained by using a general and systematic approach based on subgroup classification
methods, More solutions can be obtained by this method than by the classical method and direct method.
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Zakharov!! first derived the 2+ 1 dimensional
nonlinear Schraddinger eguation for the wave ampli-
tude in deep water waves, which is equivalent to the
form

it ou,, + |lulPu=0. (1)

As a natural extension of (1), we consider more
general Z+1 dimensional nonlinear Schradinger equa-
tions{NLSEs)

i, u ., = fCluldu, (2}
where u (z,£) is a complex function of real variables,
and f is real function of |ul.

The purpose of the present paper is to study par-
tiglly invariant solutions of (27, the concept of par-
tially invariant sclutions of systems of partial differen-
tial equations (PDEs) was introduced by Ovsiannikov
some time ago'™. A systematic study of such solu-

B8 which was

tions were begun in recent articles
devoted to partially invariant solutions of complex
nonlinear Klein-Gordon (= —1) or Laplace (e=+
17 equations of the form

it e, = f(lu|du, e=+1, (3}

and a class of 141 dimensional nonlinear Schradinger
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equations

i, + u = (F+iku+ (G+ ilu,. (4)
with four functions F.K .G end 1. of {| and |u]..

The partially invariant solutions of (3} and (4)
are cbtained in[4] and [5] provided the functions of
equations satisfy some compatibility conditions. For
(2}, the existence of partially invariant sclutions of
different forms also depend on the function f( |z |).

We shall now show that partially invariant solu-
tions of Eqgs. (2} exist for certain funetion |z |)

and we obtain them explicitly.

1 Symmetey groups of equations (2)

The 2 + 1 dimensional NLLSEs (2) can be
rewritten as a system of two PDEs for the modulus
p» and the phase ¢{z,¢) of u, namely

=Pt e, = PRy, — flpp=20,
et epit et pp, =10, (5)

Using the general schedule!™, we see that the

symmetry groups of Eqs. (2) for arbitrary function

[ are time £, space x., y. and phase ¢ translations,
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Pob=o,P=08.FP=2,
B = ta .+ vop. B .= ta A 19, (6
Subalgebras that lead to partially invariant solu-
tions are
{PosPat s AP Pab s {P2s Pyt y {Poy Pry Pyt o (P
PooPib o Py PPty {Py + aP, P}, {P, + aP,,
P} {P,+aP, P} {P,+aP.P, Py}, {P, +aP,.
P Py, {Py + aPy Poy Pyt o {Py Py Py By} (P,
Py Py By {Py Py By} (P, Py, Byt (PP Byt
{P,,Py,B;}

Let us now run through the individual cases.

2 Partially invariant solutions of (2)

1) The subaigebra{P,,P;!}
The invariants are ¢, y and p, and the reduction

formulas are simply

P=P(t1_}’)| ¢=¢IIIIJ”)! (7
where
R
=Ty O (&
p=— ¢z + 4, (D) (9>

where A{(L)} and d,{{) are two arbitrary functions of
£
2) The subalgebra {P;,P;}
The result in this case can be obtained directly
from 1) by replacing
I —» ¥,
3) The subalgebra{P,,P,,P;}
The solutions have the form
g =ply), p=@lx,y,1). (103
Equations (5) can be rewritten as
a=—xe — SS9, (11a)
Mt Op=0. (1186)
Integrating second equation with respect to r
and v , we obtain
o= d,(x,t)
P
with two functions 4, and 4, to be determined.
The substitution of (12) into (11,a). which

implies

+dg(y1t)1 (12)

dy — %dl d\. +didy, + p(dy + F(p)) = 0.
2z

(13)

To cobtain the solutions of (13), we consider two

subcases:

(i) ‘E(%) = 0.

We immediately obtain

%=a'd23=m+?'dﬂ+~f‘lﬂ)=0"14)

Solving(14), we have
P= (T'A_}’)il [

d;= (e + Py +a+ 5 (15)

Floy= %p-l + A,

So d, satisfies
d, — Md,. + (g + d,. =0, (162
which can be solved by the characteristic method.
Thus we have obtained the solutions of (11)
o= (Y-Ay)~",

d,(z, a7
’(+’)+<m+a)y+ae+ﬁ.

where 7,4, a,8,u and 7 are arbitrary constants.
(i -ad}- %’- # 0. From (13}, we have

d“ = {}, dldlr = C1ng}. = Otdgr == Cz- (183
It is easy to see that

dy = (2C,z + C)7. dy=Cg + C;. (AP

and p is given by a quadrature

d,ﬂ _
J T FCy ¢ (20

where Cy,(;,C; and C, are arbitary constants.

4) The subalgebra {P,,P;,P,}

Considerations for this case are completely analo-
gous to 3).

5) The subalgebra {P,,P.,P;}

The reduction formulas are

p=p), p=@lt.T,3), (21
where
p= t-llo—ozu ’
p=—ﬁry+lf+§y— (22
If‘zfnj;f(ffta .

with arbitrary constants po.¢0.4 and g
6) {PytaP, P, Py}
The solutions take the form
p=pEdp= @y bt) {=x—at, (23)

r— i Ll
|~ r———— . - r—
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which can be obtained directly from 3) by replacing
y——~{p—>p—ay.r ——>y
7} The subalgebra {Py+-aP;. P P!
Replacing in ). =y,
8) The subalgebra {P,.P,.P;. B}

The solutions take the form

p=py).p= % + ¢iyae). (24)
The substitution of (24) into (5), we obtain
Py C Ty —
= s = 51 + = Je)y = Cp 125)
or p=— %,.;,,, Lor=0 s

9) The subalgebra (P.,P,;.P;.B;)
Replacing x<——xy in 8).
10} The subalgebra {P,,P;.B,}

The solutions take the form
o= p{t,x),p= %4‘9’1(3'&). (27)

The substitution of {27} into {(5), we have
1, + v, =— fiee,
to, + (px). +tp, = 0. (282
The solutions are

¢ = %.p =+ (x+ 1)) 1. £=0 (29)

]1) The subalgebra {P]yPapB]}

The solutions take the form

References;

P = plt,y) .= —‘%‘i + v, (30)

The substitution of (30) into (5 gives

4

p=CF ¥y Tw= T =0 G
ar
\ 2
=Gy T. b= ‘T.f =q, 32

123 The subalgebra {P .P.,B,}

Replacing <y in 11).
3 Concluosions

In this paper. we discuss the existence of par-
tially invariant solutions of a class of 2+ 1 dimension-
al nonlinear Schrodinger equations which arise in the
propagation of 2 1+ 1 dimensional surface waves in
deep water. It is shown thai partially invariant solu-
tions are much more than these of 1+1 dimensional
case. Some are easily obtalned explicitly, some are
not. The constraint on f (p) must be imposed In
terms of the subgroup of the symmetry group.

It is instructive to compare the partially invariant
solutions with solutions obtzined by the monclassical
method of Bluman and Cole-*land the direct method
of Clarkson and Kruskal'®-.
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The basic equation of solid and liquid-state admixture inside pipeline
DU Huai-zhang

{Department of Physica. Weinan Teachers College . Weman 714000, China)
Abstract : By theoretical analysis, it is proved that (1) the equation of solid and liquid state admixture movement
inside the pipeline has three {orms:continuous equation, momentum equation and the mechanical energetic equa-
tion. 2 The equation can deduce a formula to calculate the loss of resistance.the lift of centrifugal pump in car-
rying the admixture. It is concluded that the movement of one-way clean water is a special example of the move-
ment of the solidly liquid admixture.

Key words:solid and liquid-state admixturespipeline; movement eguation
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