优势区相图在 AI - Ti 0_2 -C-Zr 0_2 燃烧合成体系 热力学分析中的应用

董 倩 1,2 , 唐 清 1 , 李文超 2 , 吴东亚 2

(1. 中国科学院化工冶金研究所, 北京 100080; 2. 北京科技大学物理化学系, 北京 100083)

摘 要:以 TiO₂, Al, C 和 ZrO₂ 为原料, 燃烧合成制备 Al₂O₃--TiC--ZrO₂ 纳米复相陶瓷是一种方法简 单、节时省能的新工艺. 对 Al-TiO2-C-ZrO2 体系进行了热力学分析 , 计算出该体系的绝热燃烧温 度, 并利用 Al-O-N, Ti-O-N, Zr-O-N, C-O-N 四个体系的叠加优势区相图, 分析了各相间反应 进行的趋势和最终稳定存在的平衡相. 热力学分析表明: 绝热燃烧温度为 2327 K. 燃烧合成产物 包括 Al₂O₃, TiC, ZrO₂三相, XRD 检测未发现其它杂相, 证实热力学分析结果可信. 关键词:优势区相图;燃烧合成;热力学分析

中图分类号:TO013.1 文献标识码:A 文章编号:1009-606X(2001)04-0394-04

1 前言

Al₂O₃-TiC 复相陶瓷是一种重要的切削刀具,为了进一步扩大其应用范围,仍需提高其强韧性, 降低成本. 利用 ZrO_2 颗粒的弥散和相变增韧已取得了明显的效果 $^{[1,2]}$.

燃烧合成具有工艺简单、节能省时和原料廉价等特点,并且可合成出传统工艺难以合成的非 平衡相和中间产物,将发展成为一种制备材料的重要工艺^[3,4].本工作以 Al, TiO₂, C 和 ZrO₂粉末 为原料,采用燃烧合成工艺制备 Al2O3-TiC-ZrO2 纳米复相材料. 为得到理想的目标产物,分析该 燃烧合成反应体系的平衡相产物显得尤为重要.

优势区相图 (Phase Stability Diagrams,简称 PSD)是一种包括化学反应体系的广义相图,近几 年在无机材料中、特别是在陶瓷中的应用逐渐增多、主要是因为非氧化物如氮化物、碳化物等材料 不但在合成过程而且在使用过程中均有气体参加,应用优势区相图易于确定体系中凝聚相与气体 分压和温度的关系. 本文试图利用优势区相图对 Al-TiO₂-C-ZrO₂ 燃烧合成体系进行热力学分析, 为确定目标产物的合成条件提供理论依据,并通过 XRD, SEM 等技术对燃烧合成产物进行表征.

$AI - Ti 0_{2} - C - Zr 0_{2} 燃烧合成体系热力学分析$ 2

2.1 绝热燃烧温度 石的计算

绝热燃烧温度 Tad 是燃烧合成热力学理论的一个重要参数,当 Tad>1800 K时,燃烧波可以自 我维持;同时 Tad 也是优势区相图选择和计算的依据之一. 根据本体系的主要反应式:

4Al+3TiO₂+3C+ 0.346ZrO₂=3TiC+2Al₂O₃+0.346ZrO₂,

物质的摩尔比为 Al: TiO₂: C: ZrO₂= 4: 3: 3: 0.346 (ZrO₂的质量分数为 10%). 根据检索到的热力学 数据,可以写出如下的热平衡关系:

$$\Delta_{\rm r} H_{298}^{0} = 2 \left(\int_{298}^{800} C_{\rm p,Al_{2}O_{3}} dT + \Delta_{\rm tr} H_{\rm Al_{2}O_{3}} + \int_{800}^{T_{\rm ad}} C_{\rm p,Al_{2}O_{3}} dT + \Delta_{\rm fus} H_{\rm Al_{2}O_{3}} \right) + 3 \int_{298}^{T_{\rm ad}} C_{\rm p,TiC} dT + 0.346 \left(\int_{298}^{1478} C_{\rm p,ZrO_{2}} dT + \Delta_{\rm tr} H_{\rm ZrO_{2}} + \int_{1478}^{T_{\rm ad}} C_{\rm p,ZrO_{2}} dT \right) ,$$

收稿日期:2000-11-01,修回日期:2001-03-09

基金项目:国家自然科学基金资助项目(编号:59774019)

作者简介:董倩(1973-)、女、陕西省西安市人、博士研究生、无机非金属材料专业、

董倩

采用试算法可计算求得 T_{ad}=2327 K. 计算中采用的相关热力学数据引自文献[5].

2.2 叠加优势区相图的计算和绘制

由以上的热力学计算结果可知,该体系的绝热燃烧温度约为2300K,为了分析和确定合理的 工艺条件,需要绘出该燃烧体系的优势区相图.优势区相图的绘制步骤如下^[6]:

(1) 确定体系中可能发生的各类反应, 写出各反应的平衡式;

(2)利用参与反应的各组份的热力学数据,计算各反应的标准吉布斯自由能 G⁰,求得斜率和 截矩,即可绘制描述各反应平衡条件的线段;

(3) 根据吉布斯自由能的正负, 划分相应的 稳定相区;

(4)判断三相点是否可以稳定存在,删除一 些或部分线段,进行优势区的裁决。

本文利用 HSC 软件绘制优势区相图. 因为 该燃烧合成体系较复杂,首先作出 2300 K 时 Al-O-N, Ti-O-N, C-O-N 和 Zr-O-N 4 个独 立体系的凝聚相优势区图,为了研究 4 个体 系在相同条件下相互作用的结果,再将 4 个 相关体系的优势区图进行叠加,以便确定在实验 条件下本体系的最终平衡相组成,如图 1 所示, 表 1 为各平衡体系的氧分压和氮分压的关系.

图 1 四体系优势区相图叠加 Fig.1 Overlapped phase stability diagram

Table 1	Table 1 The partial pressure relations of equilibrium systems of O_2 and N_2 at 2300 K				
System	Reaction	Partial pressure expression			
	$Al_{(l)}+1/2N_2=AlN_{(s)}$	$\lg (P_{N_2}/P^0) = -2.7$			
	$2Al_{(1)}+2/3O_2=Al_2O_{3(s)}$	$\lg (P_{O_2}/P^0) = -14.2$			
Al-O-N	$2Al_7O_9N_{(s)} \! + \! 3/2O_2 \! = \! 7Al_2O_{3(s)} \! + \! N_2$	$\lg (P_{N_2}/P^0) = 3/2 \lg (P_{O_2}/P^0) + 17.6$			
	$7/3AlN_{(s)} + 3/2O_2 = 1/3Al_7O_9N_{(s)} + N_2$	$\lg (P_{N_2}/P^0) = 3/2 \lg (P_{O_2}/P^0) + 18.8$			
	$14Al_{(l)} + 9O_2 + N_2 = 2Al_7O_9N_{(s)}$	$\lg (P_{N_2}/P^0) = -9 \lg (P_{O_2}/P^0) - 131.6$			
	$Ti_{(1)}+1/2N_2=TiN_{(s)}$	$\lg (P_{N_2}/P^0) = -5.5$			
	Ti ₍₁₎ +1/2O ₂ (g)=TiO _(s)	$\lg (P_{O_2}/P^0) = -15.4$			
	$2TiO_{(s)}+1/2O_2=Ti_2O_{3(s)}$	$\lg (P_{O_2}/P^0) = -11.0$			
	$3/2Ti_2O_{3(s)}+1/4O_2=Ti_3O_{5(s)}$	$\lg (P_{\rm O2}/P^0) = -10.4$			
	$4/3Ti_{3}O_{5(s)} + 1/6O_{2} = Ti_{4}O_{7(s)}$	$\lg (P_{0_2}/P^0) = -7.7$			
Ti-O-N	$Ti_4O_{7(s)}$ +1/2O ₂ =4TiO _{2(s)}	$\lg (P_{O_2}/P^0) = -4.5$			
	$TiN_{(s)}+1/2O_2=1/2N_2+TiO_{(s)}$	$\lg (P_{N_2}/P^0) = \lg (P_{O_2}/P^0) + 9.9$			
	$2TiN_{(s)}\!\!+\!3/2O_2\!\!=\!\!N_2\!\!+\!Ti_2O_{3(s)}$	$\lg (P_{N_2}/P^0)=3/2 \lg (P_{O_2}/P^0)+15.4$			
	$3 TiN_{(s)} + 5/2O_2 = 3/2N_2 + Ti_3O_{5(s)}$	lg $(P_{N_2}/P^0)=5/3$ lg $(P_{O_2}/P^0)+17.1$			
	$4 Ti N_{(s)} + 7/2 O_2 \!\!=\!\! 2 N_2 \!+\! Ti_4 O_{7(s)}$	lg $(P_{N_2}/P^0)=7/4$ lg $(P_{O_2}/P^0)+17.8$			
	$TiN_{(s)}+O_2=1/2N_2+TiO_{2(s)}$	$\lg (P_{N_2}/P^0) = 2 \lg (P_{O_2}/P^0) + 18.9$			
	$Zr_{(1)}+1/2N_2 = ZrN_{(s)}$	$\lg (P_{N_2}/P^0) = -7.0$			
Zr-O-N	$Zr_{(l)}+O_2 = ZrO_{2(s)}$	$\lg (P_{O_2}/P^0) = -15.3$			
	$ZrN_{(s)}\!\!+\!O_2\!=\!\!1/2N_2\!+\!ZrO_{2(s)}$	$\lg (P_{N_2}/P^0) = 2 \lg (P_{O_2}/P^0) + 23.6$			

表 1 2300 K 下平衡体系氧分压和氮分压的关系

经估算,在实验条件下,氧分压($P_{O_2}=1$ Pa)和氮分压($P_{N_2}=0.5$ Pa)的交点应落在图 1 中阴影区域 内. 从图可以看出,对应该区域中存在的相有 Al₂O₃, Ti₄O₇, ZrO₂和 C. 为评估各物质间相互反应进 行的趋势,对反应式进行了热力学计算,结果如表 2 所示.

表 2 碳化物稳定性的热力学计算

Table 2	Results of thermodynamic spontaneity calculation (T=2300 K)			
No.	Reaction	$\Delta_{\rm r}G^0({\rm kJ})$		
1	C+2/9 Al ₂ O ₃ =1/9 Al ₄ C ₃ +2/3CO	-3.43		
2	C+1/11Ti ₄ O ₇ =4/11TiC+7/11CO	-74.91		
3	C+1/3 ZrO ₂ =1/3 ZrC+2/3CO	-41.05		

由上表可以看出,从热力学角度分析反应2优先发生,碳化物生成的顺序为:TiC>ZrC>Al₄C₃. 考虑到动力学影响因素,其它种类的碳化物即使生成也是微量的,所以可以认为当体系达到平衡 后,Al-TiO₂-C-ZrO₂燃烧合成体系最终平衡产物应为Al₂O₃,TiC和ZrO₂.

3 实验方法

以 Al, TiO₂, C 和 ZrO₂ 粉末为原料(性能见表 3),在酒精介质中湿混 24 h 后(Al₂O₃ 研磨球),经 干燥、过筛,将混合粉末装入 ϕ 20 mm×35 mm 纸筒中,在氩气氛保护下,用钨丝点燃,使其发生燃 烧合成.用 H–800 型透射电子显微镜(TEM)分析产物的显微结构,并结合日本理学 D/MAX–RB 型旋转阳极 X 射线衍射仪(XRD)分析燃烧产物的相组成和种类.

表 3 原料性能参数

Table 3 Various powders used as reactants									
Starting materials	TiO ₂ (rutile)	Al	C (graphite)	ZrO_2 (tetragonal)					
Purity (%)	>99	>99	>98	>99					
Average particle size (µm)	2	100	10	0.01~0.02					

4 燃烧合成 Al₂0₃-Ti C-ZrO₂ 陶瓷粉末的 XRD 分析结果和显微形貌

将 Al-TiO₂-C-ZrO₂ 体系的燃烧合成产物破碎研细后做物相分析,结果如图 2,可以看出燃 烧产物中除 Al₂O₃, TiC 和 ZrO₂外,未发现 Al, TiO₂, C 等杂相,这与热力学分析结果较为吻合.

图 2 燃烧合成产物的 XRD 结果

图 3 燃烧合成 Al₂O₃-TiC-ZrO₂产物的 TEM 形貌 Fig.3 TEM micrograph of the as-combusted Al₂O₃-TiC-ZrO₂ powder

图 3 为燃烧合成产物自然状态的透射电镜显微形貌. 能谱分析结合衍射斑点和多晶衍射环标 定结果(图 4)可确定, 似球状的大颗粒为 Al₂O₃,其中分布的黑色区域为 TiC 和 ZrO₂,另外在 Al-TiO₂-C-ZrO₂体系的燃烧合成产物中偶见非晶物质[图 4(e)].分析认为,非晶物质的存在主要 是因为燃烧合成过程进行得很快,全过程大约只需几十秒,因而燃烧反应不可能达到完全平衡, 保存了一些反应的中间状态相.

(a)

(c)

图 4 燃烧合成 Al₂O₃-TiC-ZrO₂产物的衍射斑点和多晶衍射环 Fig.4 The selected area diffraction patterns of Al₂O₃-TiC-ZrO₂ powder

结论 4

采用优势区相图对 Al-TiO₂-C-ZrO₂体系的燃烧合成热力学做了分析,计算出绝热燃烧温 度 Tad 为 2327 K,确定了在本实验条件下,合成 Al₂O₃-TiC-ZrO₂纳米复合陶瓷粉末的物相组成. 经 XRD 分析和 TEM 观测表明,实验结果与优势区相图的分析结果基本吻合. 符号表:

$C_{\rm p}$	常压热容 [J/(K·mol)]	$\Delta_{ m r}G^0$	化学反应的标准 Gibbs 自由能 (kJ)	$\Delta_{\rm fus} H$	熔化焓 (J/mol)
$\Delta_{\rm tr} H$	相变焓 (J/mol)	$\Delta_r H^0_{298}$	化学反应的标准生成焓 (J/mol)	P^0	标准大气压 (Pa)
P_{N_2}	氮气分压 (Pa)	P_{O_2}	氧气分压 (Pa)	$T_{\rm ad}$	绝热燃烧温度 (K)

参考文献:

- [1] 徐利华, 方中华, 沈志坚, 等. ZrO2 增韧 Al2O3-TIC 陶瓷复合材料的力学性能及其耐磨性能 [J]. 硅酸盐通报, 1995, 14(2): 12 - 16.
- [2] 尹龙卫,李凤照,李援朝, Y-TZP 增韧 Al₂O₄-TiC 陶瓷复合材料的研究 [J]. 机械工程材料, 1997, 21(6): 35-37.
- [3] Merzhanov A G. Worldwide Evolution and Present Status of SHS as a Branch of Modern R&D on the 30th Anniversary of SHS [J]. J. Self-propagating High-temperature Synthesis, 1997, 6(2): 119-163.
- [4] Cutler R A, Rigtrup K M, Virkar A V. Synthesis, Sintering, Microstructure and Mechanical Properties of Ceramics Made by Exothermic Reactions [J]. J. Am. Ceram. Soc., 1992, 75(1): 36-43.
- [5] 梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993. 8-381.
- [6] 李文超. 冶金热力学 [M]. 北京: 冶金工业出版社, 1995. 77-81.

Application of Phase Stability Diagrams to the Combustion Synthesis of the Al-TiO₂-C-ZrO₂ System

DONG Qian^{1, 2}, TANG Qing¹, LI Wen-chao², WU Dong-ya²

(1. Inst. Chem. Metall., Chinese Academy of Sciences, Beijing 100080, China;

2. Dept. Phy-chem., Univ. Sci. & Technol. Beijing, Beijing 100083, China)

Abstract: Combustion synthesis of Al₂O₃-TiC-ZrO₂ composites by reaction in the Al-TiO₂-C-ZrO₂ system is a new method with advantages of simplicity and efficiency. In the present work, the adiabatic combustion temperature of this complex system is calculated and the possible combustion products are discussed by a new approach of overlapped phase stability diagrams (PSD) of Al-O-N, Ti-O-N, Zr-O-N and C-O-N systems. Thermodynamic analysis shows that the adiabatic combustion temperature of the Al–TiO₂–C–ZrO₂ system with the addition of 10% ZrO_2 is 2327 K which is the melting point of Al₂O₃, and the combustion product is a mixture of Al₂O₃-TiC-ZrO₂. Microstructure and chemical composition of the combustion products are studied by X-ray diffraction analysis (XRD) and transmission electron microscope (TEM) respectively.

Key words: phase stability diagram; combustion synthesis; thermodynamics analysis