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Abstract: During the process of mining quantitative association rules, the semantics may be lost due to the dis—
cretization of quantitative values. To avoid the loss of semantic information, a novel algorithm, MPSQAR (mining
preserving semantic quantitative association rule), is proposed to handle the quantitative association rules mining.

The main contributions include: (1) Propose a new method to normalize the quantitative values; (2) Propose a
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method to assign a weight for each attribute to reflect the values distribution; (3) Extend the weight-based associ—

ation model to tackle the quantitative values in association rules without partition;

(4) Design a integrated and u-—

niform method to mine the traditional Boolean association rules and quantitative association rules; Experiments

show the effectiveness and linear scalability of the new method on time consuming.

Key words: quantitative association rule; MPSQAR algorithm; loss of semantic information

1 Introduction

Association rule is an important expression of
knowledge to reveal implicit relationships among the
items present in large number of transactions!’. Mining
association rule with binary values, called binary asso—
ciation rule mining, is well studied®™*. For association
rules with categorical values, each attribute, with sev—
eral specific values without semantic order, can be
converted into several binary attributes for each cate—
eorical value®™®. Association rule with quantitative val—
ues is called quantitative association rule!”.

The previous researches mainly find the association
rules by partitioning the quantitative domain and trans—
forming the problem into several binary ones®2. Also,
many studies have been made on the methods to divide

the quantitative values”™4,

such as equal-width bin—
ning, equal —frequency binning and clustering —based
binning®, and fuzzy sets theory is employed to divide
values into different bins'®. However, the mining re—
sults just can reflect the associations among bins of dif-
ferent attributes rather than the associations among all
the attributes!™. Min-apriori™ processes the quantita—
tive data directly by normalizing the quantitative value.
All values in each column are added up to 1.0. Let T
be a table used to represent a data set and T(i,j) be the
responding value of j—th item in i—th transaction and

let T(i) be the i—th transaction in data set T. According

to!™, the T(i,j) can be normalized into T (i,j) as the

following way:

T, (i )=rtdad) (1)
2 7(0)

Where |71 is the size of data set. According to Equation

(1), it is easy to see that T, (i,j) ranges from 0.0 to 1.0.

Finding frequent item sets and extracting interesting
association rules from frequent item sets are key phases

=151 An item set is frequent

in mining association rules!
if its support is larger than the minimum support. To
extract interesting rules from frequent item sets, a rule
is interesting only when its confidence is larger than
the minimum confidence. Both minimum support and
minimum confidence are user—specified values. In par—
ticular, for binary values, Apriori is one of the famous
algorithms to mine association rules. For Apriori algo—

rithm, the support of an item set X is calculated by:

_ \{tlte‘Ty{\‘XQt}\ (2)

support(X)

where t is one of transactions set T and Tl is the size
of the transactions set.

For Min—apriori in [15], after the normalization of
the data set, the support of an item set X, denoted as

support(X ), is defined as follows:

7]
support(X):Zmin{Tn(i,j)ljeX} (3)

i1
In Equation (3), the support of X in Min-apriori is
defined as the sum of all the minimum 7, (i,j) values of
each transaction in data set. Min—apriori can keep the
quantitative semantics during the phase of association

rules mining. The larger the attribute value, the more
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contributions of the attribute entry to the support.

In Table 1, the data set contains five transactions
and six items, I={A,B,C,D,E,F}. Following the
Equation (1), the data set is normalized (Table 2). By
Equation (3), for each item i eI, support({i})=1.0,
thus the item set {i} containing single item is frequent.
This is called side effect. That does not show the truth:

{t} occurs rarely.

Table 1 A data set containing 5 transactions
and I={4,B,C,D,E,F}
A1t 5 AN TR55 b i i B B, i A

I={A,B,C,D,E,F)

TID A B C D E F
TID_1 10 5 1 0 0 10
TID_2 2 5 1 0 0 0
TID_3 0 0 0 1 2 2
TID_4 1 5 1 0 0 0
TID_5 0 0 0 0 0 1

Table 2 Data set after normalization

462 IERLERY B e

TID A B C D E F
TID_1 077 033 033 00 00 0.77
TID.2 015 033 033 00 00 0.00
TID.3 0.00 0.00 000 10 1.0 0.15
TID_.4 0.08 033 033 00 00 0.00
TID.5 0.00 0.00 000 00 0.0 0.08

Total 1.00 1.00 100 10 1.0 1.00

To solve the previous problems, the main contribu—
tions of this paper include:

(1) Introduce a new normalization method to elimi—
nate the side effect;

(2) Employ a weight measure for each attribute to
show the different distribution;

(3) Propose MPSQAR algorithm to mine quantitative
association rules by extending the weighted association

rule mining model" which introduces weight artificially

according to the interest for each attribute and focuses
on binary values.

The rest of this paper is organized as follows. Section
2 describes the new way to normalize the quantitative
values. Section 3 introduces weight according the vari—
ance of the values distribution for each attribute. Section
4 presents the MPSQAR algorithm for mining quantita—
tive association rules by incorporating weight into Min—
apriori’ algorithm and revising weighted association
rule mining model!"!. Section 5 gives experiments to
show the effective and scalable performance of MP-

SQAR algorithm. And Section 6 concludes the paper.

2 Quantitative Values Normalization

Consider the data set with traditional binary values
in Table 3. Traditional support'™ of an item set can be
calculated by Equation (2) which is illustrated in the

following example.

Table 3 Data set with binary values

43 SUR ARG B

TID A B C D E F
TID_1 1 1 1 0 0 1
TID_2 1 1 1 0 0 0
TID_3 0 0 0 1 1 1
TID_4 1 1 1 0 0 0

TID_5 0 0 0 0 0 1

Example 1 Given item set {A}, then support({A})=
el t e TAN{A)} e t}l/ITI=3/5=0.6, where IT| is the count
of transactions. Normalizing the data set by Equation
(1) and then calculating the support of item set {4} by
(3), we get support({A})=1/(1+1+0+1+0)+1/(1+1+0+
1+0)+1/(1+1+0+1+0)=0.33+0.33+0.33=1.0. Both sup-
ports are quite different from each other and the side
effect occurs again in the latter one.

In order to eliminate the side effect and unify both

the binary and quantitative situations, we handle a
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specific attribute values according to the following
steps:

(1) Estimate the most possible non—zero value occur—
ring in the attribute column.

(2) Calculate the most possible sum of the attribute
values if all the entries present in the attribute column
with non—zero value.

(3) Employ the most possible sum to normalize the
non—zero values of the attribute.

Especially, for mining traditional association rules
with binary values referring to the Table 3, 1 is sup—
posed to be most possible nonzero value and the most
possible sum of the attribute values is ITl. According to
Equation (1), each T(i,j)=1 is normalized into T (i,j)=
1/ITN. Naturally, by Equation (3), support({A})=1/(1+
1T+1+1+1)+1/(1+1+1+1+ 1) +1/(1+1+1+1+1)=0.6 with
the same result as the one by Equation (2). To describe
our algorithms clearly, we introduce following new con—
cepts.

Definition 1 Let v be the most possible nonzero
value to occur in the j—th attribute. Given an entry for
one attribute column in the data set table whose origi—

nal value is 0. Then » is called expecting value filled

(EVF), and defined as follows:
7|

EVF(j)= 2, TG j)x

(4)

\{T(i)lT(i,j)#lo,lsis T 1}
In Equation (4), the numerator is the sum of all the
values for the specific j—th attribute in all the transac—
tions. And the denominator is the count of transactions
whose values for j—th attribute are nonzero.
Example 2 Considering the Table 1, EVF values of
all the attributes are listed:

EVF(1)=(10+2+0+1+0)/(1+1+1)=13/3

EVF(2)=(5+5+0+5+0)/(1+1+1)=5
EVF(3)=(1+1+0+1+0)/(1+1+1)=1
EVF(4)=(0+0+1+0+0)/1=1
EVF(5)=(0+0+2+0+0)/1=2
EVF(6)=(10+0+2+0+1)/(1+1+1)=13/3

Especially, Consider binary values in Table 3. The

responding EVF results are listed:

EVF(1)=(1+1+0+1+0)/3=1
EVF(2)=(1+1+0+1+0)/3=1
EVF(3)=(1+1+0+1+0)/3=1
EVF(4)=(0+0+1+0+0)/1=1
EVF(5)=(0+0+1+0+0)/1=1
EVF(6)=(1+0+1+0+1)/3=1
In binary values situation, all the EVF results for
all the attributes are 1.
Definition 2 The normalization coefficient: Is a real

number defined by formula (5):

NC(j)= (5)

TRV
Note that, intuitively, NC is the normalization of j—th
attribute in the data set.

By the Definition 2, given value T(i,j), let T, (i,j)
be the value after normalization. Then the normalization
can be described as the following equation:

T (i,j)=T(i,j)xNC(j) (6)

Example 3 Consider the Table 1 and Table 3. The

results of normalization are shown in Table 4 and Table 5.

Table 4 The normalization result of Table 1 by NC
4 1 NC ERAR IS S B
TID A B c D E F
TID_1 046 02 02 00 0.0 046
TID_2  0.09 02 02 00 00 0.00
TID_3 0.00 0.0 0.0 0.2 0.2 0.09
TID_4 0.05 0.2 0.2 0.0 0.0 0.00
TID_5 000 00 00 00 0.0 0.05
Total 060 06 06 02 0.2 0.60
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Table 5 The normalization result of Table 3 by NC
£ 5 A3 NC IERALIEE B

TID A B c D E F
TID_1 0.2 0.2 0.2 0.0 0.0 0.2
TID_2 0.2 0.2 0.2 0.0 0.0 0.0
TID_3 0.0 0.0 0.0 0.2 0.2 0.2
TID_4 0.2 0.2 0.2 0.0 0.0 0.0
TID_S 0.0 0.0 0.0 0.0 0.0 0.2

Total 0.6 0.6 0.6 0.2 0.2 0.6

Calculate the support for item set {A} by Equation
(3) as Table 4, then we get support({A})=0.46+0.09+
0.05=0.6. Thus the side effect does not occur if the size
of the item set is small as shown in Table 2. Suppose
minimum support minsup =0.3, calculate traditional
support with Equation (2), we get support({A,F})=0.2.
Thus {A, F} is not frequent. Since support({A ,F))=0.46
by Equation (3), {A,F} is frequent. Especially, consider—
ing the binary values situation, by Table 5 and Equation
(3), the supports of all the item sets are the same as
the traditional supports calculated with Equation (2).

Lemma 1 Let tsupport (X ) be the support of X
calculated by Equation (2) and nsupport(X) be the
support of X calculated by Equation (3) after norma—
lization with NC. Given an item set X of a data set T.
Assume that all the items in T are binary attributes.
Then tsupport(X )=nsupport(X ).

Proof Let T(i,j) be the value of the j—th attribute in

the i—th transaction, T, (i,j) be the value of normalizing

T(i,j), T(i) be the i~th transaction of the data set T.
Firstly, tsupport(X)=l{tl e TAX Cejl/IT={T(0)I1 <i<|
TINX CT()}INTI. Since if X CT(i), then min{T(i,;)!
jeX)=1, and if XCT(i), then min{T(i,j)l j e X}=0.
Thus:

o
tsupport(X):Z min T(loj)J‘ET)T/\XCT( )}
i=1

g min{ T(L,])']‘E)‘(/\XCT( )}
: T

7| o
tsupport(X )=, mm{T(\L%] ‘)lj eX}
=1

On the other hand:
|7

nsupport(X )= 2 min{T, (i,j)lj € X}
=1

According to Equation (5) and (6), we can draw that:
7]

nsupport(X )= Z min{T(i,j )xNC(j)|j € X}=

7|

mln #(L’
2 7 xEvEG) Y €Y

As described in Example 2, all the EVF(j)=1 in the

binary values situation, therefore:

7]

> min(7( )T ) e X)=

7]

Z min{T(i,j)lj € X}| T | /tsupport(X)

p
So tsupport(X ) is equal to nsupport(X ). O

Lemma 1 shows that the normalization method
unifies support definitions in both traditional binary

values situation and quantitative values situation.

3 Incorporate Weight into Quantitative As—
sociation Rules
3.1 Introducing Weight

In previous two sections, Equation (1) is applied for
normalization Min—apriori™, and Equation (6) is for
normalization without side effect. It unifies the support
definitions in both binary and quantitative situations.
However, both equations ignore the distribution of the
values in attribute. By careful consideration on the
weight of quantitative association rules, we have the
follwoing observations.

Observation 1 In Table 1, the values of attribute
A and attribute B are distributed quite differently.
However, after normalizing the data by Equation (6)
into Table 4, and calculating support by Equation (3),
support({A}) is same as support({B}) although the dis—
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tributions of A and B are quite different especially
when the size of item set is not large enough.

Observation 2 In Table 1, attribute C always oc—
curs with 1 or 0. So C is supposed to be a binary attri—
bute. Comparing A with C in Table 4, it is obvious
that support({A}) is equal to support({C}). So Equation
(3) can not reflect the difference between A and C.
And a reasonable result that support ({A}) is greater
than support({C}) is expected.

Based on the observations above, it is worthwhile to
incorporate the distributions of different attributes into
the way of calculating support.

Observation 3 In Table 1, attribute B always oc—
curs with five or zero in data set. Thus it should also
be viewed as a binary attribute. As a result, that sup—
port({B}) equals to support({C}) is considered to be
reasonable.

In order to reflect the distribution of each attribute
described in Observation 1 and 2, and keep the prop—
erty in Observation 3, a weight should be introduced
for each attribute in the method of calculating support.

For the convenient in later discussion, we denote
the array containing all the nonzero attribute value as
NAVA.

Example 4 According to the description above, the
following are obvious for Table 1:

NAVA(A)=NAVA(1)={10,2,1}

NAVA(B)=NAVA(2)=(5,5,5)

NAVA(C)=NAVA(3)=(1,1,1}

NAVA(D)=NAVA(4)={1}

NAVA(E)=NAVA(5)=(2}

NAVA(F)=NAVA(6)={10,2,1)}

Considering Definition 1 and Example 2, it can be
easily found that EVF value of the j—th attribute is the
mean value of NAVA(j).

In order to reflect the variance of the distribution

for a specific attribute, absolute deviation is employed
and a new concept is given as follows.

Definition 3 Let NAVA (i,j) be the i—th value in
the NAVA(j), and INAVA(j)I be the size of NAVA(j)
array. Then the relative diversity value of NAVA (j),
denoted as v, is said to be the variance factor of the j—

th attribute, abbreviated as VF, defined as:

[NAVAG)|

VEG)= Y, |NAVAG j)~EVF()|x

=1

1
INAVA(i,j) [xEVF(}) (7)

Note that in Definition 3, VF(j) reflects the variance
of the j—th attribute relative to EVF(j), that is the
expecting value of NAVA(j) for the j—th attribute.

Lemma 2 Given a data set T, let T(i,j) =0 be the
value of the j—th attribute in the i—th transaction of T,
then VF(j) €[0,2] if and only if each NAVA (i,j)=
EVF(j), VF(j)=0.

Proof [Preparation| Since each NAVA (i,j)#0 and
T(i,j)=0, thus NAVA(i,j)=0. By the Example 4,
EVF(j) is the mean of all the values in NAVA (j), so
EVF(j)>0. By Equation (7), it is inferred easily that
VF(j)=0. On the other hand, given another two arrays
lefi(j) and right(j), let lefi(j) contains all the NA VA (i,j )<
EVF(j), right(j) contains all the NAVA (i,j)=
EVF(j), then llefi(j)l+lright(j)=I NAVA (j)I and

[lefi(j)] [lefi(j)]

> (EVF()-lefi(ij)= D, (right(i, j)-EVF(j))

i1 =1
since EVF(j) is the mean of all the NAVA (i,j). And

[NAVA ()]

> INAVA (i j)-EVF(j)I=

i=1

we can draw that:

[lefi(j)] [ right (j)]

2 MlefiCi )~EVE()I+ Y lright(i,j)~EVF(j)I=

[lefi(j)]
| NAVA (i j)-EVF(j)1=2x >, (EVF()-lefi(i,j)) <

i=1

2xINAVA ()l x EVF(j), therefore:
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[NAVA )|

2. |NAVAG,j)-EVF()|
V= NV A O TREVEG)

2| NAVA () [XEVF() _,
INAVA(G)[XEVF() ~

[Sufficiency] From the proof above, when each
NAVA (i,j)—EVF(j), then numerator—0. That is,
NAVA (i,j)=EVF(j) implied VF(j)=0. And the more
the values of the j—th attribute vary, the greater the
VF() is.

[Necessity] Note that, if VF(j)=0, then the nume—
rator of Equation (7) equals to 0. So NAVA (i,j)=
EVF(j). O

By Definition 3 and Lemma 1, given the specific j—
th attribute, then the weight of the j—th attribute can

be defined as follows:

weight(j):n"iz(ﬁ (8)

Lemma 3 Given the specific j—th attribute, let
weight(j) be the weight of the j—th attribute as defines
above. Then: (1) weight(j) e[1,2]; (2) When each
NAVA (i,j) approaches EVF(j), then weight(j)
approaches 1.

Proof It follows from Lemma 2 immediately. Note
that, the more the values of the j—th attribute vary, the
greater the weight(j) is. Especially, if the j—th item is
a binary attribute, then it is inferred easily that V F(j)=0,
therefore, weight(j)=1.

Example 5 Consider Table 1. By Equation (8), all
the weights of all the attributes list as follows: weight(1)=
1.0+0.44=1.44; weight(2)=1.0+0.0=1.0; weight(3)=
1.0+0.0=1.0; weight(4)=1.0+0.0=1.0; weight(5)=1.0+
0.0=1.0; weight (6)=1.0+0.44=1.44; Tt is clear that
weight (1) and weight(6) are the greatest due to their
most variational distribution. And the rest attributes
can be consider being binary attributes, so that all the

weights are 1 is reasonable.

3.2 Modeling Weight

In order to incorporate weights of quantitative
attributes into association rules, the definition of
support in Equation (3) should be revised. To model
the weight, weighted support and normalized weight
support for the association rules are proposed in [16].
However, the traditional support does not work well for
quantitative association rules. Thus, a new weighted
support is proposed to meet the weighted quantitative
association rules.

Let T be a data set, T(i,j) be the value of the j—th
attribute in the i—th transaction of 7, and T, (i,j) be the
value after T(i,j) being normalized by Equation (6).
We have:

Definition 4 Given an item set X for data set T" and
the j—th item attribute in the item set X, let weight(;j)
be the weight of the j—th attribute, and let wsupport(X)
denote the weighted support. The weighted support is

defined as follows:

wsupport(X):‘)lfi‘ 2 weigh(j)x
jeX

’
Zmin{Tu(i,j)ljeX} (9)

Note that, as defined in [1,2], let minsup be a user
specified minimum support, if wsupport (X ) =minsup ,
then X is a large (or frequent) item set.

Example 6 Consider Table 4. Suppose the minimum
support minsup=0.1. Let X={E,F}, then support(X )=
0.09 by Equation (3), and X is not a large item set;
on the other hand, wsupport(X)=((1+1.44)/2)x0.09=
0.109 8 and wsupport(X)>0.1, so X is considered as a
large item set and if IXI=k, X is called large k—item
set.

Lemma 4 Given a data set T, suppose all the items
in T are binary attributes, and an item set X for data

set T. Given the j—th item attribute in the item set X,
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Let weight(j) be the weight of the j—th attribute, and let
wsupport(X ) denote the weighted support, tsupport(X)
denote the support of X calculated by Equation (2) and
nsupport (X ) be the support of X defined by Equation
(3). Then tsupport(X )=nsupport(X )=wsupport(X ).

Proof First, according to Lemma 1, since all the
items are binary attributes

tsupport(X )=nsupport(X )

Second, consult to the Equation (9), then
wsupport(X):&i‘ zx weight(j )xnsupport(X )
je
Third, because of all the binary attributes, for the j-th
attribute, weight(j)=1, so wsupport(X )=nsupport(X).

The conclusion is tsupport ( X ) =nsupport (X )=
wsupport(X ). This completes the proof. O

As shown in Lemma 4, the definition of weighted
support can handle the support of item set in both data
sets with binary and quantitative attributes. Thus, there
is no loss of power in tackling the binary attribute;
also it can handle the quantitative attribute with the
ability of reflecting the distribution of attribute values
directly.

Given two item sets X and Y, and X NY =@, an
association rule r can be defined in the form: X=Y.
Let wsupport(X) be the weighted support of X described
in Definition 4 and nsupport(X ) be the support of X
defined in Equation (3). Thus:

(1) The support of r is:

support(r)=wsupport(X UY)

(2) The confidence of r is:

confidence (r)=nsupport(X UY )/nsupport(X)

Given minsup be the minimum support and minconf
be the minimum confidence, if support(r)=minsup and
confidence (r) =minconf, the rule r is considered to be
an interesting rule (or pattern). For example, given

minsup =0.1 and minconf =0.4, then in Table 1,

support({E=F})=0.109 8>0.1 and confidence(E=F)=

0.45>0.4, so rule E=F is an interesting rule.

4 MPSQAR Algorithm

Mining association rules usually includes two steps:
(1) Find all the frequent item sets from data set; (2)
Extract interesting rules from all the frequent item sets.
Min-apriori algorithm is proposed for handling quanti—
tative association rules directly!™, Min-apriori works as
apriori''l. Considering the weighted support of item set X
defined in Definition 4, the apriori property does not
make sense again.

Example 7 Given minimum support minsup =0.25,
consider Table 4. Note that although {C,F}C{A,C,F},
wsupport({A ,C,F})=0.258 and wsupport({C,F})=0.244,
{A,C,F} is a large item set while {C, F} is not. In [1],
MINWAL(O) and MINWAL(W ) are proposed to tackle
the weighted association rules with binary attributes.
And the weight of each attribute is user specified while
the weight for each attribute is produced by its distri—
bution in this paper. Thus MPSQAR algorithm is pro—
posed by revising the MINWAL(O) for the weighted
quantitative association rules in this paper. Similar to

[16], let X, Y be item set, minsup be the minimum

support, and

7]

nsupport(X )= Z min{T, (i,j)lj € X}
=1

w<X>:‘)1(—‘ > weight(j)

jex
then wsupport(X )=w( X )xnsupport(X ).

Let v be the maximum possible weight for any item
set contains X, MPW is short for maximum possible
weight, and MPW (X ) is used to denote v of X, then
define MPW (X ) in mathematic form as MPW (X )=
max{w(Y )IX €Y} Herein, it is easy to draw that nsup—
port(X ) =nsupport(Y ) when X CVY. Also, we can infer
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the lemma in the following.

Lemma 5 If nsupport (X ) <minsup/MPW (X ), then
X is not the true subset of any item set.

Proof let Y be any item set containing X, then
w(Y)<MPW (X ). Since nsupport(X )<minsup/MPW (X )
and nsupport (X ) = nsupport (Y ), so nsupport (Y )<
minsup/MPW (X ). And because of MPW (X)=w(Y),
nsupport (Y) <minsup/w (Y). So nsupport (Y )xw (Y )<
minsup , that is wsupport(Y )<minsup. As a result, Y is
not a large item set. Especially, according to Lemma
3, since weight(X) <2, so w(X)<2 and MPW (X)<
2. As a result, if nsupport (X)<minsup/2, X cannot
be the subset of any large item set. O

Similar to Apriori, MPSQAR employs large candi-
date k-1 item sets to produce candidate large k item

sets. Let T be the data set, and T, be the data set nor-
malized from T, Weights be set of item weights, C. be

the candidate large i—item sets and L, be the large i—

item sets. Based on the above results, the MPSQAR al-
gorithm is described as follows:
Algorithm MPSQAR (mining preserving semantic
quantitative association rule)
Input: (1) T: the data set; (2) minsup: the minimum support
Output: a list of large item set L
Begin
T, =normalize(T);
Weights[|=calculate Weight(T)
C, =singleltem(T, ,minsup ) ;
L,=check(C, ,minsup );
For (i=1;1C,150;i++)
Begin
C..,5join(C,);
C..,=prune(C., ,minsup);
L., =check(C,, ,minsup);

L=LUL_;

End
Return L

End

All the methods in MPSQAR are listed in the fol-
lowing:

(1) normalize (T): use Equation (6) to normalize
each value in T.

(2) calculate Weight(T): according to Equation (8),
get all the weights of all the attributes.

(3) singleltem(T,

7

,minsup ): based on all the single

item set, following Lemma 5, the single item set X will
be pruned if nsupport(X ) <minsup/2 or nsupport(X ) <
minsup/MPW (X ).

(4) prune(C,+1,minsup ): from candidate large (i+
1 )—item set, remove the item set X in following situa—
tions: (D existing a i-item set which is a subset of X does
not occur in C,. @ nsupport(X) <minsup/2. 3 nsup—
port(X) <minsup/MPW (X ).

(5) join(C,): similar to [1,3], return (i+1)—item sets.

(6) check(C

., »minsup): according to Equation (3),
check data set T and the item set X which wsupport(X)<

minsup will be removed, return the large (i+1)—item sets.

5 Performance Study

Now we report the experimental results on the MP-
SQAR algorithm. It is implemented in Java. All the ex—
periments are performed on HP Compaq 6510b with
Intel(R) Core(TM)?* Duo CPU 1.8 GHz and 1 G Mem—
ory and Windows Vista and run on both synthetic and
real data sets.

(1) For synthetic data set, the values of each at—
tribute will be 0 with a probability generated randomly
ranging from O to 1. And the nonzero values of the at—
tribute occur according to normal distribution whose

mean and deviation are produced randomly. The range



BWHEK % :MPSQAR: THE LK ENRBEHNZIRE %

401

of nonzero values, the number of transactions and num-
ber of attributes are all user—specified.

(2) For the real data set, we use the text data set
called 19MclassTextWe which can be downloaded from
WEKA data set page. In the data set, all the word
count feature vectors have already extracted. So we can
mine the patterns of the words occurrence.

To discuss the performance of experiment conve—
niently, some notations are given: BI, convert data set
into binary data set depending on whether the value is
greater than O firstly, then mine it with the apriori al-
gorithm. MA : mine data set with min—apriori algorithm!.
QM : normalize data set with Equation (6) and mine
the data set without considering the weight of attribute.
W@ : mine the data set employing MPSQAR algorithm.

Step 1 With data generator, 10 synthetic data sets
containing 10 k transactions and 10 attributes are gen—
erated. And the 10 data sets vary with the number of
quantitative attributes in each data set. Especially,
when the number of quantitative attributes is 0, the

data set can be viewed as a binary data set and when

110 minsup :0.3

5 1000
9 -
80/ ]
70 ‘ 1
60+ — :
50 A
40+
30 1
20

—+— B/

Num of large item sets

o 2 4 6 8 10
Data set
Fig.1  When minsup=0.3, the relationship
between the number of large item sets and
the number the of quantitative attributes
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the number is 10, all the attributes are quantitative.
Given minsup =0.3 and minsup =0.4, Variation in the
number of large item sets on the synthetic data sets
with changing number of quantitative attributes are
shown in Fig.1 and Fig.2 respectively. As we can see,
when the number of quantitative attributes is 0, BI,
QM and W(Q produce the same number of large item
sets and that is in agreement with the Lemma 4, and
the number for MA is greater than others due to its
normalization way. For BI, there is no difference among
different numbers of quantitative attributes, so Bl can—
not reflect the difference of quantitative attribute. Also,
the number of large item sets for W(Q is always greater
than the one for QM due to the weight of attribute.
Step 2 Given the synthetic data set containing all
10 quantitative attributes and the real data set contain—
ing 50 quantitative attributes extracting from the real
text data, then the variation in the number of large
item sets with different minsups is shown in Fig.3 and
Fig.4 respectively. As both figures shown, when the

minsup increases, the number of the large item set de—
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the number of the quantitative attributes
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creases. If the minsup gets close to 1, the number of
large item sets for BI, MA and W() approaches O.
However, the number for MA stops decreasing due to
its side effect.

Step 3 With the data generator, 7 data sets con-
taining 50 attributes and varying with different numbers
of transactions from 100 k to 700 k. And execution time
on these data sets is shown in Fig.5. Also, 9 data sets
contain 100 k transactions and varying with changing
number of attributes from 10 to 50. And execution time

on these data sets is shown in Fig.6. From both fig—

Synthetic data

3
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Num of large item sets

o ..
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minsup

Fig.3 The relationship between the number of large

item sets and the minsup over the synthetic data set
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time and the number of the transactions
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ures, it shows that the new MPSQAR scales approxi—

mately linearly.

6 Conclusion and Future Work

Most existing work for quantitative association rules
mining partition quantitative values into different bins
and employ binary mining algorithm to extract the asso—
ciation rules. And the result rules just reflect the asso—
ciation relationship among these bins of different items
rather than the association among different items due to

the semantics loss of the partition of quantitative val -

5 Real data
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ues. To deal with this problem, we have proposed the
MPSQAR algorithm to mine the quantitative association
rules directly by normalizing the quantitative values.
MPSQAR also introduces a weight for each attribute
according to the distribution of the attribute value and
tackles the binary data and quantitative data uniformly
without the side effect existing in Min—apriori. The ex—
perimental results show the efficiency and scalability of
proposed algorithm. MPSQAR works well to extract the
association among different attributes items rather than
the partitions of items. However, the method of model-
ing the weight to reflect the distribution of attribute val—
ues is sensilive to the noise of attribute value. In the
future, it is worthwhile to propose a better method to

model the weight to be incorporated.
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