ISSN 1673-9418 CODEN JKYTAS E—-mail : fest@public2.bta.net.cn
Journal of Frontiers of Computer Science and Technology http : //www.ceaj.org
1673-9418/2008/02(04)-0431-08 Tel : +86-10-51616056
DOI:10.3778/.issn.1673-9418.2008.04.009

Research on Internetware Reliability Measurement Model Based on
Service Update’

DU Yugen*, LI Yonggang
Software Engineering Institute, East China Normal University, Shanghai 200062, China

+ Corresponding author: E-mail: ygdu@sei.ecnu.edu.cn

BTNk 55 S 04 B R AR A1 T S PE BRI BIFE

HEAR, F KR
ERIFERT RUEFIR, Lk 200062

B AR R AT B S A S T4 Internet SR T RAF A RAARTL S0 — AP F . IR RA,
M) AR T IT AL T &4 L B 08 0 RAR IR S AR 8] 69 A B R o T SR R BURE TR B k)
BARIR S A G, BBk T PRI 3 & T AL, TR IA TAAB T IR S 2R L& 09 AT, BT e dd
BT MG E SR CRBE S EIAHORELE, EEMABRAEBETE L AT T B EZHEA
BALF —ANRK A CHFEI R, XZRE P T4 P £ 2K (failure counts) A F &k IR £ T #%FE 5N
Musa—Okumoto(M=)R o7 4F A4 M-0 #EA EH MM B E T H—ANT . 25T T WA SR AL
Fa iR ACSAE, H FAERBE T P AR T S AT AR —FF B3

FR]« P A B A IR S 3T T SE AR FARIRIE

SCHRBR IS A TP 5 R TP3 1L

DU Yugen, LI Yonggang. Research on internetware reliability measurement model based on service

update. Journal of Frontiers of Computer Science and Technology, 2008,2(4):431-438.

Abstract: Internetware is an abstract of software system basic paradigm under an open, dynamic and ever—
changing Internet environment. This new software system is architected on an effective collaboration of hetero—

geneous and autonomous software service entities under an open environment. Its reliability depends not only

* the National Natural Science Foundation of China under Grant No.90718013 (E% HREIF#HE4:); the National High-Tech
Research and Development Plan of China under Grant No.2007AA017189 (ERBH AT & it 51(863)).
Received 2008-03, Accepted 2008-06.

432 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

on autonomous software entity itself, but also on dynamic changes of outside, such as changes of service en—

tity elements under an open environment. The current reliability measurement model for traditional software is

no longer suitable for this new software paradigm. It becomes a more urgent issue whether a good reliability

measurement model can be built under internetware software paradigm. A concept of failure counts during

service update process is brought forward. Service update intensity is applied into Musa—Okumoto model,

which is one of the most widely used software reliability models, therefore this model is expanded under new

software paradigm. Finally internetware deterioration and its condition are also discussed.

Key words: internetware; service update; reliability model; open environment

1 Introduction

Internetware is a new paradigm of software fit
for a collaborated, open and dynamic environment.
Its operation depends on all kinds of heterogeneous
and autonomy service entities’ collaboration'. Tt is a
natural extension of traditional software structure,
but has its own unique characters such as open
structure, dynamic cooperation, online evolution,
environment apperception and self-adaptation®?. In-
ternetware will span from information web to soft-
ware web.

Internetware has a service—oriented architecture
and its component is a service entity (Fig.1). Here,
service entity, in forms of distributed, autonomous
independent,

and heterogeneous components, is

spontaneous and self—adaptive. Entity interaction is

service

inter—connection, inter—communication, collaboration
and alliance by manners of several static connection

and dynamic cooperation.

Service entity)<Connection and interaction™>(Service entity

Fig.1 The basic paradigm of

service—oriented software
Pl 1 o IR S5 5K A R JE A E &%

However, internetware development process is
under an open, dynamic and ever—changing Internet
environment with rich basic software resources (see
Fig.2). Tts basic system is assembled by resources
of basic software entities which is self-independent
and can not be managed and collaborated directly
by developer. What’s more, in the total internet—

ware lifecycle, the structure of internetware is still

Software operation platform

Software operation platform

Fig.2 Internetware paradigm

B 2 MR PFIE &

HER F 2 TRS EH 0 R FEERR

433

under dynamic evolution after internetware has been
submitted for operation. For example, by system re—
quirements changes, participant service entities may
dynamically leave or join the system, or by sur—
roundings changes, service entities functions will be
re—configured and updated™.

Therefore service update includes two levels of
meanings: one level is service update by the com-—
position changes of its service entities, the other
level is the update by single service entity itself.

Traditional reliability models only discuss these
failures caused by software fault while ignoring the
problems caused by internetware dynamic evolution.
We’d like to introduce service updating process into
the model to adapt to such new software paradigms.
In the 3rd section, we will discuss in details about
some changes after we impose service updating inten—
sity on Musa—Okumoto model. Considering side effects
that each update will bring, we also define side
effect intensity in the 5th section to depict deterio—

ration of software.

2 Internetware Reliability Static Model

Traditional software reliability models can be
categorized as time—based model, which is based on
software failure time and failure intervals, such as
Jelinski—-Moranda models; failure—based model, which
is based on the sum of failures and failure rate,
such as Goel-Okumoto and Musa—Okumoto model®.

According to hypothesis of comprehensive mod-
el, testing environment and statistics methods pre -
sented in Reference [6], it can be also grouped as
random process model, such as Markov process
model and Poisson process model and non-random
process model.

Among process models, if supposed failure rate
is a constant in software unchanged intervals and

drops along with failure counts, those models belong

to Markov process type; If cumulative failure counts
during debugging process is taken as time function
N(t), under some conditions it can be approximate to
a non Poisson process, such models belong to non—
Poisson Process type. Under such a way of catego—
rizing, Jelinski-Moranda model belongs to Markov pro—
cess, Goel-Okumoto model to non—Poisson process.
While Musa’s execution time model shall fall into
Markov process type, that is to say, future distribu—
tion condition of a process is independent to the
past. And Musa—Okumoto’s logarithmic—Poisson—exe—
cution—time—model shall be in non-homogeneous Poi—
sson process type. Failure refers to many faults or
bugs that reside in the code. When an input to the
software activates a module where a fault is pre—
sent, a failure can occur.

Cumulative failure function N(t): cumulative
number of failures experienced by time ¢. It is a
random process. The expected value of N(¢) is called
the “Mean value function”:

w(t)=E[N(1)]

Failure intensity function A(7) represents the
rate of change (derivative) of the mean value func—

tion w(z):
A=)

Failure rate, also called hazard rate, is the
rate at which failures occur in the interval [t,i+A¢]:

(1)=lim pU<T<t+AdT>t)
A0 At

where T represents time when failure occurs.

)
(t)_R(t)

Unreliability F(¢) is the probability that a fail-

ure will occur in the interval [0,¢]. And f(¢) is the
density function of F(t).

Reliability R(#) is the probability of failure—free
operation for a specified period under stated condi-
tions. R(t¢) is probability for no failure in the inter—

val [0,1].

434 Journal of Frontiers of Computer Science and Technology ITENBHESHE

2008,2(4)

RW=1-F(10), R(D= | fo)ds
2.1 Software Service Entity Reliability

Analysis

Suppose bugs of component software are inde—

pendent to each other, based on cumulative failure
function, we can use Goel-Okumoto model to give a
system reliability exponent growth model (NHPP).
Here, a is the expectation of number of bugs
found; b is bugs found rate at time ¢, then failure
intensity function and mean value function of each
service software entity can be expressed as below:

—bt
Failure intensity function A(t)=abe

—bt
Mean value function u(t)=a(l-e)

The reliability of failure—free operation in (z ,z+At)

(t, is the time when the ith failure has occurred):

-bAt

R(Atlt,):exp(—aeiml(l-e)
2.2 Reliability Analysis

Structure of Service Entities

on Connection

The reliability of service assembled system de—
pends not only on different reliability of each ser—
vice component, but also on relationship of the
connection structures of each component. The rela—
tionship can be grouped as below™:

(1)Serial system C,—C,—>-~—C,, Failure of any

component results in the failure of the whole system.

Failure intensity: A = le A,

System reliability: R (1)= H R, (1)
: i=1

where A, is the Failure intensity and R, (t) is the
reliability of the ith component C..
(2)Parallel system C, || C, || -+ || C,, Failure of all

n

components results in the failure of the whole system.
System reliability: R (t):l—H(l—Ri (t))
p

(3)Circulate service system, one or more com-—

n

ponent circulated for N times use [C,] .

(t)=R,(¢)"

(4)Parallel-Series system

(€€ C,) [(G —Cy 0,) |
e

System reliability: R

sys

>an2 e .>Cmn)

ml

then single path reliability of the system is RL:HRL.].;

=1

System reliability is R, =1- H (1- HRij).
Pl =

(5)Series—Parallel system
(Cll | G, Il C,)_>(Clz | C,, [l C..)=

..._,(Cln || CZn || || C)

mn

then single path reliability is R, =1—H (I-R,) and
i=i

n

System reliability is R, :H [1—H (1-R;) } .
i=1

1
(6)MIN system
Suppose there are total N same components
with reliability R(z) in a parallel system, at least M
components need to work correctly for the system to

function properly (m<n), then system reliability is

m—1
R, ()=1-,
=0

Obviously when M=1, it deteriorates to parallel sys—

K IR (1-R()”
\z

tem and when M=N, series system.
2.3 Reliability Analysis on Connection of
Service Entity

The service interface of internetware components
can be realized on different platforms and can be
accessed and interacted by different communication
protocols such as Java RPC, SOAP, etc, on the
other hand, a uniform service interface described in
WSDL is provided to the outside. Therefore, the re—
alization and access of components service is sepa—
rated. Developer only needs to know the components
service interface, ignoring its realization and ac—
cessing methods. Developer has much easier access

to these component resources. The protocol of mid-

HER F 2 TRS EH 0 R FEERR

435

dleware components of internetware determines the re—
liability of its connection.

SOAP provides an interchange mechanics based
on XML for different components under internet en—
vironment. Different from other protocols, SOAP ar—
ranges transferred message to text form, which is
designed for combination with all kinds of protocols.

The reliability of SOAP depends on its binding
with transport protocol. If UDP related transport pro—
tocol is adopted, groupings may be lost due to
some factors such as the band width, time exten-—
sion, size of the grouping and so on" If bound with

common HTTP or SMTP protocols, its reliability is
guaranteed by TCP.

3 Reliability Model Based on Service Up-
date

Service oriented, internetware possesses the
paradigm shown as Fig.2. Smooth running of sofi—
ware depends on reliability of service entity. Failure
count is a random process, its cumulative failure
function is determined by two other random processes.

(1)Cumulative failure function N(¢), where the
failures are caused by service component entity fault;

(2)Cumulative failure function M(¢), where the
failures are caused by service updates under a dy-
namic evolution environment or system requirements
changes.

While service oriented failure count is also a
random process, it is two dimension distribution of
N(t) and M(z). Model hypotheses with reference to
[11-13] are given as below:

(1)When time ¢ is O, failure count is 0 and
service update count is 0.

(2)Since service failure caused by service entity’s

fault or bugs will reduce along with progress of test—

ing, thus failure intensity A(z) decays exponentially:

6, (1)
A(L)=A e

(A, is initial failure intensity, 6 is failure intensity
decay parameter and w, (1)=E[N(1)])

(3)Suppose failure increase caused by service
changes is stable which is a homogeneous Poisson

process and service update intensity 8(¢) is a constant

(Ei, and then there exist
B(t):dﬂjit(t):é, w, (1)=E[M(1)]

(4)Suppose no new bugs occur after service
entity’s malfunction has been repaired; suppose if
service updates happen, component service entity’s
original failure rate and failure decay rate after ser—
vice updates are equal to their values before service
updates. (Of course, this supposition is ideal. We
will discuss later in the 5th section, the situation
where every service update will incur new bugs).

(5)Within a small interval (¢,z+A¢), probability

of one service failure is A (#)At+o(At), probability
of more than one failure is o(Az), lim M:O.
a0 At

From supposition (2), differential equation can

be deducted as

O, (1)
e
dt :A()a
. .](f) . .
Its integral is e =A,60t+C, C is integral constant.

From supposition(l), ,LL,(O):O, so C=1. The

mean function is

In(A,6+1
iy (1)= ML) (1)
0
From supposition (3), differential equation
d“éit(t)zé , integral is u, (1)=6t+C, C is integral

constant, and from supposition (1), C=0 and

w, (1)=51 (2)
Since service update random process and component
software entity failure process are independent to
each other, from supposition (4), the mean value

function of service failure can be calculated

436 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

w(t)=s, (t)+,u,2(t):;—ln()\06‘t+1)+t (3)

From supposition (1) and (5), service failure

is a Poisson process. Therefore, probability of w(t)=
" —w(t)
m is Pr{w(t):m}:Me , service reliability
m!

distribution is

(At)=w(e,_,)]

R(Allt,_,)=e (4)
By formula (3) and (4)
InA,0C A+,)+1

R(Atl,_,)=exp{-[7 +(§(At+ti,1)-
InA,60(. 1
& Oe(gl_l)+ _Sti—l]}:
Aot +1 V0 5a
WAV RS (5)
A0t +1

Let f:tlg—ln , the formula (5) is

A0 Art,)+1
simplified as
R(Atle,_,)=explé-5At) (6)
In actual application, parallel and series struc—
ture systems are most commonly used, such as an
example in the coming section. Suppose the base
protocol of component connection is reliable and the

reliability function of service k is

R, (Adle_,)=expl£, 8, At}
then when two services are series structured, their
joint reliability function is calculated
R, (Atlti—l >=exp{§1 +§z_(51 +$2)At} (7)
When two services are parallel structured, their

joint reliability function is calculated

R, (Al)=R, (Al)+R, (Adle_)R, ., (Adle,_,)=
explé, =8, At)+expl€, -5, Ar)-
exp{¢, +§2_(‘§1 +‘§2)A) (8)

4 Example
In this section, the above model based on inter—

net service changes is applied to analyze its service

reliability, then an overall reliability measurement is
given by analysis on connections between internetware
entities.

An example quoted from reference [14] with
some modification is shown as Fig.3. A composite
service TravelPlan, presented by a travel agency
combined with services of its partners such as air—
lines, train ticket agencies, banks, express compa-—

nies and so on, can tailor-make a travel plan for

its customers according to their different needs.

6

{ CalFees Hpayment}—' 7

EMS

S
CheckUser —»

Fig.3 Travel plan
Pl 3 diedrilil

Each service function is shown as below:

CheckUser: check if flow requestor is registered
user of the travel agency and book hotel at destina—
tion;

Flight: book the flight tickets to destination;

Train: book train ticket to destination;

Calfees: calculate total expense;

Payment: pay the expense;

FedEx, EMS: finally book FedEx, UPS or EMS
to deliver notes.

Among them, services of booking air tickets or
train tickets are parallel. The flow will continue if
only one booking service is successful. Another par—
allel structure is to book service from two express
companies. Actual delivery only requires one, with—
out any orientation.

Suppose the base protocol of the connection of
component is reliable, the formula of the above
section of (7) and (8) can be directly applied.

The reliability of the whole system is distribut—

ed as below:

HER F 2 TRS EH 0 R FEERR

437

R, (t)=explé, +&,+£,—(5,+6,+8,)At}+

(explé, —5, At}+explé, -8, At)—explé, +£,~(8,+8,)Ar)) -

(expl€, -8, At}+explé, -8, At)—explé, +&,—(5,+8,)At})

5 Internetware Deterioration Discussion
on the Model

In total life cycle of internetware, its idealized
curve shows the software will not wear out, but de-
terioration does exist. New faults may occur in every
software service changes, which will dramatically in—
crease failure intensity (failure rate) as Fig.4 shows
below. Before the curve can return to original
steady—state failure rate, another change is request—
ed, causing the curve to spike again. Slowly, the
minimum failure rate level rises gradually. In other
words, software is deteriorating due to side effects

caused by continuous changes!™.

Failure rate increased
due to side effects

Failure
rate

Actual curve

Idealized curve

»
»

Time

Fig.4 Software failure rate curve
Pl 4 BRPFRACR 2k
So the above model hypothesis shall be modified
as such: if at time ¢, service update happens, after

i times changes, the failure rate is changed from A,

to A, . Suppose failure decay rate 6 is the same
after each change, and service update side effect
. . InA_ —InA,
index is %, When
1
—Sp.(l,,+§) s
A, e >Ae =

L oA, —Ind s+) ul)
4 5

That is to say, when side effect index is bigger

than the failure counts in the interval time 1/8 s
software deterioration happens.

Therefore, we can test internetware under
above conditions and judge if software deteriorates.
We can enhance software reliability by improving
quality of service update and reducing service up-—

date intensity.

6 Conclusion

This article, on the basis of failure counts in
service changing process, introduced service chang—
ing intensity into Musa-Okumoto model as an ex-—
pansion under internetware paradigms. From formula
(5) it can be found that service reliability is under
minus exponential relationship with service change
intensity. If our requirements change frequently and
internet service is not stable, then service reliability
will be reduced due to increased update intensity.
The model proposes a reliable measurement for in—
ternetware under an open, dynamic and evolved en—
vironment. Finally the article also discussed some
problems that may occur when the model is applied
to practical use. The model is still under prelimi—
nary stage and its precision will be tested in prac—
tice. It can be improved by some new approaches

such as internetware response and its lifecycle.

References:

[1] Mao Xiaoguang, Deng Yongjin. A general model for com—
ponent—based software reliability[J]. Journal of Software,
2004,15(1):27-32.

[2] Yang Fuqging. Thinking on the development of software en—
gineering technology[J]. Journal of Software, 2005,16(1):
1-7.

[3] Yang Fuqing, Mei Hong, Lv Jian, et al. Some discussion
on the development of software technology[J]. ACTA Elec—
tronica, 2002,30(12A):1901-1907.

[4] Poladian V, Sousa J P, Garlan D, et al. Dynamic confi-

438 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

guration of resource—aware services|C}/Proc of the 26th Int’l
Conf on Software Engineering (ICSE), Edinburgh, 2004:
604-613.

[5] Singpurwalla N D, Wiilson S P. Statistical methods in soft—
ware engineering: reliability and rick|[M]. New York: Spr—
inger—Verlag Inc, 1999.

[6] Xu Renzuo, Xie Min, Zheng Renjie. Software reliability
models and applications|M]. Beijing: Tsinghua University
Press, 1994.

|7] Benatallah H R. A Petri Net—-based model for web services

—

composition|C]//the 14th Australasian Database Conference,
Adelaide, Australia, 2003.
[8

—_

Hamlet D, Mason D, Woit D. Theory of software relia—

bility based on components[C]//the 3th International Work—

shop on Component—based Software Engineering. Toronto:

IEEE Computer Society, 2001:361-370.

[9] Yang W L, Wu Y, Chen M H. An architecture—based
software reliability model[C]//Proceedings of Pacific Rim
International Symposium on Dependable Computing. Hong
Kong, China: IEEE Press, 1999.

[10] Wang Ping, Sun Changsong, Li Lijie. Primary research on
internetware reliability technology[C]//Proceedings of the
First International Multi-Symposiums on Computer and Com—
putational Sciences (IMSCCS’06), College of Computer
Science and Technology, Harbin Engineering University,
Harbin, 2006.

[11] Lu Daquan. Stochastic processes with applications|M].

Beijing: Tsinghua University Press, 1986.

engineering.

B (1966-),1992 4T EifgRHE K

niversity. His research interests include software reliability measurement, SOA,

(Blh EilgR

[12] Musa J D, lananino A, Okumoto K. Software reliability:
measurement, prediction, application|[M]. New York: Mc—
Graw-Hill, 1987.

[13] Musa J D. Software reliability measurement[J]. Journal of
Systems and Software, 1980,1:223-224.

[14] Huang Tao, Ding Yongjin, Wei Jun. Research on the
relaxed transaction models for applied semantics —based

of internetware[J]. Science in China Ser E: Information

Sciences, 2006,36(10):1170-1188.

[15] Pressman R S. Software engineering: a practitioner’s app—
roach[M]. 6th ed. New York: McGrill-Hill Company Inc,
2005:5-6.

FR SC5 % S0k -

[1] BN, XR 5 BT A AR A w5 i PSR). 5
4R ,2004,15(1):27-32.

[2] #5500 A TREBOR R e R 1.4 541) , 2005, 16(1) :
1-7.

[3] M a2, B, B RIS ROR &] B 12531,
2002,30(12A):1901-1907.
f%ufi BT & NN BT 5

R A, 1994
Bﬁk%@ R B . M. AE 5L i
1986.

[14] B3, THeT , BR0R FE T 1T SCI AL AR AR gt g A

HIWFFE[). P E R E A5 BB, 2006,36(10): 1170-
1188.

PSR B2 7 (M AE 5

ek L,

DU Yugen was born in 1966. He received the M.S. degree in Operational Research and Control Theory

from Shanghai University of Science and Technology in 1992. He is a professor at East China Normal U

software modeling and

VIR T GRS LA 207, SRR K242

PR R T S4B RS A A TR T SR = I IR S5k R 4544

27Kk AN(1985-),

LI Yonggang was born in 1985. He is a graduate student at East China Normal University. His research

interests include software reliability measurement and Web service, etc.

AEIRIFE AR Bt LA, DR B AR R T SE RS B Web IR S5

