ISSN 1673-9418 CODEN JKYTAS E—-mail : fest@public2.bta.net.cn
Journal of Frontiers of Computer Science and Technology http : //www.ceaj.org
1673-9418/2008/02(05)-0487-13 Tel : +86-10-51616056
DOI:10.3778/j.issn.1673-9418.2008.05.004

Assignment: Operation on a Physical Object’

YUAN Chongyi*
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

+ Corresponding author: E-mail: lwyuan@pku.edu.cn

AV : Do B B LA

FEKRFE FEHFEARAFER, LT 100871

i AR T AR ERFOHXEL BALRA RSN ENZ O T F LR, T2 —F @BANTAR
MBFBOMENZ, A —F B S CHIAERFERAX P IREE T EAGIE, EAMENZ, TS v AF
' OAE R 5 B AR RIS R A N B R ey 1 44 F R B R AT B AT R B 3R AR $ R
TE532 T FWAL, § EIRA DR A RAE A S AR RAL S AR AT B 69 3R_AF 3 1 73X 3R AF IR 69 N 22 SH48 38 T R
3X M\ 3 G AR M 6 24

TR BRARL; G- K A2 s M FE 3G G FE T § b e 48 1F s AR AN TR s N2 35 3L

SCikbR G A S R TP31

YUAN Chongyi. Assignment: operation on a physical object. Journal of Frontiers of Computer Sci—

ence and Technology, 2008,2(5):487-499.

Abstract: This paper focuses on formal semantics of imperative programs. Assignments are viewed as opera—
tions on variables considered as a physical objects. Variable x is, on the one hand, a physical object which
is able to hold a data value while on the other hand, it represents the value it currently holds when it ap-
pears in a mathematical expression. As a physical object, x allows its value to be observed and/or changed
by read/write operations applied on it. Thus, assignments are in fact write —operations applied on physical

objects. A read—operation is the reverse of write—operation. Operations corresponding to assignments on single

* the National Grand Fundamental Research 973 Program of China under Grant No.2002CB312004,2002CB312006 (| F &3
AT & L) (973))5 the National High—Tech Research and Development Plan of China under Grant No.2006AA04A119,

2006AA017160 (FEZEHAMITTK eit(863)).
Received 2008-05, Accepted 2008-08.

488 Journal of Frontiers of Computer Science and Technology JTENBIZESHEE 2008,2(5)

variable, multi —variable sequential assignments and conditional assignments etc, are proposed. Axioms on

these operations are also proposed as formal semantics of assignments, and examples are given to show how

to verify program properties with these axioms.

Key words: assignment; imperative program; physical object; operation on physical object; operation axiom;

axiom semantics

An imperative program consists of assignments and
control mechanisms, including sequential control,
choice, loop and possibly some parallel controls.
We start this paper from the simplest assignments

and axioms on such assignments.

1 Operation on a Physical Object

An assignment, in its simplest manner, consists
of a variable, say x, and an expression, say e, with
the assign symbol “:=" in between. The semantics
(or meaning) of x:=e, according to [1], is “the as—
signment of the value of expression e to the vari—
able x”, or formally x'=e where x’ is, in the al—
phabet given in [1], “the final value of variable x”
(when the execution of x:=e properly terminates).

The predicate x' =e may serve as a semantic
description of x:=e, but it is hardly a formal one
since it depends on the informal description of x'.

The variable x is a 2-fold object: it is, on
the one hand, a mathematical object since whenever
x appears in an expression, it represents the value
x currently holds, while on the other hand, x is a
physical object since it is the “name” of a memory
location when x appears on the left of “:=".

People have so far mainly understood x as a
mathematical object and as such, x is called a
“variable” to emphasize the change of the value
held by x. But x is, at the first place, the name of

a physical object, i.e. the memory loc ation. This

memory location has the capability to hold a value
(of some type), and allows a write—into operation
and a read —from operation to be applied on it.
These invariant attributes of physical object x guar—
antee that x functions as a mathematical object (to
be an operand of mathematical operators) and the
value in x may change. The assignment x: =e is
nothing but a write—into operation applied on physi—
cal object x with the value of expression e as the

second operand. We use an over_bar as the

write—into operator in ;c(e) where x and e are re—
spectively the first and second operands. The read-—
from operator is a under_bar “ 7 in x(e,) where x
is the first operand and e, , an operation expres—

sion, is the second operand. e, serves to define a

program for which the read_from operation on x is
taken. The definition of these two operators, like
the treatment of other mathematical operators, is
given by

LVXE —V,

_:V xXE —FE
where V is the set of variables of the program (op-

eration expression) in question and V, is the subset

of V consisting of assigned variables, E_is the set

m

of mathematical expressions and E, is the set of

operation expressions (to be defined in this paper).

gc(;c(e)) is also written as &56(6) as shown in axiom

TR MEXN R LRk

489

1 below.

Axiom 1

gc;c(e):e

Axiom 1 is, in our alphabet, the formal semantics
of x:=e where x:=e is represented by x(e), and

“the final value of x” (i.e. x') is now given by xxle).

A computer system consists of hardware and
software. Axiom 1 demands the hardware to guaran—
tee that whatever is read—from x must be the same
as whatever was written into x by the write—into op—
eration applied on x prior to the read—from opera—
tion. Furthermore, the two appearances of e in ax—
iom 1 have different meanings: the e inside the
parenthesis represents the values when e is evaluat—
ed by the software while the e on the right of “="
represents the value defined by mathematical opera—
Axiom 1 requires the software to do

tions 1n e.

computation in accordance with mathematics.

2 Multi-assignment: Synchronous Para-
llelism

A multi—assignment*™ assigns values to more
than one variable in a synchronous way. For exam-—
ple x,y:=e ,e requires that e, and e are comput—
ed first and then the values of e and e —are as—
signed to x and y respectively.

Such a multi—assignment is, in our alphabet,

given by operation expression x(e,)&(e,), or

;c&(ex,ey). Let V={x,y, -,z} be the set of all free

variables of the program in question. The normal
form of multi—assignments is ;c(eA)}7/(6},)'”;(62), or

;c;/"';(ex €, e,). Generally speaking, a multi—

assignment assigns values to some but not all, vari—

ables in V. The normal form of such a multi—-as—
signment will appear as &&"'E(ex e, ,o,e.) for

;c;f(ex ,e},), where each un-assigned variable, like z
in this example, take the variable itself as its cor—
responding expression, e.g. e_ =z for variable z in
the above example.

The semantics of a multi —assignment is, in
terms of normal form, formally given by axiom 2.

Axiom 2

4(92(@5);f(ey)"';(ez)):g;(eu)=e, or Ltﬁ;jf;(ex ,

e e,):eu, for every u,ueV

Applying axiom 2 to %&(ex ,e,), we have:

a(xy(e, e,))=e,, y(xyle, e,))=e,, z(xy(e, e,))=z

It is deducible from these three equations:

;c;/(ex ,e,)Z;/é;(e}, ,e.) and x=y=e, =e,
since a unique value is held by a single variable at
any state.

It is assumed, in the normal form of a multi—

assignment, that every variable appears in v exactly
once. But when array elements are assigned by a
multi —assignment, we don’t always recognize two
equal elements before the evaluation of their index
expressions. Thus, it is not avoidable to have a
single array element appearing in a multi—assignment

more than once. The above conclusion x=y=e =e

and the commutative property 976(ex)5/(6),)=;6(€},)5/(@)
enable us to relax the constraints on a multi—assign—
ment: a single variable may appear more than once
as long as the corresponding expressions are equal.

Assignment to a single variable is a special case

490 Journal of Frontiers of Computer Science and Technology JTENBIZESHEE 2008,2(5)

of multi—assignments, and as such it has also a nor—
mal form. Thus, axiom 1 is a special case of axiom 2.

Or in other words, axiom 1 is implied by axiom 2.

Still another special case is w(u) where u is
an arbitrary variable in V. w(u) functions as a skip
statement, and its normal form is v(x,y,"-,z). For
simplicity, we write V instead of v(x,y,"',z), and

we have, for every u, ueV, ulV=u.

3 Conditional Assignment: Choice

Let P and () be assignments as given in sec—
tion 2 in the form of operation expressions. Note
that we will, in this paper, always define assign—
ments in terms of operation expressions, and not
distinguish an assignment and its corresponding nor—

mal form. Let b be a Boolean expression. The nor—

mal form of a conditional assignment is the opera—

. . b b
tion expression P Q .

Axiom 3

WP Q)=

w(P) if b~u(Q) if 7 b for every u, ueV

The expression u (P) if b~u (Q) if 9 b is a
conditional expression whose normal form is

e, if by~e, if by~~e, if b (n=2)

Let E be the value of above conditional expression,

we have
e, if b,
e, if b,

E=
e, if b,

It is required, in order to have the conditional ex—

pression well —defined, that 6, Vb,V ---Vb, and
b, Nb,=e,=e; for i#].

A special case of conditional assignments is ()=

V, i.e. Q functions as a skip statement. We write

b . b— b .
P instead of PV , and we have, by axiom 3,

E(P[})=u(P) if b~u if 7 b.

4 Sequential Assignment
We adopt the conventional sequential operator
“;” to form sequential assignments. Thus P;(Q de—

notes the execution of P followed by the execution
of Q. Let P,,P,,"*,P. be assignments defined above,
n=2. Sequential assignments are given by operation
expressions P;(Q) and P, ;-3 P,.
Axiom 4
w(P;Q)=u(Q)(x(P)x,y(P)ly,,z(P)/z)
u(P 5P, ;5P)=u(P,)(x(P, P, ;5P x,
woz(Ps Py P)z)
Where uweV is any variable in V, and u(Q)(x(P)/x,
y(P)ly, -+ ,z(P)/z) stands for the substitution in
u(Q), ie. x replaced by x(P),--, and z replaced
by z(P). For simplicity, we often write (x(P),-+,
z2(P)) instead of (x(P)/x, -,z(P)/z).
Example 1

Let Rz&(xﬂf);&(x—y) we have

2(R)=x(y(x=y)) (wx (xty),y (wy))=
x(aty,y)=x+y
y(R)=y(y (=) (e Cary), oy))=
(x—y) (x+y,y)=x+y—y=x
Example 2
Let P=;c(x+y);;f(x—y);9;(x—y); ie. P=R;;c(x—y)

where R is as given in example 1.

TR MEXN R LRk

491

We have

2(P)=x(x (=))(x(R),¥(R))=
(x—y) (aty , %)=x+y—x=y
Y(P)=y(ela=y)) (x(R),Y(R))=y (why,)=x
Apparently, P swaps the values in x and y.

Example 3

Let Q=5’(x—y);9;(x—y), and P’:;c(x+y);()

2(Q)=ax(x—y) (xy (a=y) yy (xy))=
(x—y)(x,x—y)zx—(x—y):y

y(0)=yx (x—y) (wy (x—y) ¥y (x—y))=y(x, 5~y)=
x—y and

x(P")=x(Q)(gc;c(xﬂ/) ,X;c(xﬂ/))=y(x+y,y)=y

Y(P)=y(Q) (axlaty) ,ya(aky))=(a=y) (aty ¥)=
X+y—=y=x

Comparing x(P) and y(P) in example 2 with

x(P") and y(P') in example 3, we have P=P', i.e.

(x(x+y) sy (a—y)) s (v—y) =2 (x+y) s (y(v—y);

x(x-y))
Theorem 1
(1)(P;Q);R=P;(Q;R);
(2)u(P,, ;3P)=u=u(P ;P ;-

i

PPy

P)=u(P, ;5P), for l<i<n, uel.
Proof

(DLet Poxys(e, ey vover) Qmxyz(en..

ey ey)y R=xy-z(e, e, ,=+,e,), and ueV
w(P;Q)=u(Q)(x(P),y(P),,z(P))=
ey (e vey,e)
u((P;Q);R)=u(R)(x(P;Q),y(P;Q),++,z2(P;Q))=
ey, (e, (e ,mhe)e, (e e) e, (e e,)

u(Q;R)=u(R)(x(Q),,2(Q))=e,, (e, ,*" e,.)
u(P;(Q3R))=u(Q;R)(x(P),--+,2(zP))=

ey, (e, e, 000, ey ey ,ome)=
€3u(82X(€|x,"',elz),"',622(81%,"',612))

Thus, u((P;Q);R)=u(P;(Q;R)) for all ueV,
ie., (P;Q);R=P;(Q;R).

(2)ulP, = PP,y - P)=ulP, 55 P,) (x(P

...;pi)’X(Pl ;"';135)""’%(])1 ;"';Pi >):u(9£(P1 st
P)yu(Pysees Py z(Prseess P))=u(Pys o5 P))
for all u, ueV and u(P,, ,":-,P)=u.

In proving theorem 1 above, u(P),u(P;Q),
u(Q;R),u((P;Q);R) and u(P; (Q;R) are “final
values of variable u” after respectively programs P,
P;Q, Q;R, (P;Q);R and P;(Q;R). In contrast
to x', “the final value of variable x”!", these “final
values of variable u” enable us to prove (P;Q);R=
P; (Q;R) while the same equation can only be a

“law” as given in [1]. O

5 Power and Recursion
Let P be an assignment. Then P raised to pow—
er n, denoted as P , has axiom 5 as its formal se-—

mantics.

Axiom 5

P] =P, i.e. Q(Pl)=u(P) for all v in V, ll,(P”)=

n—1

w(PY (P) (P, 2(P)) for n>1.

Example 4

P=x(wt1), P'=x’ (o), x(P)=x(P)(x(P))=
(D (P))=a(P)41
By mathematical induction, x(P)=x+n.

Example 5

Let 0=i(i+1)f(f%) and P=i(1)f(1);Q" where
n is a positive integer, n=1. We have

n=1=i(P)=2 and f(P)=1

492 Journal of Frontiers of Computer Science and Technology JTENBIZESHEE 2008,2(5)

n>1=i(P)=n+1 and f(P)=n*f(P') where P'=

i()f(1);Q"
By mathematical induction, f(P)=n*(n-1)%---*2%1,

Thus, P is a program to compute n! .

In case P is a loop body, Pis apparently a

loop. When n goes to infinity, we have

P =lim P

n—o
and the next axiom.

Axiom 6

LL(P*)=lim (Q(P”)), for all u, ueV.

n—%

Example 6
P=x(x+1)
We know from example 4 that x(P)=x+n Thus

2(P)=lim (x(P"))=ling (x+n)=00

In other words, P cannot reach a fixed point, or P
does not have a fixed point.

There does not necessarily exist a limit in
computing u(P). This will lead to a non—termination
situation. We will consider termination issues in a
separated paper.

Example 7

—x<7 n - x<7 n

P=x (x+1), P=(x (x+1))

(P =(P) (P), 2(P)=
(241 if a<Tmx if x=7)(x(P)=

n—1

(P41 if 2P)<Tex (P) if (P) =7

Take the limit at both sides we have

2(P)=x(P)+1 if x(P)<T~x(P) if x(P)=7
Thus, x(P)=7 since x(P)<7 leads to x(P)=
#(P)+1 according to the above equation, but x(P)#

(P)+1.

It is easy to prove that x<7=x(P)=7 and
x27:>9£(Pn)=x for n=1. So, x<7:>9g(P*)<7 and
x 27:@(];)=x.

Example 8

To find the greatest common divisor of integers

held by x,y when x>0 Ay>0. Let ged(x,y) be

the greatest common divisor of x,y, and let P=
Sy

x (x—y);/y”(y—x). We will prove that gc(P*)Z

y(P*)=ged(x,y).

As we know from mathematics, ged(L,M)=
ged(L-M,M) if L>M~ged(L,M-L) if L<M~L if L=
M when L>0AM>0. So we have ged(x,y)=
ged(x(P),y(P)). From x>0 Ay>0, we conclude

x(P)>0ANy(P)>0. It’s easy to extend these conclu—
sions to P, for all positive integer n, n=1.

ged(x,y)=ged(x(P"),y(P")) and x(P")>0 A
y(P)>0.

Thus, ged(x,y)=ged(x(P), y(P))and (P)>
0AY(P)>0.

But x(P)=x(P)=y(P) if x(P)>y(P)~x(P)
it (P)<y(P).

Y(P)=y(P)=x(P) if ¥(P)>x(P)~y(P) if
y(P)<x(P).

since 2(P)0 Ay(P)50, x(P)#x(P)=y(P) A
y(P)#y(P)=x(P), we have x(P)<y(P)A
Y(P)<x(P), that is x(P)=y(P).

So ged(x,y)=ged(x(P),y(P))=x(P)=y(P).

Remarks

(1ged(x,y)=ged(x(P),y(P)) and x(P)>0A
y(P)>0 are invariants (safety properties) of P as de-
fined in [2].

TR MEXN R LRk

493

(2)P can be extended to compute the greatest
common divisor of integers of any number. For ex-—

ample, to compute ged(x,y,z), we need only to add
2 (z=x) to P

R=x" (x—y)y (y=2)z" (z=x)
and from x(R)<y(R)<z(R)<x(R) we con—
clude:

2(R)=y(R)=2(R)=ged(x,y,2)

(3)P is a loop of “repeat_until” style.

(4)@(P*):X(P*) defines a so_called “fixed

T[1-2)

point’ of P . The execution of P may terminate

when, for some n, gc(P")ZX(P”).

6 Assignment to Array and Array Ele-
ments

6.1 Assign Array to Array
We may assign an array to another array: A(B),

Z(B+C) where A, B and C are arrays of the same
size and type. To be more precise, they are in—
dexed with the same index range.

Axiom 7

ALNA[ED=EL]
Where ¢ is an arbitrary index of A, and E is an
array expression like B+C.

6.2 Assignment to Array Elements

Z[i](e) assigns e to given element Ali]:
Axiom 8
A(ALil(e))=e if j=i~A[j] if j#i
for all index j of A.
Sometimes assignment is applied to one or more

array elements selected by Boolean expression b

synchronously :

Ali:b(i)](e(i))

Axiom 9

A6 (D](e(i)=e () if bG)~AT] if =1 b())
for all index j of A.

Index values satisfying b are called instances of

b. Ali:b(i)](e(i)) assigns a value to each of the
instances in synchronous manner.

Example 9

For all i, 0<i<N (N represents one natural
number), assign B[i] to A[i] if B[i]>A[i].

The instances in this example are determined
by 0<i<NAB[i|>A[i], and conventionally 0<i<N

is given by default:

Ali: BI>A[](Bli])
We have

AL1(ALi: BLSALi(BLi))=BYj]
if BjI>A[1~A[j] if BJI<A[]
for all j, Oj<N.
6.3 Loop: Sequential Assignment to Array
Elements

We have seen in Section 5 how to loop with
variables other than array elements. Often is the
case that loops are applied to array elements. One
way to do this is by power.

Example 10

To find the maximal element of A[0...V].

What we have to do is to compute <max i:0<
ISN::Ali]>. <max i:0<<i<N::A[i]> is a quantified
expression whose normal form is <op i:b(i)::e(i)>
where op is a binary commutative operator, i is a
variable, b(i) is a Boolean expression and e (i) is

an expression. Instances of i are determined by b(i)

494 Journal of Frontiers of Computer Science and Technology JTENBIZESHEE 2008,2(5)

and with these instances, say i,,i,,**,i, , we obtain

expressions e(i]), e(i2), -, e(i”,) and <op i:
b(i)::e(i)> is defined as e(i,) op e(i,)--op e(i,).
i is a bounded variable. A quantified expression

may have more than one bounded variable.

Let us back to the example. We need auxiliary

variables ¢ and m of proper types. Let P0:2(1)a(14[0])

— Alipm

and P=i(i+1m"" " (A[i]). We will prove m(P,;P)=
<max i:0<i<N::A[i]>. i(P,)=1 and m(P,)=A[0]
by axiom 2. From axiom 4 we have

i(P,;P)=i(P)(i(P,),m(P,))=(i+1)(1,A[0])=
1+1=2

m(P,;P)=i(P)(i(P)),m(P,))=

(A[i] if A[i]>m~m if A[i]<m)(1,A[0])=

A[1] if A[1]>A[O]~A[0] if A[1]<A[0]=

<max i:0<i<1::A[i]>

Note that i(P)(i(P,),m(P,)) stands for a sub-

stitution in i(P):i replaced by i(P,) and m replaced
by m(P,).
) . . 2 2

It’s easy to find i(P,;P)=3 and m(P,;P)=
<max :0<i<=2::A[i]>.

By mathematical induction, we have

N N

g'(PO;P)=N+1 and m(PO;P)=<max i:0<i<<
N: :A[i]>

So P, ;PN is a solution for example 10. Appar—

ently P has functioned as a loop of “for i=1 to n”

style. The index range of A is 0---N, and P loops
over only a portion of the index range. Let d and u
be, respectively, the lower bound and the upper
bound of the portion over which the program loops,
O0<d<u<N. It is assumed here the loop starts from

index d and ends at index w. In case the loop in-

dex i goes from u down to d, j=N-i will go up
from d'=N-u to u'=N-d. So, without lose of gener—
ality, we assume that the portion in question is al-
ways d'u, 0<d<u<N.

In the example above, actual assignments occur
only when A[i]>m, i.e. A[i] is assigned to m only
when i is an instance of A[i]>m. Such sequential
assignments will be denoted by [A; i: b(i)](e(i)).
Note that d and u should appear in b(i) and by
default d=0, u=N.

Axiom 10

(Af3i:b()])(e(i))=

b(0) b(1) — b(n)

A[0] (e(0));A[1] (e(N))

By axiom 4 and theorem 1, we have:

A[IALi:b (DD e(i)=A]]] if 0<j<dV u<j<N~

b(

Afd)(Afd] " (e(d))) if j=d~A[ALT" (e) (A[4]
(P_IA[d], -+, A[j-1]1(P_))IA[j-1]) if d<j<u

where j is an index of A:0<j<N, and ijl stands

for Al3i:d<i<i Ab(i)](e(i)).
Example 11
To assign A[i-1]+t to A[i] for i=1,2,-+-,N. Ap—
parently d=1 and u=N here. The solution is
P=A[;i:0<i<N|(A[i-1]+i)
And by axiom 10 we have
A[0](P)=A[0] since O<d=1
A[1](P)=A[1](A[1](A[0]+1))=A[0]+1
A[2](P)=A[2)(A[2](A[1]+2)) (A[O]+1/A[1])=
(A[11+2)(A[O]+1/A[1])=A[0]+1+2=
A[0]+3
By mathematical induction we conclude: A[0](P)=
A[0] and A[j](P)=A[0]+<+i: 1<i<j::i> for j,0<j<N.

Sequential assignment to array instances provides

TR MEXN R LRk

495

another loop style that is different from loop by power.

It’s easy to check that i(1);(iGi+1)A 1(Afi- 1]+L))
is also a solution to example 11.

6.4 Instance Pair of Array Elements

We know that ;c(y);/(x) swaps the values held
by x and y. It’s sometimes necessary to do some-

thing to array elements selected as instance pairs:

Alij:b(iyj)]Ce, (iyj) e, (iyj))
Axiom 11

ATul(A i+ 30 (ij1Ce, (ing) ey (i))=e, (g
if Jj:6(u,j)~e, (i u) if Fi:b(i,u)~Alu]
if Vi,j:m b(u,j)A=b0,u)

Since a read—from operation on A[u] must yield

a unique value, we have, as a constraint on A[1,]3
b(i,j)]Ce, (ij)e,(i,j)).
Theorem 2
For any u, O0<u<N, Vi,j:b(u,j)Nb(i,u)=
e, Gu)=e,(u,j) AN Vi, ,i,:b(, ,u) Nb(i,,u)=
e, (i, w=e (i,,u) N Vj, j, :b(u,j,) Nb(u,j,)=
e, (u,j,)=e,(u,j,)
Example 12

Sorting array A[0-*'n] to ascending order. Let P=
Z[i,i+1 si<n Neven(i) NA[i>A[i+1])(A[i+1],A[i])
Q=Ali,i+1:i<n A odd(i) ANA[i]>A[i+1])(A[i+1],A[i])

We are going to prove that (P;Q)N and (Q;P)Nare
both solutions.
Let Als], Alg] be the smallest and greatest ele—

ments of A respectively, where 0 <s,g <N. We
have
even(s) As>0=A[s

-1](Q)=A[s
In fact A[s—1](Q)=A[s] if A[s=1]>A[s]~A[s—1] if

Als=1]1<A[s].
Since Afs] is the smallest, A[s—1]<A[s]=A[s—1]=
A[s]. Thus A[s—=1](Q)=A[s] in any case. Similarly we
have
Odd(s) As>0=A[s—1](P)=A[s]
So
Als=1](P;Q)=A[s]V A[s-2](P; Q)=A[s]
Als=11(Q;P)=A[s]V A[s-2](Q; P)=A[s]

where s—1=0, s-2=0. This is to say, the smallest

element will be at least one position nearer to index
0 in A(P;Q) and A(Q;P). Therefore, 4[0]((P;Q)jv e

Als], AL01((Q;P)")=ATs]

plies to A[g| and all other elements:

. The above analysis ap-
they are at least
one position nearer to their proper position in as-—
cending order in A(P;Q) and A(Q;P), and they will
be in the right positions in A((P;0)") and A((Q;P)").
6.5 Instance of Array Elements Assigned

Sequentially to a Single Variable

Let ;L[;i:b(i)](A[L]) be an abbreviation of ;(A[il]);

are in—

m(Ali,]); .

,m(A[1) where i, ,i,,",i
stance of i determined by b(i). We have P=m(A [0])3

ml3i:0<i <N AA[i]>m](A[i]) and m(P)=<max i:0<
i<N::Ali]>. To see this, we do the following com—
puting:

m(m(A[0]); m(A[i,]))=A[i, |(m(m(A[0])/m)=A[i,]

This is because i, is an instance of A[i,|[>m where

m=m(m(A[0]), so A[i,|>A[0]. And for i, O<i<i,, i
is not an instance:

A[i]<m, ie., A[i]<A[0]. This

1s to say
m(m(A[0]); (A[i,]))=<max i:0<i<i, ::A[i]>

By mathematical induction

496 Journal of Frontiers of Computer Science and Technology JTENBIZESHEE 2008,2(5)

m(m(A[0]);m[i:0<i<NAA[i]>m](A[i]))=

<max i:0<i<i ::A[i]>
But A[i] is the last instance of 0<i<N AA[i]>m,
Ali]<m. So

we have, for all 7, i>1

n?

m(m(A[0]); m[;i:0<i<NAA[i>m](A[i]))=

<max 1:0<isN::A[]>

m[;i:b(i)](A[i]) is just an abbreviation of sequen—
tial assignments; it does not need an axiom. Be-
sides, A[i] can be any expression as long as a val-

ue can be computed for each of the instances of i.

7 Asynchronous Parallel Assignment
The addition operator “+” is used to denote

asynchronous parallel assignments. Let P, ,P,,---,P

be programs composed from assignments given in
previous sections. The normal form of asynchronous
parallel assignments is P +P,+-+P, . The simplest
case is n=2.
7.1 Simplest Case

For the simplest case, consider P+(Q) (instead of
P +P,). Let Vp s Vq be the sets of free variables in
P and Q respectively and V =V NV .

Axiom 12

V.=0=YxeV :x(P+Q)=

x(P)AYueV, :u(P+Q)=u(Q)

V, =0 implies the fact that P and (are indepen—
dent with each other, and properties of P+() can be
verified in terms of P or () respectively.

It is reasonable to assume that all shared vari-
ables in V_, when V, #(), are communication
channels between P and (. We will further assume

that communications between P and (are syn-—

chronous, since asynchronous communication can be
modeled via synchronous communication.

Let ¢ €V, be a communication channel. Both P

and () can initiate a communication via ¢. The ini-

tiator sends a message e out by performing a write—

into operation on ¢, i.e. c(e), and at the other end
of ¢, the receiver performs, when it is ready to re—
ceive, a read—from operation on ¢, followed by a

write—into operation on a variable (say u) to store the

;(g). Thus, the pair (;(e),

received message :
u(c)) describes a complete communication action,

and g(e),;(g) are communication attempts over c.
Note that the second operand is missing in ¢ since
this operand is given by the sender as explained
below.

Definition 1
(;(e),;(g)) is called a matched pair iff both

c(e) and ;(g) are the first communication attempt
of respectively the sender and the receiver.

Note that by “the first communication attempt”
we mean any such attempt no matter it is over ¢ or

over any other channels.

Let(;(e),;(g)) be a matched pair, and as
such, P and (are decomposed as (assuming P is

the sender):
P=P, ;c(e);P,
0=0, ;u(c);Q,

Axiom 13
(1)P+Q=0Q+P

(2)P+Q=(P, 3 P,)+(Q, 3u(e’);0,)
Where e'=e(V, (P)IV,).

TR MEXN R LRk

497

Note e(Kp(P1)V,) is obtained from expression
e by the substitution: every variable x in V is re—

placed by x(P,) if x appears in e. It is clear now

that the missing operand in ¢ is Pj; c(e), that is the

operation expression in P up to the sending action

c(e) and it is given in Q by default.

P+Q=0Q+P indicates that P and () play equal
roles in P+(), i.e. they enjoy equal right to be the
sender or receiver in a communication attempt. The
second pair of axiom 13 allows us to remove a

matched pair from P+(Q. Then we may detect an—

other matched pair in (P, ;P,)+(0Q, ;;(6,);02) and
remove it. In case all communication attempts are
removed one after another, axiom 12 is applicable
in verifying properties.

Definition 2

P+(Q is well matched iff all communication at—
tempts belong to a matched pair detectable in the
process of applying axiom 13 to remove them.

Theorem 3

P+(Q is deadlock—free if it is well matched.

This theorem is obviously true since all com-—
munication attempts can be removed one after an—
other by axiom 13.

As a synchronous communication channel, ¢ is
occupied only when the communication is in
progress. Besides, P (or () is involved in one com-
plete communication action (i.e. a matched pair) at
a time, we may well assume that IV |=1, i.e. there
exists exactly one channel between P and (). But

we do not assume so since more channels bring no

difference to the axioms.

7.2 Normal form P +P,++P,
Let Vm. be the set of free variables in P, i=1,
---,n, and for i7#j, Vi/:V/uT ﬂij.. Variables in V;,-

are communication channels between P, and P/ Let

ceVL.j be such a channel, and ;(e) and ;(g) are

the sending and receiving attempts respectively.

Here Definition 1 is also valid in checking whether

(;(e),;(g)) is a well matched pair. In case this

pair is well matched, P, and P, can be decomposed

as (assuming P, is the sender):
P=P,5c(e);P,

P=Pysule)sb,

Axiom 14

(1)“+” is commutative in P, +P,+"+P,
(2)P,++++P ++++P ++++P =

P1+.”+PL‘ ’+...+Pj’+...+Pﬂ

Where P,'=P, ;P, and P,'=P, ;u(e’);P, in
which e'=e(V, (P)/V,).

Note again that e(V, (P,)/V,) is obtained from
e by the substitution: every variable x in V, is re—
placed by x(P,) if x appears in e.

The difference between axiom 13 and 14 is,
there may be more than one matched pair in P,+P,+

=*+P when n>3, and axiom 14 can be concurrent—

ly or asynchronously applied to all matched pairs in
order to remove them.
The next definition is similar to definition 2:
Definition 3

P, +P,+--+P, is well matched iff all communi-

cation attempts belong to a matched pair detectable

in the process of applying axiom 14 consecutively.

498 Journal of Frontiers of Computer Science and Technology JTENBIZESHEE 2008,2(5)

Theorem 4

P +P,+-+P, is deadlock—free if it is well mat—
ched.

Example 13

P=x(1);¢(x);x(x+1)

0=y(6);(c)5y(y+2)
And ¢ is a communication channel between P and

0, we have, by axiom 13
P+Q=x(1);x(x+1)+y(6);z (e’ sy (y+2) in
which e'=e(v, (P,)fv,)=x(zx(1)/x)=1.
By axiom 13

2(P+Q)=x(x(1) ;2 (x+1))=ax (v+1) (xx (1)/)=
(x+1)(1/x)=1+1=2

y(P+Q)=y(y(6)3z(e") ;y(y+z))=

y(y(6);2(1);y(y+2))=(y+2)(6ly, 1/z)=7

and
2(P+(Q)=2(y(6);5z(e");y(y+2))=1
where e'=e(v, (P, /v,)=x(xx(1)/x)=1.
Example 14
Po=x(1);0(x+1)50(x+1)
P,=y(2);2(c);y(y+z)
Py=u(3);d(u+1);ulu+l)
P=v(d);v(2p)
Where ceV,, and deV,,, ie. ¢, d are channels

respectively between P,, P, and P,, P,. It’s easy

to find that (;(x+1),;(g)) and (3(u+1),1;(d)) are
both matched pairs in P,+P,+P,+P,. Applying axiom

14 concurrently to P,+P, and P,+P,, we have

P +P,+P,+P,=x(1) ;2 (x+1)+y(2);z(e,");

y(y+2)+u(3) sulu+1)+v (e,)sv(20)
where

e, '=(x+1)(ax(1)/x)=(a+1)(1/x)=1+1=2

e,'=(u+l1 Y uu(3)u)=(u+1)(3/u)=3+1=4

So, by axiom 12:
x(P +P,+P,+P,)=x(x(1)5x(x+1))=(x+1)(1/x)=2
y (P, +P,+P,+P,)=y(y(2);2(2);y(y+z))=2+2=4
(P +P,+Py+P)=2(y(2)52(2) 5y (y+2))=2

w(P +P,+P,+P,)=u(u(3) sulu+1))=(u+1)(3/u)=
3+1=4

v(P,+P,+P,+P,)=v(v(4);0(2+0))=2+v(4/u)=8
It is desirable to have one sender and many
receivers. lLet ¢, , ¢, are channels between the

sender and two receivers. The sending attempt is
c,(e)c,(e) and the receiving attempts are u(c,)
and ;(92). We can define (;1 (6)52 (e),;(g]),
;(gz)) to be a matched triple if both (;l(e),;(gzn

and (;z(e),;(g2)) are matched pairs. Axioms on
matched triples (or n—triples) for any n(n=3) can
be easily derived from axiom 13 and axiom 14. We

are not going any further here in this paper.

8 Conclusion and Further Work

Main contributions that this paper has made in-
clude:

(1)For the first time assignments are expressed
as operations on physical objects, and as such, a
complete program becomes an operation expression.

(2)For the first time the final value of variable

x (and any other variable) after program P is formally

TR MEXN R LRk

499

and mathematically given by ag;c(P), instead of x'.
And as such, semantics of programs is formally
given by axioms, which ensure us to relate the
final value of every free variable with initial values
of free variables. This can be done by symbolic
computation that requires neither the invention of
predicates that relate final values of variables with
their initial values", nor the invention of predicates
that relate final values of variables with each other®.

(3)It has been made possible to verify program
properties by symbolic computations based merely on
axioms and the program itself (i.e. operation expres—
sion) as explained by examples in this paper.

(4)A new kind of programming languages con—
sisting of operations on physical objects and opera—
tors for control mechanisms is now expectable. As a
twin product, program verifiers are also due.

We have, in the previous 7 sections, defined
several kinds of operation expressions together with
axioms on them. It is possible to give a formal def-
inition of operation expressions in terms of Backus
Normal Form. We leave it for later time as part of
our future work when it gets enriched and mature to
become a programming language.

It has taken the author about 10 years to get
this work done in the form given here. The author
believes that it is not only a significant step forward

towards a unified theory of programming, but also a

practical step forward in program verification. Our

further work also includes the study of formal pro—

gram verification mechanism.

Acknowledgement :

The National Science Foundation has supported
my research for many years. The author is also
grateful to the National Research Center for Software
Engineering and School of Electronics Engineering
and Computer Science of Peking University.

Prof. YANG Fuqing has given the author per—
sonal support ever since the author started working
in Peking University. Thanks from the author’s
heart belong to her.

Many thanks go to Dr. HUANG Yu and ZHAO
Wen, XU Chunxiang for their helps.

References:

[1] Hoare C A R, He Jifeng. Unifying theories of program—
ming[M]. [S.L]: Prentice—Hall, 1998.

[2] Mani Chandy K, Misra J. Parallel program design—A
foundation[M]. [SL]: Addison-Wesley Publishing Company,
1988.

[3] Mani Chandy K, Charpentier M. An experiment in program
composition and prooffJ]. Formal Methods in System Design,
2002,20(1):7-21.

[4] Hoare C A R. Communicating sequential processes[M].
[S.L]: Prentice Hall, 1985.

[5] Milner R. Communication and concurrency[M]. [S..]: Pren—

tice Hall, 1989.

YUAN Chongyi was born in 1941. He is a professor and doctoral supervisor at School of Electronics Engi—

- neering and Computer Science, Peking University. His research interests include Petri—net theory, parallel

program design and program theory.

\ R (1941-), B AERORHE BRI ABOR BB , EEWIRGUCA Pewri [, FATHEF I, P HIE .

