ISSN 1673-9418 CODEN JKYTAS E-mail : fest@public2.bta.net.cn
Journal of Frontiers of Computer Science and Technology http : //'www.ceaj.org
1673-9418/2008/02(02)-0139-27 Tel : +86-10-51616056
DOI:10.3778/j.issn.1673-9418.2008.02.004

A Comprehensive Performance Evaluation of Buffer Replacement
Strategies in RDBMS *

LUAN Hua'?*, DU Xiaoyong"?, FENG Yu’, WANG Shan'?

1. Key Laboratory of Data Engineering and Knowledge Engineering, Ministry of Education, Renmin University
of China, Beijing 100872, China

2. College of Information, Renmin University of China, Beijing 100872, China

3. Industrial Research Center of Database and Business Intelligence, Ministry of Education, Beijing 100085, China

+ Corresponding author: E-mail: luanhua@ruc.edu.cn

5 5 B0 2 o DX VA SR M 1 P E 21

® g HAFE ELE R

1. PEARKS HAFABEIALL MR ITRETEERT, LT 100872
2. PEHARKS L%, LT 100872

3. R WS ALAE SR TARBT I P s, bR 100085

i A RRT AR AT ERNAR A AEELARSZ TR ERRE,) 2R TRIEZR R
SR KB R RG T B T — AP AR o R kR X R M R A Gk R OB B Rk X AP ik
KR A Ty XA B AR AR AR, QLIERTIR B A9 FRAR AR T AR T ik 04 By FROME AR VART 89 BF 50 P AR U A
R AR FE AR, B BT AR B MK G4 h — AP IR S AN BB MK AG ok B AT B R ek ARG PR, 3R
WAL S A TAE i BAE LR P Ao SR 20U T A AR B Rk A R AR ik, E— AN AT X A
BIEFIB P 3+ AP A oF X F e Reg e AR BEAT T 2 . &m0 FIRAT R, AT T ARF— %A A
84 253,

]« 22 0F X E e SRk HERR AR O vk B 3K 5 37 B AR X TPC-H F= TPC-C A

SCikbR A P 5y I8 TP302

* the National Natural Science Foundation of China under Grant No.60496325,60573092 (E %K HRBI#FH4); the Project 985
of Ministry of Education of China (985 T2 H).
Received 2007-12, Accepted 2008-03.

140 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

LUAN Hua, DU Xiaoyong, FENG Yu, et al. A comprehensive performance evaluation of buffer re—
placement strategies in RDBMS. Journal of Frontiers of Computer Science and Technology, 2008,2(2):
139-165.

Abstract: Caching is one of the most fundamental topics in modern computing. There exist many buffer re—
placement strategies, which are widely used in operating systems, file systems, databases, storage systems,
etc. A performance evaluation methodology to evaluate buffer replacement strategies for RDBMS is proposed.
This methodology adopts direct measurement way and employs five performance metrics including the ones
newly proposed by this paper and those seldom considered in other publications due to their simulation
method. Significance tests and a joint way to use these tests for cross—strategy comparison are presented and
various workloads are designed and used in order to effectively evaluate buffer replacement strategies in both
single—user and multiuser environments. Using this methodology, it performs a detailed and comprehensive ex—
perimental study about the performance of thirteen representative buffer replacement strategies in a real
RDBMS environment. From the experimental results, some useful conclusions are made.

Key words: buffer replacement strategy; performance evaluation methodology; significance test; access pat—

tern; TPC-H and TPC-C benchmark

1 Introduction methodology to perform a thorough experimental

In order to increase system performance, cache
is widely used in storage systems, databases, oper—
ating systems, file systems, etc. One of the most
important design decisions is the replacement strate—
gy of pages in the buffer cache. Many buffer re—
placement strategies have been proposed, such as
LRU™", CLOCK"™, GCLOCK", FBRM™, LRU-KP!,
2Q-Simple™®, 2Q-Full®, LRFU", ARCH, LIRS,
CARM™ CARTM and CLOCK-Pro". However, how
to choose or design an appropriate buffer replace—
ment strategy for a data intensive system is an im—
portant and difficult problem. When researchers pro—
posed their buffer replacement strategies, they did
experimental studies, but the evaluation method they
used has some limitations and only a partial com—
parison of the strategies mentioned above has been

made. So it is meaningful to use a better evaluation

study on the existing buffer replacement strategies,
which will provide valuable insight into the effects
of various strategies on the overall system perfor—
mance. To the best of our knowledge, there has
been no research to put these strategies together
and conduct a comprehensive and detailed perfor—
mance evaluation.

Simulation evaluation method was used in all
the previous work*, except that the authors of [11]
implemented CLOCK-Pro in Linux 2.4.21, and uti-
lized hit ratio as the main performance metric in
comparing different algorithms. However, a high hit
ratio is not necessarily correlated to high perfor—
mance in real systems!?. So besides hit ratio, some
other performance metrics, such as throughput and

execution time, should be included in an evaluation

methodology.

KA TR RBAE B R KB R B M T

141

Many researchers usually concluded from their
evaluation results that Strategy A “is close to” or
“performs better than” B. But it is not clear what
has been claimed precisely. Does it mean statistically
significant? A better evaluation methodology should
be able to explain the results more exactly.

In this paper, we propose a performance eval—
uation methodology and conduct a thorough experi—
mental study to evaluate various buffer replacement
strategies. [12] provided a simulation evaluation
method to compare a few replacement algorithms.
Our work is different in many aspects. Firstly, we
implement thirteen well-known or newly—published
buffer replacement algorithms, which are more re-—
cent than those of [12], in a database product-King-
baseES™™!, and adopt a direct measurement method,
instead of a simulation way. Secondly, besides met—
rics used in [12], we introduce several new perfor—
mance metrics. Thirdly, we introduce significance
tests in statistics to compare various buffer replace
ment strategies and propose a joint way to use them.
Fourthly, unlike [12], which considers only multiuser
tests, we consider the performance of various algo—
rithms in both single —user and multiuser environ—
ments by designing and using workloads of sequen—
tial references, correlated references, looping refer—
ences, temporally —clustered references, probabilistic
references, TPC-H" and TPC-C Benchmark™.

The rest of this paper is organized as follows.
In Section 2 we simply survey the related work. Our
performance evaluation methodology is provided in
Section 3. In Section 4 we briefly introduce various
buffer replacement strategies. In Section 5 we report
Conclusions

and analyze the experimental results.

appear in Section 6.

2 Related Work

Usually, the algorithm designers conduct per—
formance comparisons between their own algorithms
and some previous algorithms in their studies®"". For
example, the authors of CLOCK-Pro compared the
performance difference of CLOCK, CAR, LIRS and
CLOCK=Pro strategies. Generally, these experiments
were done by using simple simulation technique —
algorithm simulators and trace —driven workloads,
and most of these studies only focused on the hit
ratio metric of buffer replacement strategies in a
single—user environment. [12] presented an evaluation
method to compare its algorithm with other five
ones. The authors employed a hybrid simulation
model including a database system simulator, and
mainly considered the throughput of algorithms in a
multiuser environment.

Although the above literature can provide valu-
there are also

able information in some aspects,

some limitations. First, a simulation evaluation
method is used in their experiments and perfor—
mance metrics are incomplete. Second, there are no
clear conclusions about cross —strategy comparison
because all of the algorithms are not compared in
the same testbed. Our work can deal with these

problems well.

3 Performance Evaluation Methodology

In this section, we describe our performance
evaluation methodology focusing on four aspects:
direct measurement way, workload design, five per—
formance metrics and significance tests.
3.1 Direct Measurement Way

As pointed out in [12], there are three ways to

142 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

evaluate different buffer replacement strategies: di—
rect measurement, analytical modeling, and simula—
tion. Direct measurement is a precise way but it
may be expensive in implementation. Analytic mod-
eling, while quite cost—effective, can not model the
different algorithms in sufficient detail. Simulation,
especially trace—driven simulation, is often used in
many publications such as [5,6,8,9]. It does have
several advantages including credibility and fine
workload characterization. However, there also exist
some limitations such as its difficulty to characterize
the interference and correlation between concurrent
activities in a multiuser environment. Most impor—
tantly, this method is usually combined with simple
replacement algorithm simulators, so that except hit
ratio many metrics can not be acquired exactly es—
pecially for multiuser workloads. Thus, hit ratio of
algorithms almost becomes the unique consideration
and researchers can not know the practical perfor—
mance advantages of the algorithms. The ultimate
goal of a buffer replacement algorithm is to maxi—
mize throughput and reduce execution time in a real
system. Hit ratio is only one of the factors that af-
fect system performance in practice. For example,
an algorithm has a high hit ratio but its lock con-
tention is serious, and much time is wasted in wait—
ing for lock release. Therefore, though its hit ratio
is better than those of other algorithms, it does not
outperform others in overall system performance. [12]
made some process in this aspect by implementing a
database system simulator, simulating three hardware
components in its model and using throughput as its
performance metric. But in essence, it still adopted

simulation measurement method which could not ful-

ly and exactly reflect the actual system behavior.

For example, the execution time due to concurrency
control on buffer pages is not included in the total
execution time of [12], so its throughput is not precise.

To study the performance merits of various
buffer replacement strategies in a real environment,
we implemented thirteen buffer replacement strate —
gies in a database product-KingbaseES" and ran the
KingbaseES database under various workloads to test
each algorithm. The KingbaseES can collect the sta—
tistical data about physical reads, logical reads and
so on. These data are used to calculate our perfor—
mance metrics.
3.2 Workload Design

Various workloads are designed to evaluate the
buffer replacement strategies in both single—user and
multiuser environments. For single—user tests, five
workloads aiming at five access patterns are devel—
oped. For multiuser tests we use the TPC-H and
TPC-C Benchmark.
3.2.1 Single-User Test

Empirical studies of database reference behavior
classify the cache several

access patterns into

121617 Tn this paper, our single—user workloads

types
contain the following five access patterns.
3.2.1.1 Sequential References

Sequential references refer to a sequence of
one—time—only use requests where all blocks are ac
cessed one after another, and never re—accessed.
This access pattern may flush out possibly important
pages in buffer cache and decrease system perfor—
mance. For example, the operation to a database is
a SELECT count(*) against a large table A. Then
data blocks of table A will take up many pages in

cache. If all these pages are of no use in the

future, this will consequently cause extra physical

KA TR RBAE B R KB R B M T

143

reads. If one replacement strategy can deal with this
problem well, it is considered as scan-resistant.

Workload—the SQL operation SELECT count(*)
FROM A is performed, where the size of A is a
little smaller than the buffer size.
3.2.1.2 Correlated References

Correlated references mean that repeated re-ref-
erences to the same pages take place in a short
span of time, but these pages are relatively infre—
quently referenced overall. The repeated re-references
are called correlated references which can not be
regarded as hints that these pages will be refer—
enced frequently. In RDBMS, this is likely to hap-
pen under update or delete operations, first reading
a row in a page and later updating or deleting a
value in the row. The page is continuously referenced
but this does not demonstrate that the page is a hot
page. We will examine whether buffer replacement
strategies can filter out correlated references.

Workload —two similar workloads are generated.
The first workload consists of a series of SELECT
operations. The second workload is constructed by
replacing some SELECT operations in the first
workload with DELETE operations. Once the pages
are accessed by the SELECT and DELETE opera—
tions, they will not be referenced again. The second
workload has some correlated references but the first
doesn’t.
3.2.1.3 Looping References

Looping references mean that all blocks are ac—
cessed repeatedly in a regular interval. In a nested
loop join, if there is not any index on the inner table,
a full —table scan should be repeated many times.
This behavior is similar to looping references. For

looping references, the more pages that have been

visited are in cache, the better the performance is.

Workload —a SELECT operation on a table is
repeated many times.
3.2.1.4 Temporally—clustered References

Temporally—clustered references mean that blocks
accessed more recently are the ones more likely to
be accessed in the near future.

Workload —a table is scanned along one direc—
tion, then rescanned in the reverse direction and
the two scan operations are performed once again.
3.2.1.5 Probabilistic References

For probabilistic references, each block has a
stationary reference probability, and all blocks are
accessed independently with the associated probabil—
ities. The common example is to scan a table using
a B-tree index.

Workload-the workload of probabilistic references
is generated through index scans.

3.2.2 Multiuser Test

OLAP and OLTP are two typical workloads for
DBMS. Two kinds of benchmarks are developed to
simulate OLAP and OLTP
TPC-H Benchmark for OLAP applications and the
other is TPC-C Benchmark for OLTP. They are both

applications. One is

multiuser tests.
3.2.2.1 TPC-H Benchmark

The TPC Benchmark H (TPC-H)"™ is a perfor—
mance benchmark established by the Transaction Pro—
cessing Council (TPC) to demonstrate Data Ware—
housing/Decision Support Systems (DSS). It consists
of a set of business oriented ad-hoc queries and
concurrent data modifications. These queries and up—
dates are executed against a standard database un-—
der controlled conditions.

We study the different behavior of buffer re-

144 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

placement strategies on OLAP workload using the
TPC-H Benchmark.
3.2.2.2 TPC-C Benchmark

The TPC Benchmark C(TPC-C)" is comprised
of a set of basic operations designed to exercise sys—
tem functionalities in a manner representative of
complex OLTP application environments. The Com-—
pany portrayed by the benchmark is a wholesale
supplier with a number of geographically distributed
sales districts and associated warehouses. As the
Company’s business expands, new warehouses and
associated sales districts are created. The compo—
nents of the TPC—C database are defined to consist
of nine separate and individual tables and there are
five transaction types in TPC -C with select, up-
date, insert, delete and join operations.

TPC—C is a multi—user workload containing mul-
tiple access patterns. We compare various buffer re—
placement strategies on TPC—-C Benchmark using
several performance metrics.

3.3 Performance Metrics

In this section, we explain five performance
metrics: pollution ratio, difference of physical
reads, logical reads, hit ratio and execution time.
Hit ratio is widely used in comparisons of various
strategies and almost becomes the unique way in
simulation evaluation method. In this work, direct
measurement method is used, so execution time can
be exactly obtained and it is included in our metric
set. Physical reads and logical reads seldom appear
as performance metrics in publications. In this pa-
per, they are used in novel manners. In addition, a

new metric pollution ratio is proposed for sequential

references to capture the abilities of various algo—

rithms to deal with sequential references, which is
defined as follows.
3.3.1 Pollution Ratio

N

ST

llution ratio= '
PORUNOn TAO=" mber of pages in the cache

where N is the number of pages loaded and not

evicted after sequential accesses.

The higher the pollution ratio is, the more se—
riously the buffer cache is “polluted”, which demon—
strates the buffer replacement strategy can’t deal
with sequential references well.

3.3.2 Difference of Physical Reads

Physical reads refer to the number of data
blocks read from disk. We use the difference of two
physical reads of two similar workloads (the details
about the two similar workloads are depicted in
Section 3.2.1) as the quantitative metric of the
buffer replacement strategies on the problem of cor—
related references. If one buffer replacement strategy
can filter out correlated references very well, the
difference of the two physical reads should be zero.
3.3.3 Logical Reads

Logical reads refer to the number of read re—
quests. If the page is not in the buffer cache, a
physical read is then performed to read the page
from disk into the buffer cache. If the page is in
the cache, no physical read is generated. At the
same time interval, the larger the number of logical
reads, the higher the system throughput. We regard
logical reads in the same span of time as the over—
all performance metric in our TPC-C test. In TPC-—
H test, because the running time of different algo—
rithms is not the same, we use throughput as the

overall system performance metric.

KA TR RBAE B R KB R B M T

145

3.3.4 Hit Ratio
Hit ratio is defined as the ratio of the difference

of logical reads and physical reads to logical reads.

logical reads—physical reads

hit ratio=
1o logical reads

3.3.5 Execution Time

Execution time is the average CPU time spent
by a logical read. It refers to the average CPU exe—
cution time interval from the moment when the read
request reaches the buffer cache to the moment when
database engine gets the page. Both the concurrency
control mechanism on buffer pages and the overhead
of algorithms have some impacts on this metric.

We examine the execution time of various re—
placement strategies by running TPC-H and TPC-C
Benchmark, and show how it affects the overall
system performance.

3.4 Significance Tests

In previous studies about various buffer replace—
ment algorithms, such conclusions could usually be
drawn: Algorithm A “significantly outperforms” B,
or these algorithms are close. But these claims were
not specified precisely—different standards were used
by researchers to come to the same conclusions and
no statistical significance analysis was conducted to
verify the results. In this paper, in order to effec—
tively and precisely demonstrate and explain the
evaluation results, we introduce two statistical signif—
icance tests into comparisons of buffer replacement
strategies, and propose a mnovel method to jointly
use these two significance tests.

3.4.1 Sign Test
Sign test is used to compare two buffer re—

placement strategies based on the paired perfor—

mance metrics such as hit ratio or logical reads.

The notation is as follows.
(1)N is the number of different cache sizes.

(2)x, is the performance metric of buffer re-

placement strategy X at the ith buffer cache, i=
1,2,3,--,N.

(3)y, is the performance metric of buffer re—
placement strategy Y at the ith buffer cache, i=
1,2,3,--,N.

(4)n is the number of times that x, and y, differ.

(5)k is the number of times that x, is larger
than y,.

The null hypothesis H, is k=0.5n, or k has a

binomial distribution of Bin(n,p) where p=0.5. The

alternate hypothesis H, is k>0.5n (k<0.5n), which

means that buffer replacement strategy X is better
(worse) than buffer replacement strategy Y. The P-
value indicates the probability of the observed evi-
dence against the null hypothesis. The smaller the
P—value, the more contradictory is the evidence to

H,. The P-value (one-sided) can be calculated us—

ing the following equations.

n

2 (105" it k=050
i=h /

P=
" %05 if k<0.5n
]

5
=0
3.4.2 T-test
T—test also uses the paired performance metrics
to compare two buffer replacement strategies. Besides
the same notation used in sign test, we add the fol-
lowing items.
(1)d.=x,~y, is the difference of x, from y..
(2)d is the average of the d. values for i=1,2,

L n.

The null hypothesis H, is d=0. The alternative

146 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

hypothesis H, is d>0 (d<0). The P-value can be

computed by using the t-—distribution with a n-1
degree of freedom.
3.4.3 Joint Method

Sign test only considers the sign of two values,
and ignores the absolute difference. T —test focuses
on the absolute difference, but is sensitive to out—
liers. Therefore, we propose a method to jointly use
sign test and t—test.

For each pair of buffer replacement strategies,
we can get two test results, one for sign test and
one for t—test. Thus, for the thirteen algorithms we
study in this paper, we can get two 13*13 tables,

“w o “wo”»

which are filled in with “=", ">,

W oo« ”

<7,">>" and
“<<”. These signs show the gap of two buffer re—
placement strategies on some performance metric. If
the P-value of buffer replacement strategy X and Y
is greater than 0.05, it is thought that X and Y
perform equally well and the corresponding cell is
filled in with a “=". If the P—value is equal to or
less than 0.01, we use “>>” (“<<”) to show that
the performance gap of two algorithms is very large.
When the P-value is between 0.01 and 0.05, we
think buffer replacement strategy X is better (worse)
than Y to some extent and use “>7 (“<”) to de-
note it.

After getting the two tables for the two signifi—
cance lests, we compute the score of every buffer
replacement strategy in each test. We denote the

“ “ o TR

weights of “<<”, “<”, “=7, 57 “S>” by B, -a,
v, a, B respectively. For each buffer replacement
strategy, we calculate the score of the strategy by

adding up the weights of the signs in the corre—

sponding row. The final score of a buffer replace—

ment strategy is the average of the two scores that
are calculated from sign test and t—test.

In our test, we set a, 8 and y to 1,2 and 0
respectively. The choice of the values represents the
relative importance of “<<” and “<”. If the values
are changed, the ordering result may be somewhat

different.

4 Buffer Replacement Strategies

In this section, we briefly introduce thirteen
buffer replacement strategies we evaluated: LRU",
CLOCK"™, GCLOCKM, FBR™, LRU-KF 2Q-Simple,
2Q-Full®, LRFU™, ARC®, LIRS®, CAR", CART!
and CLOCK-Pro"". These strategies nearly cover all
of the existing strategies that belong to the same
category—trace and utilize history information to re—
place pages. Besides these algorithms, there also exist
other strategies such as SEQU, EELRU!",DEAR®,
etc. In this paper, we do not consider these algo—
rithms because they belong to another type that de—
tects and adapts to access regularities”?",

LRU is a classical buffer replacement policy,
which was developed originally for patterns of use

in instruction logic!”#!. Because pure LRU has an

areas such as CPU

cache, CLOCK and GCLOCK appear to simulate the

unaffordable cost in some
LRU replacement strategy. LRU can’t do well in some
applications because it only utilizes limited access
information (recency of references). So researchers
propose new replacement algorithms, such as LRU-
K, FBR, LRFU and LIRS to collect and use “deeper”
history information. In order to mitigate logarithmic
implementation complexity of LRU-K, 2Q-Simple

and 2Q-Full are proposed which reduce the com-

KA TR RBAE B R KB R B M T

147

plexity to constant per request. All these policies
require user—defined parameters except LRU and
CLOCK. In order to remove this limitation, a self-
tuning algorithm—ARC is proposed. But this strategy
also has some disadvantages, such as the cache hit
serialization problem. CAR and CART policies are
proposed to improve on ARC. CLOCK algorithm is
still plagued by disadvantages of LRU, such as the
disregard of “frequency”. Inspired by LIRS, CLOCK-
Pro is proposed to improve on CLOCK.
41 LRU

LRU(Least Recently Used)" is one of the sim-
plest and most popular algorithms. When the buffer
cache is full and room is needed for a new page,
this strategy selects the page with the largest recency
for replacement. LRU is easy to implement with
constant time and space overhead. This algorithm
only considers the recency of pages, and does not
capture the “frequency”. For a looping access pat—
tern that is larger than the cache size, LRU always
replaces the blocks that will be used soon, leading

to reference misses.

4.2 CLOCK

CLOCK™ is used to simulate the LRU replace—
ment algorithm. It regards the whole cache as a cir-
cular queue, using a clock pointer pointing to the
victim page that may be replaced. When a cache
needed, so

hit occurs, no movement 1s

page
CLOCK can lighten lock contention and reduce
algorithm complexity. It is often used in environments
where there are significant complexity constraints.
43 GCLOCK

GCLOCK (Generalized CLOCK)P! is a variation

of the basic CLOCK algorithm. In the CLOCK algo-

rithm the reference bit of each page is set to one
on a buffer page hit, while in GCLOCK algorithm
the reference counter associated with each page can
be incremented to a page-related weight. The weight
value represents a tradeoff between the accuracy and
the speed of the clock—sweep algorithm. A large value
makes GCLOCK approximate the LRU strategy. But
it will result in too many times of clock sweeps to
find a page to replace. So, in our implementation,
we don’t want it to be very large and set it to 5.
44 FBR

FBR (Frequency —based Replacement)!*! policy
maintains a LRU list, and divides the list into
three sections: new, middle and old. Each page has
a reference counter. If a cache hit happens, the
page is moved to the MRU position of the new
section; moreover, if the page was in the middle or
the old sections, its reference counter is incremented.
But if it was in the new section, the reference
counter is not changed. Thus, FBR can resolve the
correlated reference problem by factoring out locality.
On a cache miss, the page with the smallest refer—
ence count in the old section is replaced. The
advantage of FBR is that it combines recency and
frequency. A limitation of this strategy is that it has
to periodically decrement the reference counters to
prevent cache pollution due to the stale pages with
high reference count. The algorithm also has several
tunable parameters, such as the sizes of three sec—
tions, and we set these parameters as in the origi—
nal paper.
4.5 LRU-K

LRU-K"! takes into account the history knowl-

edge of the last K(K=2) references in deciding the

148 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

victim block for eviction. The authors thought of
LRU-2 as a better algorithm than LRU-K where
K>2, so we implemented LRU-2 in the experimen—
tal study. LRU-2 remembers the last two times when
one page was requested, and replaces the page with
the least recent penultimate reference. A limitation
of the LRU-2 algorithm is that it needs logarithmic
implementation complexity. It also has two tunable
parameters: correlated reference period and retained
information period. We use a heap to store the
pages within the correlated reference period and a
list to record the history information. The sizes of
the heap and the list are the same as the parameter
values of 2Q, because 2Q is an approximation of
LRU-2.

4.6 2Q

2Q(Two Queue)!® was proposed to reduce the
logarithmic complexity of LRU-2. It has two types
of algorithms: 2Q-Simple and 2Q-Full. Like LRU-
2, they use the recency of several past references
to decide the page to be evicted. In 2Q, a simple
LRU list is used instead of the heap structure in
LRU-2. 2Q-Full algorithm maintains a history page
information list, while 2Q-Simple does not. We set
their parameters as the authors suggested: Kin is
25% of the cache size and Kout is 50% of the

cache size. Therefore, according to these values,

the size of the heap in LRU-2 is set to 25% of the
cache size and the history list to 50% of the cache
size.
4.7 LRFU

LRFU(Least Recently/Frequently Used)"” algo-
rithm also combines recency and frequency of refer—

ences. Fach page is associated with a CRF value,

and each reference to the page contributes to the
value, which is used to choose the page for evic—
tion. LRFU has an important parameter A, which
decides whether LRFU collapses to LRU algorithm
or LFU algorithm. Therefore, the complexity of LR-
FU fluctuates between constant and logarithmic in
cache size per request. According to the experimen—
tal results the authors provided, for most of various
cache sizes, the performance of LRFU becomes sta—
ble when A is varied from 0.001 to 0.01. So, in or—
der to acquire stable performance results we set A
to 0.005 except specified otherwise. Besides A, LR-
FU has another parameter ¢, which represents the
correlated period. Similar to those of 2Q and LRU-

2, we set ¢ to 25% of the cache size.

4.8 LIRS

LIRS(Low Inter-reference Recency Set)” algo—
rithm regards IRR (Inter—Reference Recency) as the
recorded history information of each page, where
IRR of a page refers to the number of other blocks
accessed between two consecutive references to the
page. LIRS maintains a variable—size LRU stack to
keep the pages that have been seen recently. The
referenced blocks are divided into two sets: High
Inter—reference Recency (HIR) block set and Low
Inter—reference Recency(LIR) block set. The minor

part of the cache with the size of L, is used to

hirs

store blocks from HIR block set. The parameter L

hirs
can crucially affect the performance of LIRS. We
set it to 1% as in the original paper and the size
of LRU stack to 1.5 times as large as the cache
size. In the expected case LIRS has a constant
complexity, but it requires “stack pruning” operation

that in the worst case may touch many pages in the

KA TR RBAE B R KB R B M T

149

cache which increases the implementation complexity.
CLOCK-Pro™ algorithm can be regarded as a variant
of LIRS,
LIRS algorithm.
49 ARC

ARC(Adaptive Replacement Cache)® is a self-

which combines CLOCK algorithm and

tuning policy that combines recency and frequency
and requires no user—specified parameters. The whole
cache is divided into two queues, and each queue
is managed by LRU policy. The two queues separate
the pages that have been only visited once recently
from those which have been seen at least twice
recently. The size of every queue changes according
to the evolution of the workloads. ARC also main—
tains two history information lists, and a hit to a
block in the history lists causes the block to move
to the second queue. ARC has a low overhead com—
plexity similar to LRU. CARM" is a variant of ARC,
which uses CLOCK to substitute the LRU queue in
ARC. So, it has the advantages of both ARC and
CLOCK algorithms. It removes the cache hit serial—
ization problem of ARC: it only needs to set the
bit of the hit page and does not need to lock the
whole queue to move the page. CART!" strategy is
similar to CAR and employs a much stricter criterion
to distinguish pages with short —term utility from
those with long—term utility. Therefore, it can deal

with correlated references better.

5 Experimental Evaluation
our experiments were

1 GB

For single —user tests,
performed on a PC with a 2.0 GHz CPU,
memory and one IDE disk. SMP machines were

used in multiuser tests. The OS buffer cache is dis—

abled in all the tests. Using the new evaluation
methodology, we measure the performance of thir-—
teen buffer replacement algorithms when dealing
with five access patterns and running TPC-H and
TPC —C Benchmark in KingbaseES system. In the
following sections, we will show and analyze the
experimental results.
5.1 Sequential References

In this experiment, the buffer cache of King—
baseES contains 12 000 pages, and each page holds
8 KB. There is a large table A in our database,
which includes 11 113 data blocks. We performed a
SELECT count(*) operation against table A after the
buffer cache had been used by other workload for a

period of time. Figure 1 shows the pollution ratio of

various replacement algorithms.

100

80 r

60

40 r

Pollution ratio/%

20

0

¥ X DO L = O & B N o a g
SO =2 22 & <2k a &
83 3 R <23 =30 &2]
— = B oo &) — = <
[EERE] & -
3 2 3

S

Fig.1 Sequential references

1 M)y i)

The pollution ratios of GCLOCK, CLOCK,
LRU and FBR are higher than those of 2Q-Simple,
2Q-Full, LRFU and LRU-2 algorithms, and the
values of 2Q-Simple, 2Q-Full, LRFU and LRU-2
algorithms are higher than those of ARC, CAR,
CART, LIRS and CLOCK-Pro. The maximal pollu—

150 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

tion ratio in the figure is 92.6% , while the mini—
mum is less than 1%.

If all the data blocks of table A are in the
buffer cache, the pollution ratio is 92.6% (11 113/
12 000). Among all the thirteen algorithms the pol-
lution ratios of CLOCK and LRU reach the maxi-
mum, which demonstrates the buffer cache is “pol-
luted” most seriously when using CLOCK and LRU
strategies. The two algorithms are nol scan-resistant.
The GCLOCK replacement strategy considers refer—
ence counts when it decides the page to evict, and
every page from table A is only referenced once, so
some pages of table A are replaced, thus the pollu—
tion ratio of GCLOCK is lower than those of
CLOCK and LRU. How many pages of table A will
be replaced is decided by the status of the buffer
cache, and this status is decided by the previous
workload.

The pollution ratios of 2Q-Simple, 2Q-Full and
LRU-2 algorithms are all 25%. If we change their
parameters, the pollution ratios change too, and the
result value is always equal to the parameter. So
the abilities of these algorithms to deal with sequen-—
tial references depend on their parameter settings.
The same is true of LIRS, LRFU and FBR algo-
rithms. The pollution ratio of LIRS is equal to its

parameter L and the pollution ratio of LRFU

hirs
changes with the parameter A. The parameters of
the ARC, CAR, CART and CLOCK-Pro strategies
vary with the workloads. We compare their pollution
ratios with the values of their parameters before
executing sequential references and find that the
pollution ratios are decided by the parameters. So the

workload characteristics before sequential references

occur decide the robustness of these buffer replace—
ment strategies.

To sum up, we can draw the following conclu-
sions:

(1)LRU and CLOCK algorithms are not scan—
resistant.

(2)The robustness of 2Q-Simple, 2Q-Full, LIRS,
LRFU, FBR and LRU-2 strategies on sequential
references is decided by their parameters.

(3)The abilities of GCLOCK, ARC, CAR, CART
and CLOCK-Pro to deal with this problem are de—
cided by the characteristics of the previous work —
load.

5.2 Correlated References

We constructed two workloads according to the
method described in Section 3.2.1.

If one buffer replacement strategy can filter out
correlated references, the number of physical reads
on the second workload should be identical to that
on the first workload. Figure 2 shows that GCLOCK,
CLOCK, LRU, 2Q-Full, LIRS, LRFU, FBR, LRU-2
and CLOCK-Pro algorithms can deal with correlated

references well. The authors of 2Q -Full, LRFU,
3 600
[Physical reads of the first workload
35001 Il Physical reads of the second workload
0
=
£3400
=
£
23300+
=
=
3200 I
30— e b 2 = U @ e WD o= 8
o = = = g
EEEESEE5E2E o3
. | =) &} — 5 3
3 < &« S
Q s
)
Fig.2 Correlated references

Pl 2 HISCUIT

KA TR RBAE B R KB R B M T

151

FBR and LRU-2 considered this pro-blem when
they designed the algorithms. For example, the FBR
strategy uses a new section to filter out correlated
references, and LRFU revises CRF values of the
pages. Though other algorithms were not designed
for this purpose, they can also solve this problem
well. For example, the LRU replacement strategy
only wuses the recency information while ignoring
reference count. In CLOCK-Pro, cold pages can be
turned into hot pages only after several references.

2Q-Simple, ARC, CAR and CART can’t elim—
inate the effect of DELETE operations. 254 and 219
extra physical reads occur in ARC and CAR algo-
rithms respectively. The numbers of extra physical
reads (=45) in 2Q-Simple and CART are less than
those of ARC and CAR. One common feature of
2Q-Simple, ARC and CAR is that, if a page is
requested once, it will be regarded as a hot page.
So they perform poorly on this kind of workload.
CART improves CAR and ARC on this problem, but
there still exist some extira physical reads.
5.3 Looping References

For looping references, two experiments are de—
signed. In the first experiment, the cache size is
smaller than the number of the referenced pages in
one iteration, and in the second experiment, the
cache size is slightly larger than the number of the
referenced pages.
5.3.1 Smaller Cache Size

We set the cache size at 11 000 pages, and
performed the same SELECT operation ten times
against the table A, which has 11 113 pages

(slightly greater than the cache size). Before the

SELECT operations, the cache was clean.

Figure 3 shows the hit ratio of each iteration.
Except 2Q-Full, LIRS, LRFU, LRU-2 and CLOCK-
Pro, the hit ratios of all the algorithms are all 0%.
Although for each iteration, the same pages are ref-
erenced, these algorithms do not learn the charac—
teristics of the access pattern after seeing the pages
repeatedly. They always replace the pages which will
be accessed again. This leads to the complete cache
misses of the next iteration, and all the pages need

to be read from disk again.

110

——GCLOCK

100-r %~ PN S AA A A
! —=—CLOCK
90T ——LRU
80t ——20Q-Simple ||
& 707 ——2Q-Full
2 6ol ARC
= ——CAR
- 501 ——CART
T 407 | ——LIRS
30T | —<—LRFU
07 /| VY
\ I \ |
107 1 i ! i CLOCK-Pro
0 1 2 3 4 5 6 7 8 9 10

Looping number
Fig.3 Looping references

(the buffer cache has not been used by other workloads)
Pl 3 AER VT (Z2np XA BHAD TAE A A
Although the hit ratios of 2Q-Full, LIRS, LR-
FU, LRU-2 and CLOCK-Pro are greater than 0%,
they do not act identically. Firstly, their maximal
hit ratios are different. The maximums of LIRS and
CLOCK —=Pro are larger than those of other algo-
rithms. CLOCK —Pro is inspired by LIRS, so there
are some similarities in their behavior. 2Q-Full has
slightly higher hit ratios than LRFU and LRU -2.
Secondly, the speeds that they reach their peak
values differ from each other. LRFU and LRU -2
reach their peak values during the second iteration,

and the other three algorithms stabilize after the

152 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

fourth iteration. Finally, the stabilization states are
different. The hit ratios of LRU-2 fluctuate between
its peak value and valley value, and it is interest—
ing that the sum of peak value and valley value is
100% exactly. Other algorithms stabilize after they
reach the peak values.

If the buffer cache was not clean before run—
ning our workload, the hit ratios of all the algo—
rithms were 0% . So the algorithms can not adapt
well to this pattern after other workloads have
occurred.

5.3.2 Larger Cache Size

In this experiment, the cache size is greater
than the number of pages accessed by each SE-
LECT operation against table B which has 1 701
pages. Before the experiment, the buffer cache had
been used by other workloads. Since the cache size
is greater than 1 701, the hit ratio after several
iterations should be able to reach 100%. Figure 4
shows the result when the cache size is 2 000

(Throughout this paper, the cache size generally

refers to the number of the pages the cache con-

tains).
L —o—GCLOCK
100 —=—CLOCK
——LRU
80 1 ——2Q-Simple
- 20-Full
® | ARC
. g 60 ——CAR
= ——CART
= 40 —a— LIRS
o —<— LRFU
—=—FBR
20 ——LRU-2
CLOCK-Pro
Ole—=4. d

1 2 3 4 5 6 7 8 9 10
Looping number

Fig.4 Looping references

(the buffer cache contains 2 000 pages)
Pl 4 ARVl (Z200 XA 2 000 4> GTTA)

GCLOCK, CLOCK and LRU show good adapt-
ability. Their hit ratios reach 100% in the second
iteration. ARC, CAR, CART and CLOCK-Pro are
slightly worse, and the hit ratios also reach 100%
after two iterations. LRU-2 does not adapt to this
access pattern well. Though the hit ratio increases
with the number of iterations, the values are much
lower. The hit ratios of the other algorithms are all
0%.

We increased the cache size to 4 000, and
tested 2Q-Simple, 2Q-Full, LIRS, LRFU, FBR and
LRU-2 again. In Figure 5, we can see that, except
2Q-Simple, all the algorithms have hit ratios of 100%
after several iterations. We continued the experiment
with larger cache size. When the cache size is 6000,
the maximal hit ratio of 2Q-Simple is still 0%, and
the hit ratio does not reach 100% until the cache
size is close to 7 000. It is because, for this access
pattern, 2Q-Simple uses only FIFO queue, i.e.,
there are only 25% pages used. When the cache
size is 7 000, and 1 750(=7 000%25%) is greater
than the number of pages of table B(=1 701), all
the pages of table B can be held in the FIFO

queue.
100
80 T
S
g 60
2 —— 2Q-Simple
= —— 2Q-Full
= 407 —&— LIRS
—¥— LRFU
20 —b&— FBR
—&— LRU-2
0

1 2 3 4 5 6 7 8 9 10
Looping number

Fig.5 Looping references
(the buffer cache contains 4 000 pages)
5 BRI (ZZ0h XA 4 000 A DU

KA TR RBAE B R KB R B M T

153

5.4 Temporally—Clustered References

In this workload, more than 5 000 pages are
accessed in one scan. The hit ratios on this work—
load are shown in Figure 6. In order to show each
line clearly, we put the thirteen curves in two fig—
ures. We display the 2-3 best algorithms and the
2-3 worst algorithms in the first figure, and the
others in the second figure.

This experiment verifies the argument that LRU
is the optimal policy under the access pattern of
temporally—clustered references™!. We can see that
the hit ratio of LRU is proportional to the cache
size. For LRFU, the parameter A is set to 1.0.
With this setting, the LRFU algorithm is similar to
LRU, so its hit ratios are equal to those of LRU.

When the cache size is small, the hit ratios of

GCLOCK and CLOCK are very close to those of
LRU. There is a large gap between the hit ratios of
CLOCK-Pro, LRU-2 and those of LRU. The differ—
ence between the hit ratios of other algorithms and
those of LRU is not so large. As we increase the
cache size, the curves of GCLOCK, CLOCK, 20Q-
Full, CAR and CART depart further and further

from that of LRU. There also exists an obvious gap

80 ‘ ‘ ‘ ‘ Py
-6~ GCLOCK 4
70 |-~ CLOCK 7
| [« LRU
601 _A LIRS
50+ —4— LRFU
R —#— LRU-2
T 40 CLOCK-Pro
=30t
20 f
10
0\': L L |
1000 2000 3000 4000 5000 6 000

Cache size (number of 8 K pages)

between the hit ratios of 2Q-Simple, LIRS and those
of LRU. When the cache size is large, the curves
of 2Q-Simple, ARC and FBR almost overlap with
that of LRU. CLOCK-Pro, LRU-2 and LIRS also
the curves of
GCLOCK, CLOCK, 2Q-Full, CAR and CART are
still far away from that of LRU. When the cache

begin to approach LRU. However,

size is 6 000, the hit ratios of all the algorithms
converge to the same point.

Here, we investigate the recency of the replaced
pages to help to explain the performance of the
replacement strategies on temporally —clustered pat
terns. The most significant difference among the
replacement strategies is the pages to be replaced.
Thus, studying the characteristics of these pages
can help us to understand the replacement strate—
gies. The recency of a page is defined as the dis—
tance between the last access time and the current
time. This time refers to logical time. Consider a
reference sequence abcdefg, page a’s access time is
1, page g’s access time is 7, then the distance
between a and g is 6. The characteristic of tempo—
rally —clustered patterns is that the page which was

just accessed has higher possibility to be accessed

80
70 H —— 2Q-Simple
—— 20-Full
60 F ARC
—— CAR
¥ 50 [| = CART
=}
-§ 40 - —— FBR
S0
20 -
1088
0 L L L L
1 000 2000 3000 4000 5000 6 000

Cache size (number of 8 K pages)

Fig.6 Temporally—clustered references

Kl o ISR AT

154

Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

again, i.e., for this access pattern, a replacement
strategy should keep the pages with smaller recency
in the cache, and replace the pages with larger recency.

The recency distribution of LRU at different
cache sizes has the same characteristic—the recency
of every replaced page is equal to the cache size.
For example, when the cache size is 5 000, the
recency of all replaced pages is also 5 000. Under
this workload, if the page with the largest recency
is always evicted, the recency of each replaced
page should be equal to the cache size.

We find that the pages replaced by LRFU have
the same characteristic as those of LRU, so LRFU
has the same performance as LRU. When the cache
sizes are 4 000 and 5000, the recency of the pages
replaced by FBR is identical to the cache size.
Therefore, its hit ratios are equal to LRU’s.

If the recency distribution of one algorithm is
different from that of LRU, we need to analyze the
result by combining recency with other characteris—
tics of the replaced pages and the way the bulffer
algorithm works. When the cache size is 1000, the

hit ratios of GCLOCK and CLOCK are close to that

33 (98 N
(=) (=) (=)
T T T

Hit ratio/%

=

CLOCK-Pro

0 1 Il Il Il Il
1000 2 000 3 000 4 000 5000 6000 7000 8000 9000 10 000
Cache size (number of 8 K pages)

of LRU. In the recency distribution of CLOCK, the
recency of some pages is equal to the cache size,
and the recency of other pages changes from 1 to
1 999. We analyze the reference counts of the re—
placed pages and find that the pages whose recency
is not 1 000 are accessed twice. Under this work—
load, the pages accessed twice will be referenced
after a long time, so it is reasonable to replace
these pages.

When the cache sizes are 1 000 and 2 000,
LIRS replaces the pages whose recency is 1% of

the cache size, i.e., the value of L, . It is because
LIRS always replaces the pages in the LRU queue
whose size is L, of the cache size. So, in this
case LIRS has relatively higher hit ratios. CLOCK-
Pro does not perform well, although it is inspired
by LIRS. Perhaps, this is due to their replacement
policy—algorithms using “reuse distance” in replace—
ment decision don’t perform very well for temporally—
clustered patterns.
5.5 Probabilistic References

The workload of probabilistic references can be

generated by index scans. Figure 7 shows the hit

501
40+
g 30
= -6~ GCLOCK
g —— 2Q-Simple
=20}t
& ARC
—— CAR
10+ =%~ CART
—— FBR

J ;
1000 2000 3 000 4000 5000 6000 7000 8000 9000 10 000
Cache size (number of 8 K pages)

Fig.7 Probabilistic references

Fl7 BERiR

KA TR RBAE B R KB R B M T

155

ratios of the thirteen algorithms when the cache size
is varied from 1000 to 10 000. In this experiment,
the A parameter of LRFU is set to 0, which makes
LRFU similar to LFU.

We can see that CLOCK -Pro, LRFU, LIRS
and LRU-2 have relatively higher hit ratios. The hit
ratios of CLOCK and LRU are much lower than
those of other algorithms. When the cache size is
less than 6 000, there is a gap between the hit ra—
tios of CLOCK-Pro, LRFU, LIRS and LRU-2 and
those of other algorithms. But when the cache size
increases, the hit ratios of these algorithms begin to
approach those of CLOCK-Pro except the 2Q-Full
algorithm.

For probabilistic patterns, the buffer replace—
ment strategy which always chooses the pages with
the smallest reference counts to replace is the opti—
mal®*, Theoretically, CLOCK-Pro, LRFU, LIRS
and LRU-2 replace the pages accessed only once
with high priority, so they deliver high hit ratios.
However, LRU and CLOCK do not consider the fre—

quency information, so they do not perform well on

0.040
0.035
0.030
0.025

ho

gc:vs 0.020
0.015¢
0.010
0.005 1

I il il
0000 SR NSRRI
N Vv ™ ™ 5) © [\ o S \Q

Cache size (number of 8 K pages)
Fig.8 Frequency distribution of CLOCK-Pro
Kl 8 CLOCK=Pro [R5 7fh

this access pattern.

In order to explain the results of these algo—
rithms, we trace the reference counts (frequency)
of the replaced pages. We find that the reference
counts of the pages replaced by CLOCK-Pro are
mostly one. In Figure 8, we show the rate between
the number of replaced pages whose reference
counts are greater than one and the number of all
replaced pages. When the cache size is 5 000, the
rate is highest, and it is only about 4%.

LRFU, LRU-2 and LIRS have similar features
as CLOCK-Pro. Because there are many pages whose
reference counts are the same, different algorithms
may replace different pages, which leads to different
hit ratios.

Theoretically, FBR first replaces the pages
whose frequency is low, but the algorithm decreases
the reference count of every page periodically and
there are other conditions that decide which page
can be replaced. Thus, as shown in Figure 9, the

reference counts of the replaced pages are often

larger than one.

0.10

0.08

0.06

Rate

0.04

0.02

0.00

S & &

L

S S N\ N\
N N N

NN, “ 6Q‘QQ

Cache size (number of 8 K pages)

S &S
AT 9

Fig.9 Frequency distribution of FBR
Pl 9 FBR R4 fi

156 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

Figure 10 and Figure 11 show that LRU and
CLOCK often replace the pages whose reference
counts are larger than one. The two algorithms do
not consider the hints of frequency on the future
behavior, so their hit ratios are low on probabilistic
patterns.

The performance of other algorithms can also
be analyzed by comparing the frequency information
of the replaced pages. Here, we do not discuss it
any more due to space limitation.

5.6 TPC-H Benchmark

In this section, we show the experimental re—

0.67

057

N\ N\ N\

N N N S
N N N S N N S S
N o ™ o) © A =) > \Q

Cache size (number of 8 K pages)

S S O

%
7

N
N
o

Fig.10 Frequency distribution of LRU
Bl 10 LRU %% 5 fis

115

—

—_

(=]
T

El
=5
5
=105
2
=
T 1007
&
[= W
&
95|
T I
SO EELFE <2 EE = IAL
& S ERf =S =z D3 &2 7
58 4g ST 7 EBf
3 = S
N —
o

Fig.12 TPC-H throughput
Pl12 TPC-H #¥ikik

sults of the buffer replacement algorithms on TPC-H
workload. TPC—-H operates on a data warehouse of
1 GB, the size of which can be increased with a
Scaling Factor(SF). We set SF to 1, so two users
are used. In the throughput test, two query streams
and one update stream are executed simultaneously.
The experiment was done on an SMP machine, with
4 3.6 GHz CPUs, 5 GB memory and 2 SCSI disks.
The cache size is 230 000.

Figures 12, 13, 14 show the throughput, hit
ratios and execution time of the replacement strate—

gies, respectively. From these figures, the following

0.6

QL QL N L \] L O QL
SELTLEFLS S
AN S
Cache size (number of 8 K pages)

Fig.11 Frequency distribution of CLOCK
Pl 11 CLOCK M 53 fii

98.3
98.21

tio/%

97.7+¢
9761

97.5

2 2 D L =2 O 2 &5 0 Do g

S 9 = e B e < & z = = 0 £

S &2 ER < =532 7

=3 = A & = e

o O n Y =

2 & | S

N —

o

Fig.13 TPC-H hit ratio
Pl 13 TPC-H firp K

KA TR RBAE B R KB R B M T

157

9

8,

ET7f

~

£

:6,

E

.55,

[

4

= 4T

3,

2 M2 D 9 H O x B B D a9
Uumgim<mgmm'm
OO»—]E|<U<,4CG_AD>I4
= 4 7o (&) = 5:.)
2 °© &L a S
&] —

O

Fig.14 TPC-H execution time
Pl 14 TPC-H $hiimim]

observations can be made. First, GCLOCK, LRU,
2Q-Full and LRFU have lower throughput than other
algorithms, and the CAR strategy is the best. Many
algorithms perform similarly. Second, the hit ratios
of the algorithms show little difference. The highest
(LRU-2) is 98.19%, and LRFU has the
lowest hit ratio which is 97.67%. Third, the rela—

hit ratio

tionship between throughput and hit ratio is com-—
plex. The low hit ratio can not always mean bad
behavior in throughput. The CAR algorithm achieves
the best throughput, while its hit ratio is not high—

est. Maybe this is related to the low execution time

95
90 -
85 f
80+
3 —— LRU
VAR —— 2Q-Simple
= —%— CART
T 70 ¢ —a— LIRS
65 —b>— FBR
—#— LRU-2
60 F CLOCK-Pro
55 ‘ ‘ ‘ ‘ ‘
0.5 1.0 15 2.0 2.5

Cache size (number of 8 K pages) x10'

of CAR. Finally, as to execution time, these buffer
replacement strategies perform quite differently due to
the effect of implementation overhead and lock con—
tention. In our test, LRFU uses the longest time to

complete a logical read. GCLOCK, CLOCK, CAR

and CART algorithms spend less time than others.
5.7 TPC-C Benchmark

In this section, we use three performance met—
rics to compare various buffer replacement strategies
on TPC-C workload: logical reads, hit ratio and
execution time. Our TPC-C database contains 10
warehouses (about 900 MB), and the running time
of TPC-C is 1200 seconds. The major part of the
test was conducted on the PC used for single-user
tests. In order to compare the algorithms in different

environments, we also run the test in an SMP

machine with 4 1.5 GHz CPUs, 2 GB memory and 3
SCSI disks (in Section 5.7.3).
5.7.1 Experimental Results

Figure 15 shows the hit ratios of the algorithms
when the cache size is varied from 2 560 pages to
26 880 pages. For clarity, we list the hit ratios at
ten different cache sizes in Table 1. Overall, the
hit ratios of LIRS at different cache sizes are lower

than the hit ratios of other algorithms. When the

95t
90
85t
§ 80|
z75 GCLOCK
= CLOCK
T 70 20-Full

ARC
CAR
LRFU

(o) [=))
(=] [
T

0.5 1.0 1.5 2.0 2.5 .
Cache size (number of 8 K pages) x10

wn
[

Fig.15 TPC-C hit ratio
Bl 15 TPC-C firp A

158

Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

cache size is smaller than 6 400 pages, the gap
among the hit ratios of various algorithms is large.
For example, the hit ratio of LRU algorithm is
80.36% when the buffer cache contains 3 840 pages,
while the hit ratio of LRU-2 is only 68.79%. As

increases, the hit of the

strategies except CART, CLOCK-Pro and LRU-2 are

the cache size ratios

close. For large cache sizes, the hit ratios of all

the strategies are similar to each other.

Table 1

Figure 16 shows the logical reads of all the al-
gorithms. Table 2 shows the logical reads at ten
buffer cache sizes. The result indicates that, overall
FBR performs best and LIRS performs worst. The
curves of CART, CLOCK-Pro and LRU-2 algorithms
are adjacent to each other, and those of other al-
gorithms mix together.

We compare the results of Figure 15 and Fig-

ure 16 and find that the smaller the cache size,

Hit ratio (the cache size is from 2 560 pages to 25 600 pages)

A1 RN 2 560 £ 25 600 A4S UH)
Algorithm 2 560 5120 7 680 10 240 12 800 15 360 17 920 20 480 23 040 25 600
GCLOCK 67.17 81.21 82.42 84.26 86.31 87.54 89.22 91.02 92.64 93.96
CLOCK 77.42 81.81 83.54 84.67 85.97 87.37 89.10 90.51 91.66 93.07
LRU 77.46 81.32 83.36 84.83 86.59 87.89 89.41 91.19 92.48 93.76
2Q-Simple 59.07 60.97 83.83 84.66 86.39 87.97 88.52 90.27 90.63 92.52
2Q-Full 70.57 78.21 84.28 85.26 85.81 88.42 89.06 90.64 91.90 92.69
ARC 77.93 82.06 82.54 83.65 85.13 87.97 88.80 90.53 92.61 94.06
CAR 74.66 81.17 82.41 83.85 84.88 86.55 88.95 90.68 9241 93.79
CART 68.30 79.19 78.12 81.38 83.55 86.30 89.34 90.54 92.13 94.14
LIRS 56.23 66.96 70.63 75.79 76.92 80.72 83.51 87.07 90.47 92.60
LRFU 59.58 81.32 82.54 84.94 86.00 87.11 89.30 90.67 92.44 94.42
FBR 58.38 81.78 83.74 85.27 87.53 88.95 89.76 91.62 93.06 94.97
LRU-2 60.22 74.15 78.68 81.45 84.90 87.58 89.05 91.16 91.78 93.48
CLOCK-Pro 68.26 73.56 75.81 80.92 82.46 84.81 87.90 90.15 91.89 93.70
6 6
10
25 2510
—— LRU —e— GCLOCK
50l | =& LIRS ol |7 CLock
w —p— FBR o —— 2Q-Simple
=] = y
3 —#%— LRU-2 s —+— 2Q-Full
15 CLOCK-Pro Zosl ARC
gl gl —— CAR
"&b gD —v— CART
3 =
1.0 1.0
0.5 0.5
i/
O.‘S 1.‘0 1.‘5 2.‘0 2.‘5 . 0.5 1.0 1.5 2.0 2.5 .
Cache size (number of 8 K pages) x10 Cache size (number of 8 K pages) x10

Fig.16 TPC-C logical reads
Kl 16 TPC-C B4}k

;Pri

W %R R B R ow X R M T

159

the larger the gap among the hit ratios of different
buffer replacement strategies. But the curves of the
corresponding logical reads are close to each other.
When the cache size is large, though the hit ratios
are similar, the difference of logical reads is large.
This illustrates that the increase of hit ratio when
hit ratio is high can affect system throughput more
greatly than that when hit ratio is low.

The execution time is shown in Figure 17. The

execution time of FBR algorithm is longest, because
this strategy need decrease the reference count of
each page periodically and its implementation is also
complex. The of CLOCK
GCLOCK algorithms is smaller than that of others

execution time and

because these two algorithms can decrease the num-—

ber of lock operations and need not move pages.
The average time to acquire lock per logical

read is shown in Figure 18. The curves are obvi-

ously clustered into two groups. GCLOCK, CLOCK,

Table 2 Logical reads (the cache size is from 2 560 pages to 25 600 pages)
A2 B (ZIX R/ 2 560 F 25 600 AU)

Algorithm 2560 5120 7680 10240 12800 15360 17 920 20 480 23 040 25 600
GCLOCK 377830 586461 641767 719409 824564 881548 1019856 1208932 1446202 1774263
CLOCK 508173 607855 683901 741956 797363 863670 978496 1166080 1296313 1556137
LRU 518259 633685 707341 769231 866400 941715 1102697 1291457 1509265 1779566
20Q-Simple 317 136 346 806 724793 757731 849470 963790 1024976 1208545 1236519 1514217
2Q-Full 408569 534200 718816 760831 790757 946086 1017744 1167491 1332018 1465666
ARC 523517 639303 674283 711590 796854 954574 1032512 1198269 1508357 1822291
CAR 449301 580449 632466 696482 746309 815799 1003981 1161477 1402106 1687767
CART 388770 541795 544821 624817 710404 831335 1064170 1140737 1375107 1809134
LIRS 309928 379227 437166 518187 546639 648710 756657 924039 1234359 1461276
LRFU 316355 609537 651771 755407 826723 879477 1063263 1219610 1541238 1953809
FBR 327367 631329 725691 786273 956916 1036974 1141081 1369463 1596861 2081435
LRU-2 311990 439310 477384 610962 731637 851333 969076 1157456 1084604 1520375
CLOCK-Pro 389768 442921 495520 609566 681750 771379 958723 1135600 1361961 1707505
30 30
—e—GCLOCK
—&—(CLOCK —— 2Q-Simple
25+ ——[RU 25 —+—= 2Q-Full
g ——CAR 2 ARC
T —v¥—=CART T —A— LIRS
£20) ——LRFU E20} —— LRU-2
g —FBR s CLOCK~Pro
= | g w
= s 15¢
2 2)
= =
) 101 =
s ‘ ‘ ‘ ‘ ‘ 5 ‘ ‘ ‘ ‘ \
0.5 1.0 1.5 2.0 2.5 3.0 %.5 0.5 1.0 1.5 2.0 2.5
Cache size (number of 8 K pages) x10 Cache size (number of 8 K pages) x10

Fig.17 TPC-C execution time
17 TPC-C $f7im]

160

Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

CAR and CART algorithms can lighten lock con-
tention and spend less time in acquiring locks than
other strategies. The lock cost of LRU is very high.
Among the other algorithms, LIRS and CLOCK-Pro
strategies spend more time in lock operations. In
CLOCK —Pro algorithm, a global variable needs to
be adjusted dynamically, and the corresponding lock

is required, so CLOCK-Pro also has a high lock cost.

5.7.2 Significance Tests

In order to easily distinguish the behavior of
all the buffer replacement strategies and precisely
compare the performance, we used statistical signifi—
cance tests for various performance metrics. Table 3
and Table 4 are the results of t—test and sign test
on hit ratio respectively. In Table 3, the score of

GCLOCK is 9, because there are four “>>", one

“>” and eight “=". In Table 4, its score is also 9.
351 +E’IC]68§K So the final score of GCLOCK is 9.
3.0 i;gPSimple We show the final score of every buffer re—
n —+20-Full . .
£2 A%Cu placement strategy in Table 5. This table shows the
5]
£ 20 sl —o—CAR . . .
; < CART overall performance of all the algorithms on hit ratio.
g 15 —» LIRS
= ——LRFU We can group the algorithms according to the final
YA - FBR
10 = LRU-2 scores. For example, FBR and LRU strategies be-—
CLOCK-Pr
0305 1.0 L5 20 25 30 35 long to the same group, and CAR, CLOCK and ARC
Cache size (number of 8 K pages) x10
Fig.18 TPC~C lock time stay together. It also shows that the FBR algorithm
18 TPC-C H &I is the best on hit ratio and GCLOCK ranks third.
Table 3 T-test
3 T-test
T—test 1 2 3 4 5 6 7 8 9 10 11 12 13
GCLOCK(1) = = = > = = = >> >> = = >> >>
CLOCK(2) = = << > = = = >> >> = = >> >>
LRU(3) = >> = > > > >> >> >> = = >> >>
2Q-Simple(4) < < < = < < < = >> < < = =
2Q-Full(5) = = < > = = = >> >> = = >> >>
ARC(6) = = < > = = > >> >> = = >> >>
CAR(7) = = << > = < = >> >> = = >> >>
CART(8) << << << = << << << = >> = < = >>
LIRS(9) << << << << << << << << = << << << <<
LRFU(10) = = = > = = = = >> = << >> >>
FBR(11) = = = > = = = > >> >> = >> >>
LRU-2(12) << << << = << << << = >> << << = =
CLOCK-Pro(13) << << << = << << << << << << << = =

KA TR RBAE B R KB R B M T 161

In the same way we can get the results about hit ratios and the logical reads of the thirteen algo—

logical reads and execution time, as shown in Table rithms in increasing order, and get two sorted lists.
6 and Table 7 respectively. At a certain cache size, we can get a pair <a,b>
5.7.3 Relationship for each algorithm, where a and b(a,b (1,2, -,
Logical reads, hit ratio and execution time are 13}) are the positions of the hit ratio and logical

not independent. For each cache size, we sort the reads of the algorithm in the sorted lists, respec—

Table 4 Sign test
4 Sign test

T—test 1 2 3 4 5 6 7 8 9 10 11 12 13
GCLOCK(1) = > = = = = >> >> >> = << >> >>
CLOCK(2) < = << = = = = = >> < << = >>
LRU(3) = >> = >> > = >> >> >> = < >> >>
2Q-Simple(4) = = << = << = = = >> < << = =
2Q-Full(5) = = < >> = = = = >> = << > >>
ARC(6) = = = = = = = = >> = << = >>
CAR(7) << = << = = = = > >> < << = >>
CART(8) << = << = = = < = >> << << = >>
LIRS(9) << << << << << << << << = << << << <<
LRFU(10) = > = > = = > >> >> = << = >>
FBR(11) >> >> > >> >> >> >> >> >> >> = >> >>
LRU-2(12) << = << = < = = = >> = << = =
CLOCK-Pro(13) << << << = << << << << >> << << = =

Table 5 The final scores about hit ratio

45 PR NREN
Hit ratio LIRS CLOCK-Pro LRU-2 CART 2Q-Simple CAR CLOCK ARC 2Q-Full LRFU GCLOCK LRU FBR
Final score -24 -16 -9.5 -7 =55 2 2.5 5.5 6 6 9 145 16.5
Table 6 The final scores about logical reads
A6 BRENERLETY
Logical reads LIRS LRU-2 CLOCK-Pro CART CAR CLOCK 2Q-Full 2Q-Simple GCLOCK ARC LRFU LRU FBR
Final score — -24 -17.5 -13.5 -5 -4 -3 -2.5 -1.5 10 10 105 18 225
Table 7 The final scores about execution time
7 AT IR
Execution time GCLOCK CLOCK CAR LRU CART 2Q-Simple 2Q-Full ARC CLOCK-Pro LIRS LRU-2 LRFU FBR
Final score =22 -22 -14 -13 =55 -2 -05 -05 7.5 125 155 20 24

162 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

tively. Figure 19 plots the result pairs when the
cache size is varied from 2 560 to 15360 pages.

We can draw the following conclusion from the
trend of the curves: overall, the number of logical
reads increases with the increase of hit ratio. So the
buffer replacement strategy with high hit ratio can
be chosen to improve the system throughput. Howev—
er, the number of logical reads is not in strict pro—
portion to hit ratio. When two hit ratios are close to
each other, it does not assure that the buffer re—
placement strategy with higher hit ratio will show
higher performance.

We also conducted the experiment on a SMP
machine, and increased the buffer cache from 89 600
pages to 102 400 pages. In this environment, it is
CPU bound, not 1/0 bound as in the above experi—
ment. Figure 20 shows the result. The curves fluc—
tuate more greatly than the curves in Figure 19,
which illustrates, because of the impact of execution
time, it is more difficult to say that the number of
logical reads is large if the hit ratio is high. So ex-
ecution time is also an important factor that influ-
ences the system throughput, especially when CPU

is used heavily.

13
1211 o 3840

[
o~

T
~NoWn
N —
0O
[elele)

Logical reads

— D W A N 0O
T T T T T T
[

I 2 3 45 67 8 9101 120
Hit ratio
Fig.19 Relationship (I/0 bound)

Bl 19 170 Jay BRI G F

5.8 Space Overhead

In this section, we compare the space overhead
of different algorithms. In our implementation, there
are mainly two types of space occupied by replace—
ment strategies. The first is the hash table through
which the buffer pages can be accessed quickly.
The hash table exists for all of the algorithms, but
the number of entries is different. Therefore the oc-
cupied space is not the same. In addition, most of
the algorithms need to keep control information for
each buffer page that exists in the cache and for
some pages that have ever been in the cache. Table
8 shows the space overhead of various buffer re—
placement algorithms.

In Table 8, m is the size of the entry in hash
table, which is 32 Byte in our implementation, and
¢ is the size of control block of buffer page which
varies from zero Byte to 60 Byte for different re—
placement algorithms. n is the buffer cache size.
The data in the brackets show the space occupied
by the algorithms when n is 70 000. Except GCLOCK
and CLOCK, all the other strategies need to store

the control blocks. These strategies are divided into

three types according to the number of control
13
—%—89 600
12 1[—e—90 880
—=— 92 160
111 |—— 93440
| |——94 720
107|——96 000
5 ol —=— 97280
3 98 560
5 gll——90840
=1 ——101 120
— 7H—=—102140
o v
.go 6 . val
S st
4 X
3t
2 L
1

1 é :‘5 4‘|- g (; 7‘ é é 1‘0 1‘1 1‘2 13
Hit ratio
Fig.20 Relationship (CPU bound)

Bl 20 CPU Juy BRI IR FR

KA TR RBAE B R KB R B M T

163

Table 8 Space overhead
#8 AhgEN

Space/Byte Space/Byte
m*n (m+c)*2%n
GCLOCK/CLOCK CART
(2766 904+12) (5532 728+5 040 072)
m*n+c*n (m+c)*1.5%n
LRU LIRS
(2766 904+560 008) (3 887 160+5 040 052)
m*n+c*n m*n+c*n
2(Q—-Simple LRFU
(2766 904+2 520 036) (2766 904+3 920 040)
(m+c)*1.5%n m*n+c*n
2Q—Full FBR
(3887 160+3 780 048) (2766 904+3 360 080)
(m+c)*2%n (m+c)*1.5%n
ARC LRU-2
(5532 728+5 040 060) (3 887 160+6 300 052)
(m+c)*2%n (m+c)*2%n
CAR CLOCK-Pro

(5532 728+5 040 060)

(5532 728+5 600 040)

blocks and entries in hash table. For LRU, 2Q-
Simple, LRFU and FBR algorithms, the number of
control blocks is equal to the cache size, because
they need no extra blocks to keep history informa-—
tion of the pages that have been replaced. 2Q-Full,
LIRS and LRU-2 use half of the cache to remem-—
ber recently evicted buffer pages, while the others
utilize more space to maintain history information so
that the number of control blocks is two times larger

than the cache size.

6 Conclusion

In this paper, we proposed a performance eval—
uation methodology and did a thorough experimental
study of thirteen buffer replacement algorithms. In
this methodology, we employed five per formance
metrics and two significance tests. Five workloads of
various access patterns were developed and TPC-H

and TPC-C benchmarks were used to compare dif-

ferent algorithms in a real database environment. We

hope our work will help researchers and developers
of database systems to design, choose and evaluate
their buffer replacement strategies. In addition, the
following conclusions can be drawn from our experi—
mental study:

(1)Significance analysis can be applied to the
evaluation of buffer replacement strategies, and
jointly used for cross—strategy comparison.

(2)The performance of the buffer replacement
strategies depends heavily on the workload charac—
teristics. For example:

(DLRU and CLOCK are not scan-resistant. The
other algorithms can do better than LRU and
CLOCK for sequential references.

@Except 2Q-Simple, ARC, CAR and CART,
the other strategies can deal with the correlated ref-
erence pattern well.

@BFor temporally—clustered references, LRU and
LRFU algorithms show better performance than the

other algorithms.

164 Journal of Frontiers of Computer Science and Technology ITENBIZESHEE 2008,2(2)

@®LRU-2, CLOCK-Pro, LRFU and LIRS per—
form well on probabilistic pattern workloads.

(3)Hit ratio is a critical performance metric of
buffer replacement strategies, but it alone can not
determine the overall system performance. Execution
affects the

time of replacement algorithms also

system throughput, especially when the system is
CPU bound.

(4)The same increase in hit ratio when hit ratio
is high will result in a larger increase in system
throughput than that when hit ratio is low. So even
hit ratio is already high, it is still helpful to

improve it.

References:

[1] Mattson R L, Gecsei J, Slutz D R, et al. Evaluation
techniques for storage hierarchies[J]. IBM Systems Journal,
1970,9(2):78-117.

2

—

Corbato F J. A paging experiment with the multics system,
MIT Project MAC Report MAC-M-384[R]. May 1968.
[3

—_

Nicola V F, Dan A, Dias D M. Analysis of the general—
ized clock buffer replacement scheme for database trans—
action processing|Cl]//Proceedings of 1992 ACM SIGMET-
RICS Conference on Measuring and Modeling of Computer
Systems, 1992:35-46.

[4] Robinson J T, Devarakonda M V. Data cache manage—
ment using frequency-based replacement|C|//Proceedings of
1990 ACM SIGMETRICS Conference on Measuring and
Modeling of Computer Systems, 1990:134-142.

[5] O'Neil E J, O'Neil P E, Weikum G. The LRU-K page
replacement algorithm for database disk buffering[C]/Pro—
ceedings of ACM SIGMOD Conference, 1993:297-306.

[6] Johnson T, Shasha D. 2Q: a low overhead high perfor—
mance buffer management replacement algorithm [C]//Pro-
ceedings of VLDB Conference, 1994:297-306.

[7] Lee D, Choi J, Kim J H, et al. LRFU: a spectrum of

policies that subsumes the least recently used and least

frequently used policies[J]. IEEE Transactions on Comput—
ers, 2001,50(12):1352-1361.
[8

—_

Megiddo N, Modha D S. ARC: a self-tuning, low over—

head replacement cache[C}/Proceedings of the 2nd USENIX

Conference on File and Storage Technologies, 2003:
115-130.

[9] Jiang S, Zhang X. LIRS: an efficient low inter—reference
recency set replacement policy to improve buffer cache
performance[C]//Proceedings of 2002 ACM SIGMETRICS
Conference on Measuring and Modeling of Computer Sys—
tems, 2002:31-42.

[10] Bansal S, Modha D. CAR: clock with adaptive replace—
ment[C]//Proceedings of the 3rd USENIX Symposium on
File and Storage Technologies, 2004 :187-200.

[11] Jiang S, Chen F, Zhang X. CLOCK-Pro: an effective
improvement of the CLOCK replacement [C]/Proceedings
of 2005 USENIX Annual Technical Conference, 2005:

323-336.

[12] Chou H T, Dewitt D J. An evaluation of buffer manage—
ment strategies for relational database systems [C]//Pro—
ceedings of VLDB Conference, 1985:174-188.

[13] KingbaseES. http://www.kingbase.com.cn.

[14] Transaction Processing Performance Council. TPC Ben-—
chmark H (Decision Support) Standard Specification ,
Revision 2.0.0[S].

[15] Transaction Processing Performance Council. TPC Bench-
mark C Standard Specification, Revision 1.0[S]. 1992.
[16] Choi J, Noh S H, Min S L, et al. Towards application/
file-level characterization of block references: a case for
fine—grained buffer management[C]//Proceedings of 2000
ACM SIGMETRICS Conference on Measuring and Model-

ing of Computer Systems, 2000:286-295.

[17] Effelsberg W, Loomis M E S. Logical, internal, and
physical reference behavior in CODASYL database sys-—
tems[J]. IEEE Transactions on Computers, 1995,44(4):
546-560.

[18] Glass G, Cao P. Adaptive page replacement based on

memory reference behavior[C]/Proceedings of 1997 ACM

;ﬁé

W %R R B R ow X R M T

165

[20]

SIGMETRICS Conference on Measuring and Modeling of
Computer Systems, 1997:115-126.

Smaragdakis Y, Kaplan S, Wilson P. EELRU: simple
and effective adaptive page replacement [C]//Proceedings
of 1999 ACM SIGMETRICS Conference on Measuring
and Modeling of Computer Systems, 1999:122-133.
Choi J, Noh S H, Min S L, et al. An implementation
study of a detection —based adaptive block replacement
scheme[C]//Proceedings of 1999 Annual USENIX Techni—
cal Conference, 1999:239-252.

[21] Butt A R, Gniady C, Hu Y C. The performance impact

web, etc.

ment, etc.

[22

—

[23]

[24]

databases, data warehouses and data mining, etc.

15E(1973-), L, MG IEFH A , 2002 4 F [BB i E R AR 70 B iR A 2207, SR BT ok S PERe

of kernel prefetching on buffer cache replacement algo—
rithms[C]//Proceedings of 2005 ACM SIGMETRICS Con-
ference on Measuring and Modeling of Computer Sys—
tems, 2005:157-168.

Denning P J. The working set model for program behav—
ioffJ]. Communications of the ACM, 1968,11(5):323-333.
Coffman E G. Operating systems theory[M]. [S.L]: Pren—
tice-Hall, 1973.

Aho AV, Denning P J, Ullman J D. Principles of op-
timal page replacement[J]. Journal of the ACM, 1971,18
(1):80-93.

LUAN Hua was born in 1980. She is a Ph.D. candidate at Renmin University of China. She is a member

of CCF. Her research interests include databases and data warehouses, etc.

AEAE(1980-), 22 INAJEH N, RN RR S A, CCF 23 51, R0 S o B % s €5 %

DU Xiaoyong was born in 1963. He received the Ph.D. degree from Nagoya Institute of Technology, Japan
in 1997. He is a professor and doctoral supervisor at Renmin University of China. He is a member of CCF.

His research interests include high performance databases, intelligent information re trieval and semantic

HNE(1963-), 3 WHT I, 1997 451 H AR i)2 Tl R2E3R S 207, B Al E R R2E 307
AR, CCF B2 51, 5T S i M RE AR 22 B RE (S B R LR LRI %E

FENG Yu was born in 1973. She received the Ph.D. degree in computer science from Institute of Comput—

ing Technology, Chinese Academy of Sciences in 2002. Her research interests include high performance

WANG Shan was born in 1944. She received the M.S. degree in computer science from Renmin University
of China in 1981. She is a professor and doctoral supervisor at Renmin University of China. Her research

interests include high performance databases, knowledge systems, data warehouses and grid data manage—

EM1944-), 22 TTIRTEBN 1981 AT P ERIEEARFHI 22437, v [l AR 23082 A il 322
MR AU A P RE S 2 AR RS Bl G LS RS S i RS

