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1 Introduction

Embedded systems have many applications in
our life including household appliances, medical de—
vices, cellular phones, network switches and aircraft
controllers. Embedded systems are characterized by

their dedicated function, real —time behavior and

high requirements on reliability and correctness .
Many models have been proposed to represent em—
bedded systems®, such as finite state machines, data
flow graphs, communicating processes and Petri
Nets (PN) et al. Petri Net is an interesting model,
and has widely applied in various areas of science.
Petri Nets allow us to express concurrency, sequen—
tial actions, non-determinism, synchronization, and
other features desirable while designing digital sys—
tems. Petri Net Based Representation for Embedded
Systems (PRES+)P! is an extension to the classical
Petri Net model that explicitly captures timing infor—
mation, allows systems to be represented at different
levels of granularity, and improves expressiveness by
allowing tokens to carry information!, and supports
a precise representation of the system, the use of
mathematically —based techniques for verifying the
correctness, and the automation of different tasks
during the design process.

To facilitate the verification of a large system,
we often reduce the system model to a simpler one,
while preserving the system properties to be verified.
Murata!® presented six reduction rules to reduced
ordinary Petri Nets, these rules preserved liveness,

I introduced a

safetyness and boundedness. Sloan!¢
notion of equivalence among time Petri Nets, and
proved that their reduction rules yield equivalent

net. This notion of equivalence guarantees that cru—

cial timing and concurrency properties are preserved.
Most reductions are quite specific, such as merging

7-8]

a few places or transitions'’™®, reducing individual

places or transitions® or very specific subnets. Es—

M provided reduction rules for LTL model-

parza
checking of 1-safe Petri Nets. In order to improve
the analysis efficiency, Shen" reduced a large digi—
tal system to a simpler one by using three kinds of
reduction rules. Based on Delay Time Petri Net
(DTPN), Jiang" transformed a Time Petri Net (TPN)
component to DTPN model in order to preserve such
conflict and concu-

properties as synchronization,

rrency during the reduction. Huang™ proposed some

new rtules to detect the existence of structural
conflicts.
The verification efficiency can be improved

considerably by using reduction rules. PRES+ nets
support reduction process which is of great benefit
in the formal verification process. For the sake of
reducing the verification effort, inspiring by reduc—
tion rules in the literature’>™", according to the
characteristic of PRES+ nets, we propose a set of
reduction rules for PRES+ nets in this paper. Using
these reduction rules, the reduced PRES+ nets and
original PRES+ nets are total-equivalent.

The organization of the paper is as follows.
Section 2 contains basic definitions about PRES +
nets. Section 3 introduces the reduction rules. Sec—
tion 4 presents applications of these reduction rules,

and section 5 concludes this paper.

2 Preliminaries
In this section, we will quickly review key

definitions. A more general discussion on PRES+ nets
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can be found in [3].

A PRES+ net is a five—tuple N:(P,T,],O,MO)
where P={p,,p,,"**,p,} is a finite non—empty set of
places; T={t,,t,,***,t,} is a finite non—empty set of
transitions; [CPXT is a finite non—empty set of input
arcs which define the flow relation between places
and transitions; O CTxP is a finite non—empty set
of output arcs which define the flow relation be-
tween transitions and places; M, is the initial
marking of the net.

A token is a park k=<v,r> where v is the token
value. The type of this value is referred to as token

r is the token time, a non —negative real

type;
number representing the time stamp of the token.

For every transition ¢t € T, there exists a transi—
tion function f associated to t.

For every transition ¢ € T, there exists a mini—

mum transition delay d and a maximum transition
+ . .

delay d , which are non-negative real numbers such

that d <d and represent, respectively, the lower
and upper limits for the execution time of the func—
tion associated to the transition.

The firing of an enabled transition ¢ €T, for a
binding b={k, ,k,,***,k,}, changes a marking M into

a new marking M'. As a result of firing the transi-

tion ¢, the following occurs:

(1) Tokens from its pre—set ¢ are removed,

that is, M'(p,)=M(p,)-{k.} for Vp, € 1

(2) One new token k=<v,r> is added to each
place of its post—set t., that is, M'(p)=M(p)+{k)

for Yp et . The token value of k is calculated by
evaluating the transition function f with token values
of tokens in the binding b as arguments, that is,

v=f(v,,v,,"+,v,). The token time of k is the ins-—

3

tant at which the transition ¢ fires, that is, r=tt

where # € [tt_,tt+];

(3) The marking of places that is different from
input and output places of ¢ remain unchanged, that
is, M'(p)=M(p) for Vpe A

Definition 1°! Two PRES+ nets N, and N, are
total—equivalent iff:

(1) There exists bijections £, :inP,—inP, and f,:
outP,—outP, that define one—to—one correspondences
between in(out)—ports of N, and N, ;

(2) The initial markings M, ; and M, , satisfy
M, (p)=M, ,(f,,(p))# for YpeinP, , M, ,(q)=
M, ,(f..(q))=¢ for YV qeouP, ;

(3) For every M, e R(N,) such that m, (p)=0
for YpeinP,, m,(s)=m, ,(s) for VseP\inP \outP, ,
there exists M, € R(N,) such that m,(p)=0 for
VpeinP,, m,(s)=m,,(s) for VseP,\inP,\owP,,
m,(f,,(q))=m,(q) for Y qeouP, and vice versa;

(4) For every <v,,r,>e M, (q), where q €outP,,
there exists <v, ,r,>eM,(f,,(¢)) such that v,=v,,

and r,=r,, and vice versa.

3 Reduction Rules

Reduction rules can be used to abstract from
certain transitions, places or subnets in a large net,
and this could cut down the size of the net used
for verification. As a result, the verification process
can be performed more efficiently.

In this section, we will give a set of reduction
rules for PRES+ nets and prove that these rules are
total-equivalence preserving.

Note that for the sake of simplicity and clarity,
some ftransition functions, transition delay, markings
et al. which are preserved in the reduced net, are

not shown in the following figures.
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3.1 Reduction Rule 1
In this subsection, we present Reduction Rule

1 (&,) for PRES+ net. This rule allows for the
merging of two sequential places p, and p, with
one transition ¢, between them into a single place p’.

The rule requires that there is only one output arc

from p, to t,, exactly one input p | and one output
p, for ¢,, and that there are no direct connections
between inputs of p, and the inputs of p,. Further-

more, this rule is not applicable to places that are
either an input place or an output place of the net.

See the example in Fig.l for an application of Rule 1.

Pi %}pim
t
.

b
L tlz]Qpl
[a, ,bz]élf2
O Py

P e O P

Fig.1 Reduction of a PRES+ net using Rule 1
Bl 1 PRES+RI{LRREN 1

Definition 2 (Reduction Rule 1: d)l) Let N,

and N, be two PRES+ nets, where N ={P,,T,,],,0,,
My} and N,=(P,,T,,I,,0,,M,,}. (N,,N,)e®, if
there exists input places P,CP, NP, (where P.={p,,
Pos P ), output places P, CP NP, (where P,=
Do 5P s D)) two places p,,p, € P\(P,UP,),
a transition ¢, € T, and a place p’ € P,\P, such that:

Conditions on N,
(D) “1,=(p,);
(2) 1, =lp,};
(3) p, =(t,)3

(4) PN p2=d>;
(5) M, ,#¢ is the initial marking of N,, and

M, (p,)#¢ for Yp, eP, M, ,(p,)=p for Vp, P ;

(6) There exists transition functions f, and f,
associated to ¢, and f, respectively;

(7) There exists transition delay [a, ,b,] and
[a,,b,] associated to ¢, and ¢, respectively.

Construction of N,

(8) P,=(P\jp,,p,})Ulp'};

(9) T,=T\{t,};

(10) 1,=(1, N (PxT,)) U ({p"}xp. )

(11) 0,=(0, N(T,xP, DU p, U py N Dxp'))s

(12) M, =M, ,, where M, is the initial mark—
ing of N,;

(13) There exists transition f function associated
to transition ¢, such that f=f,of ;

(14) There exists transition delay [a,b] associated
to ¢, , such that a=a,+a, and b=b +b,;

(15) The rest conditions of /N,, such as markings,

functions and transition delay, are the

those of N,.

same as

Theorem 1 Let N, and N, be two PRES+ nets
such that (N,,N,)e®,. Then N, and N, are total-

equivalent.
Proof Since (N,,N,)e ®,, by Definition 2:
(1) Let bijections f, :inP,—inP, and f,

out

routP,
—outP, , where inP =inP,=P.,(P.={p., ,p.,s""sp.,.})>
outP, =outP, =P, (PU =P, Pws P} ). Obviously,
fi (f..,) define one—to—one correspondences between
in(out)—ports of N, and N,.

(2) The initial markings M, ; and M, satisfy:

M, ,(p.)=M, ,(p,)#¢ for Vp, eP,

M, ,(p,)=M, ,(p, )=} for ¥p, eP,

(3) For every M, e R(N,) such that m,(p,)=0
for Vp,eP,, m (p)=m,,(p) for YpeP \(P,UP).
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Since there exists transition functions f; and f, asso—
ciated to ¢, and ¢, respectively in NV,, by Definition
2, there exists transition function f associated to t,
transition such that f=f,of, in N,. Since there exists
transition delay [a,,b,] and [a, ,b,]| associated to ¢,
and ¢, respectively in N, , by Definition 2, there
exists time transition [a,b] associated to ¢,, such that
a=a,+a, and b=b,+b, in N,. Then there exists M, €
R(N,) such that m,(p,)=0; m, (p)=m,,(p), for
VpeP\PUP); m(f, (p,))=m,(p,) for Vp, eP,
and vice versa.

(4) By (3), obviously for every <v,,r,>eM,(p,)
for all p, e P,, there exists <v,,r,>€M, (pu) for all
p, €P, such that v,=v,, and r,=r, and vice versa.

By Definition 1, N, and N, are total-equiv—
alent. U
3.2 Reduction Rule 2

In this subsection, we present Reduction Rule

2 (®,) for PRES+ nets. This rule allows the re-

moval of a self-loop place. A self-loop place is one
that has one input transition which is also the only
output transition of the place, and the place is
marked. See the example in Fig.2 for an application
of Rule 2. Place p, has been abstracted from the

reduced net as ¢, is the only input transition and

the only output transition of p,.

Py Qﬁ) Pin Pa w Pin
tl

Ps é Ps

Pa Pon P Pon

Fig.2 Reduction of a PRES+ net using Rule 2
€12 PRES+PIfERI LI 2

~
w

Definition 3 (Reduction Rule 2: @,) Let N,
and N, be two PRES+ nets, where N ={P ,T,,l,,0,,
M, ,} and N,=(P,,T,.I1,,0,,M,,}. (N,,N,)ed, if
there exists input places P,CP, NP, (where P.={p, ,

Pns 5P ))s output places P, CP, NP, (where P =

0
TNy

place p, € P, such that:

+,p,.}), a transition t, e T, NT, and a

Conditions on N,
(1) p=lt}s

(2) p,={t.};

(3) place p, has been marked;

(4) M, ,#¢ is the initial marking of N, , and
M, (p)#d for Vp,eP., M, (p )= for ¥p, eP,.

Construction of N,

(5) P,=P\p,};

(6) T,=T,;

(7) 1,=I, N (P,xT,);

(8) 0,=0,N(T,xP,);

(9) M,,=M,,, where M, is the initial marking
of N,;

(10) The rest conditions of N,, such as mark—

ings, functions and transition delay, are the same

as those of N,.
Theorem 2 Let N, and N, be two PRES+ nets
such that (N,,N,)e®,. Then N, and N, are total-

equivalent.

3.3 Reduction Rule 3
In this subsection, we present Reduction Rule

3 (@3) for PRES+ nets. This rule allows the

removal of a self-loop subnet. A self-loop subnet is
one that has one input transition which is also the
only output transition of the subnet. See the
example in Fig.3 for an application of Rule 3. Self-

loop subnet has been reduced to a place p’.
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Fig.3 Reduction of a PRES+ net using Rule 3
Pl 3 PRES+BI{ERREN 3
Definition 4 (Reduction Rule 3: @,) Let N,
and N, be two PRES+ nets, where N, =(P,,T,,/,,0,,
M, ,} and N,=(P,,T,,I,,0,,M,,}. (N,,N,)e®, if
there exists input places P, CP, NP,(where P.={p,, ,

Pnstsp.}), output places P, CP, NP, (where P,=

0

Py 2Poa s "',pun}>, a transition ¢, e T, NT,, a place
p' € P,\P,, and a self-loop subnet SN={P, , T, ,
Ly Ogy My} &N, where Po=(p.p,psspels To=
{t, ,ts} such that:

Conditions on N,

(1) “pa=l)s py=leds  t=lpsopads 1 =lps),
pa=lts)s po=leds ps=leds ps=lts) Tt=los)s 4=

Py ps)s  Pe=lts)s pe=lt,}> ps has been marked;
(2) "SN="p,={1,};
(3) SN =p, ={t,};
(4) M, ,#¢ is the initial marking of N,, and
M, ,(p,)#d for Vp,eP,, M, (p, )=b for Vp, eP,;
(5) There exists transition delay [a,,b,] and
las,bs] associated to ¢, and t;, respectively.
Construction of N,
(6) P,=(P\P,,)U{p'};
(7) T,=T\T;

(8) L=(1, N(P,xT,))U({p"}xSN " );

(9) 0,=(0, N (T,xP,))U( SNx{p'});

(10) M,,=M,,, where M, is the initial mark—
ing of N,;

(11) There exists transition delay [a,’,b,"] asso—
ciated to t,, such that @,'=max(a, ,a,) and b, '=
max(b, ,b;);

(12) p' has been marked;

(13) The rest conditions of N, , such as mark-

ings, functions and transition delay, are the same

as those of N,.

Theorem 3 Let N, and N, be two PRES+ nets
such that (N, ,N,) e ®@,. Then N, and N, are total-
equivalent.

Proof Since there exists transition delay [q, ,b, ]
and [a5,bs] associated to ¢, and t;, respectively in
N, , by Definition 4, there exists time transition
delay [q,’,b,'] associated to t,, such that ¢ '=max(q, ,a;)
and b,’=max(b, ,b;) in N,. Then the marking of p,

is preserved. The rest of the proof is similar to that

of Theorem 1. By Definition 1, N, and N, are

total—equivalent. O

3.4 Reduction Rule 4

In this subsection, we present Reduction Rule
4 (@,) for PRES+ nets. This rule allows for the
merging of multiple places (at least two) with the
same inputs and outputs into a single place ¢. See
the example in Fig4 for an application of Rule 4.
Places p, and p; have the same input set {t,,,,1,}
and the same output set {7, ,¢s}. The reduced net
contains a new place ¢ that has the same input and
output sets as place p, and p;.

Definition 5 (Reduction Rule 4: @,) Let N,
and N, be two PRES+ nets, where N ={P,,T,,],,0,,

M, ,} and N,=(P,,T,,1,,0,,M,,}. (N, ,N,)e®d, if
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Fig.4 Reduction of a PRES+ net using Rule 4
Pl 4  PRES+RI{ERHN 4

there exists input places P, CP, NP, (where P.={p,, ,

5

Pis "D ), output places P, CP NP, (where P,=
{Ps-p-}), places QCP, where IQI=2 (where we only
consider Q=(p, ,p;}) and a place ¢ € P,\P, such that:

Conditions on N,

() ¥p,.p,€Q. p,=p.:

(2) ¥p,.p,€Q. po=p, ;

(3) M, ,#¢ is the initial marking of N, , and
M, (p,)#$ for Vp,eP,, M, (p,)=p for ¥Yp,eP;

(4) There exist transition functions /i (xl ,xz)

and f,(x,,x,) associated to transitions ¢, and i

respectively.

Construction of N,

(5) P,=(P\Q)U{q});

(6) T,=T,;

(7) L,=(1, ﬂ(PZXTZ))U({q}Xp.), where p € (;

(8) 0,=(0,N(T,xP, U px{g}), where p e Q;

(9) M,,=M,,, where M, is the initial marking
of N,;

(10) There exists transition functions g (x) and
& (x) associated to t, and t; respectively, such that
g (x)=f,(x, ,%,) and g, (x)=f,(x, ,x,);

(11) The rest conditions of N,, such as mark—

ings, functions and transition delay, are the same as

those of N,.

Theorem 4 Let N, and N, be two PRES+ nets
such that (N,,N,) e ®,. Then N, and N, are total-

equivalent.

Proof Since there exist transition functions

f (xl ,xz) and f, (xl ,xz) associated to transitions ¢,
and ¢, respectively in N,, by Definition 5, there exist
time transition functions g, (x) and g, (x) associated
to t, and ¢ respectively in N,, such that g (x)=
fi (%, ,x,) and g, (x)=f,(x, ,x,). Then the markings
of p, and p, are preserved. The rest of the proof

is similar to the proof of Theorem 1. By Definition 1,

N, and N, are total-equivalent. O

3.5 Reduction Rule 5
In this subsection, we present Reduction Rule

5 (®,) for PRES+ nets. This rule allows the
removal of a place p, and transitions ¢,, t,, t,,
creates new lransitions ¢,, and ¢,, where ¢, is the
only input of p,, p, is the only input of ¢, and ¢,.

See the example in Fig.5 for an application of Rule 5.

Py Ps
JACH D) la, ,b, ]
N ——
@zz t, fo(x)

[m—

¢[d2 ’62% la; ,0,]
pSO Ps Ps Ps

Fig.5 Reduction of a PRES+ net using Rule 5
5 PRES+BI{LTARLI 5

Definition 6 (Reduction Rule 5: @) Let N,
and N, be two PRES+ nets, where N,={P,T,,],,0,,
M, ,} and N,=(P,,T,.1,,0,,M,,}. (N,,N,)ed, if
there exists input places P,CP, NP, (where P.=[p,,
p,}), output places P, CP, NP, (where P,={p,,p,}),
place p, € P/\P,, transitions {t,,t,,t,} ©T,\T, and

transitions {t,,,¢,,} € T,\T, such that:
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Conditions on N,

(1) p, Etl. and p, ¢ .t,;

(2) “t,=lp,) and p, &1,

(3) .t3:{p4} and p, ¢t,;

(4) p, is disconnected from all other transitions;

(5) p, is unmarked in the initial marking;

(6) Ml,O#d) is the initial marking of N,, and
M, (p)#¢ for Yp,eP,, M, (p, )= for Yp, eP,;

(7) There exists transition functions f, (x,y),
f,(x)=1 and f,(x)=1 associated to ¢,, t, and ¢,

respectively;

(8) There exists transition delay [a, ,b,], [a,,b,]
and [a,,b,| associated to ¢,, t, and ¢; respectively,
where [a,,b,1=[0,0] and [a, ,b,]=[0,0].

Construction of N,

(9) P,=P\[p,});

(10) T,=(T\{t,, t,, ;1) U{t, t5);

(11) L=1, N(P,xT,) DU t,x{t, 11,5

(12) 0,20, N(T,xP))U ({11, )% \ip, ) Up, D3

(13) .tu:.tl;

(14) .t13:.t1;

(15) 1=t \[p,)) Ut, 5

(16) 1,,=(1 \[p,})) U, 5

(17) There exists transition functions f, (x,y)
and f, (x,y)
such that f,, (x,y)=f, (x,y) and f, (x,y)=f, (x,y);

associated to ¢, and ¢, respectively,

(18) There exists transition delay [a,, ,b,,] and
[a;,b,;] associated to ¢,, and ¢, respectively, such
that [a,,,b,,]=le, ,b,], la;.b;]=la, ,b,];

(19) M, =M, ,, where M, is the initial mark—

ing of N,;

(20) The rest conditions of N,, such as mark-
ings, functions and transition delay, are the same
as those of N,.

Theorem 5 Let N, and N, be two PRES+ nets
such that (N, ,N,) e @,. Then N, and N, are total-
equivalent.

there exists transition functions

fi(x,y), f,(x)=1 and f,(x)=1 associated to t,, t,,

Proof Since

and ¢, respectively in N, , by Definition 6, there
exists transition functions f,, (x,y) and f,;(x,y) as—
sociated to ¢, and ¢, respectively,such that f,,(x,y)=
fi(x,y) and f,(x,y)=f, (x,y) in N,. Since there
exist transition delay [a,,b,], [a,.,b,] and [a;,b;]
associated to ¢, ¢, and ¢, respectively,where [a,,b,]=
[0,0] and [a,,b,]=[0,0] in N,, by Definition 6,
there exists transition delay [a,,,b,,] and [a,;,b ;]

associated to ¢, and ¢, respectively, such that

lay b l=lay 0,1, [ay;,b;1=la,,b,] in N,. Then the

markings of ps and p, are preserved. The rest of

the proof is similar to that of Theorem 1. By Defi-

nition 1, N, and N, are total-equivalent. O

3.6 Reduction Rule 6
In this subsection, we present Reduction Rule

6 for PRES+ nets (@, ). This rule allows removal of
a place p, and a transition ¢,, where ¢, is the only
input transition of p,. The reduced net on the right
abstracts from transition ¢, and place p,, and pro-
vides direct connections between the inputs of ¢,
and the outputs of p,. See the example in Fig.6 for

an application of Rule 6.
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Fig.6 Reduction of a PRES+ net using Rule 6
6 PRES+BI{LFHI 6

Definition 7 (Reduction Rule 6: @,) Let N,
and N, be two PRES+ nets, where N,=(P,,T, .1, ,0,
(N,,N,) e @, if
there exists input places P,CP, NP, (where P.={p,,

Ml,o} and N,={p,,T,,1,,0, ’Mz,o}-

PasDssPa ,ps}), output places P, CP, NP, (where
P,={py.pipu ’P|2}>’ a place p, e P/ \P, and a
transition ¢, € T)\T, such that:

Conditions on N,

(1) p, has not been marked in initial state;

(2) t;:{p7} (p, is the only output transition of t,);

(3) p, is disconnected from other transitions ex—
cept for t,, t,, tg;

(4) (.tz).={t2};

(5) M, ,#¢ is the initial marking of N, and
M, ,(p,))#$ for Vp,eP,, M, ,(p, )=d for Vp, eP,;

(6) There exists transition functions f,=1, f,,
fi=1, f, and f; associated to ¢,, t,, t;, t, and i
respectively;

(7) There exists transition delay [q, ,b,], [a,,b,],
la;,bs], [a,,b,] and [ay,bs] associated to ¢,, t,, i,
t, and t, respectively, where [a,,b,]|=[d,d] (where
d>0 and d<min(a, ,a,)).

Construction of N,

(8) P,=P\[p,};

(9) T,=T\{t,};

(10) L=(1, N (P,xT,)) U 1,xp; )
(11) 0,=(0,N(T,xP,));

(12) p.={t, ;)

(13) There exists transition functions f,", f,', f,’
and f;' associated to t,, t;, t, and ¢ respectively,
such that f,'=f,=1, f,'=f;=1, f.'=fiofss fi'=fsofss

(14) There exists transition delay la,",b,"],
la;",b,"], [a,’,b,"] and [ay",bs"] associated to ¢,
ty, t, and ¢y respectively, such that [a,',b, ]=a, -d,
b,=d)], la,".b,"Ha,—d,b,~d], [a,",b,"|=a,+d,b,+d],
las", b5 =[as+d,bs+d];

(15) M, =M, ,, where M, is the initial mark—
ing of N,;

(16) The rest conditions of N, ,such as mark-

ings, functions and transition delay,are the same as

those of N,.
Theorem 6 Let N, and N, be two PRES+ nets
such that (N,,N,) e ®,. Then N, and N, are total—-

equivalent.

Proof In N,, since there exists transition func—
tions f,=1, f,, f;=1, f, and f; associated to ¢,, ¢,,
ty, t, and tg respectively, by Definition 7, in N,,
there exists transition functions f,", f;’, f,” and f5'

associated to t,, t,, t, and ¢ respectively, such

that f,'=f,=1, f,'=f;=1, f.'=fi°fs, f5s'=fsf,. Since



B BT Petri R T HAR R FARB AN

623

there exists transition delay [q,,b,], [a,,0,], [a;,b5],
la,,b,] and [ag,bs] associated to ¢,, t,, t;, t, and
t; respectively, where [a,,b,]=[d,d] (where d>0 and
d<wmin(a, ,a,)) in N,, by Definition 7, in N,,
there exists transition delay [a,’,b,"], [a;',b;"],
la,”,b,"] and [a5',bs']| associated to ¢,, ¢,, t, and
ts respectively, such that:

la,”,b,"|=la,-d,b,—d], |a;",b,"|=a,—d,b,—d]

la,”,b," |=la,+d,b,+d], |a,’,bs'|=las+d,bs+d]
Then the markings of p,, p,, p, and p, are pre—

served. The rest of the proof is similar to that of

Theorem 1. By Definition 1, N, and N, are total—

equivalent. O

4 Applications

In order to illustrate effectiveness of our reduction
rules, we will use this rules to reduce two embedded
models based on PRES+ net in this section.
4.1 Reduction of a Data Base Manage—
ment Model

In this subsection, we present a model of a
data base management with multiple copies. In this
system, each site has two processes, an active one
and a passive one. The access grant to a file of the
data base is centralized and submitted to the mutual
exclusion. In order to modify a file, the active pro—
cess of a site must get its grant, and once it has
modified the file, it sends messages to the other
sites with the updated file. Then the passive pro—
cesses update their own data base and send an ac—
Once the active process has re—

knowledgement.

ceived all the acknowledgments, it releases the

grant. Simultaneous accesses to different files are

allowed.

The data base management model is illustrated

in Fig.7.
— , |
P2 !
& i—g):—gﬂ“' bl
[0,0] \

Ps

10.0] I a; ,b,]

Fig.7 A data base management model

Pl 7 A B A i IR

4 P

In Fig.7, p,: active process site; p,: passive
process site; p,: messages with the updated file; p,:
the exclusion access grant and a file; p,: wait; p,:
updated document; p,: acknowledgement; ¢, : modify
a file; ¢, : receive message and update data base
document; ¢, : receive acknowledgement and release
the grant; f,: send an acknowledgement. Where f,=
f,=1. Initially p,, p, and p, have been marked.

In order to improve efficiency of verification,

we aim at reducing the model (PRES+ net) of Fig.7.
We use some reduction rules provided in Section 3,
such as Rule 1, Rule 2, Rule 4, and Rule 5, to
reduce corresponding parts of Fig.7. Then we get
the total-equivalent reduced model (Fig.13).

Step 1 We use Rule 5 to reduce Fig.7, then
the total-equivalent reduced model (Fig.8) is obtained.

In Fig.8, by Rule 5, f,=1.

» P
} £ a,,b,
O ; [ ]
b ﬁ P @m
5 L[0,0] fi
> a ‘b]
P NG

Fig.8 The reduced model by Rule 5
8 BB 5 Ji 75 2 iRk AL
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Step 2 We use Rule 2 to reduce Fig.8, then the

total-equivalent reduced model (Fig.9) is obtained.

Faw o N
L

t3 L [(l3 ’b3]

P
Fig.9 The reduced model by Rule 2
PO ORI 2 o 13 5 i Y

Step 3 We use Rule 1 to reduce Fig9, then the

total-equivalent reduced model (Fig.10) is obtained.

[’1( ;
h la, +b,]
ny
Pz Ps? Op,
AR
l: [(l3,b3]

Fig.10 The reduced model by Rule 1
Pl 10 BERTRRUN 1 s fir 20488

Step 4 We use Rule 4 to reduce Fig.10, then

the total-equivalent reduced model (Fig.11) is obtained.
In Fig.11, by Rule 4, f,'=f,.

Y i
Ps é P,
A
t% [a3 ’b3]
Fig.11 The reduced model by Rule 4
Pl 11 RN 4 ) fir 2B

Step 5 We use Rule 5 to reduce Fig.11, then the
total—equivalent reduced model (Fig.12) is obtained.
In Fig.12, by Rule 5, f,,=f,,"f,, a;=a,+a;, b=
b, +b,.

Step 6 We use Rule 2 to reduce Fig.12, then the

total—equivalent reduced model (Fig.13) is obtained.

la;,0,]

Fig.12  The reduced model by Rule 5
Pel 12 BRI 5 Jn 20 gy

fa :l[am 2b5]

t]}

Fig.13  The reduced model by Rule 2
el 13 BRI 2 Jri 52 i BOR

4.2 Reduction of a Jammer Model

In this section, we will use our reduction rules
to reduce a real -life industrial model based on
PRES+ net.

The basic function of a jammer is to deceive
radar scanning the area in which the object is mov—
ing. The jammer receives a radar pulse, modifies
it, and then sends it back to the radar after a cer—
tain delay. Based on input parameters, the jammer
creates pulses that contain specific Doppler and sig—
nature information as well as the desired space and
time data. Thus the radar will see a false target.

A model of the jammer™ is shown in Fig.14.
When a pulse arrives, it is initially detected and
some of its characteristics are calculated by process—
ing the samples taken from the pulse. Such process—
ing is performed by the initial transitions, e.g. de—
tectkEnv, detectAmp, ---, setPer, and getType, and
based on internal parameters like threshold and
trigSelect. Different scenarios are handled by the
middle transitions, e.g. getScenario, extractN, and
adjustDelay. The final transitions doMod and sumSig
are the ones that actually alter the pulse to be re—
turned to the radar.

In order to improve efficiency of verification, we

aim at reducing the model (PRES+ net) of Figl4.
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D

% threshold

copy |
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‘keepVal‘

doMod
delayf modf
ad]u@tDela
=
=
g =
AT Ot
3
=
modParLib | ’ extrdctN ‘ ‘ extractN ‘ °
% \ delayParLib
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=
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=
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Fig.14 A jammer model
Bl 14 A THRR SHHUBR

We use some of our reduction rules provided in "
Section 3, such as Rule 1, Rule 6, Rule 2, Rule 3
and Rule 4, to reduce corresponding parts of Fig.14.
Then we get the total —equivalent reduced model
(Fig.15).

Based on our reduced PRES+ nets, using the Fig.15 Reduced jammer model

systematic procedure to translate PRES+ nets into P15 AL TR SEPLBER
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TAP, it is possible to use available model checking
tools to prove certain properties to be preserved.
The reduction rules may further improve the model

checking efficiency.

5 Conclusions

A reduction rule can transform a large net into
a smaller and simple net while preserving certain
important properties and usually applied before veri—
fication to reduce the complexity and to prevent
state explosion. In order to improve the PRES+ net
verification efficiency, we propose a set of reduction
rules. These reduction rules preserve total —equiva —
lence. Reduction examples illustrate the efficiency of
the rules. In the future, we will provide many other
useful reduction rules for PRES+ nets to further im-

prove verification efficiency.
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