[Article]

www.whxb.pku.edu.cn

Beta 分子筛中 Al 的分布和 Brønsted 酸的酸性强度

孙秀良 黄崇品* 张 傑 陈标华

(北京化工大学化工资源有效利用国家重点实验室,北京 100029)

摘要: 基于量子化学中的密度泛函理论(DFT), 研究了 Beta 分子筛中骨架 Al 在 9 个不同 T 位的分布和 Brønsted 酸的分布及其强度. 计算采用 8T 簇模型和 B3LYP/6-31G(*d*,*p*)方法, 得到了不同 T 位的 Al/Si 替代能、(Al, H)/Si 替代能和质子亲和势, 以及碱性探针分子 NH₃ 在 Beta 分子筛酸性位的吸附能. 结果表明, 骨架 Al 和 Brønsted 酸 优生位于 Beta 分子筛的 T5 和 T6 位; 其中酸性最强的位置是 Al5-O14-Si9, 最弱的位置是 Al7-O3-Si1.

关键词: Beta 分子筛; Brønsted 酸; 密度泛函理论 中图分类号: O641

Location of Al and Acid Strength of Brønsted Acid in Beta Zeolite

SUN Xiu-Liang HUANG Chong-Pin^{*} ZHANG Jie CHEN Biao-Hua (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China)

Abstract: Density functional theory (DFT) was applied to study the distribution of framework aluminum atoms at nine inequivalent T sites and the acidity of Brønsted acid sites in Beta zeolite. The calculation was carried out at B3LYP/6-31G (d,p) level based on the 8T cluster model. According to the calculated Al/Si substitution energies, (Al, H)/Si substitution energies, proton affinities and the adsorption energies of ammonia (NH₃), we propose that the most favorable sites for Al substitution and Brønsted acid sites are at the T5 and T6 sites. The acidity of Al5-O14-Si9 is the highest among the preferred Brønsted acid sites and the Al7-O3-Si1 site is the lowest.

Key Words: Beta zeolite; Brønsted acid; Density functional theory

Beta 分子筛由 Mobil 公司在 1967 年首次合成并 展示了高的催化活性^[1]. 1988 年, Newsam^[2]、Higgins^[8] 等人采用构造模型,模拟粉末衍射首次确定了 Beta 沸石的堆垛层错结构. 认为 Beta 沸石具有三维十二 元环孔道结构,沿 *a* 方向和 *b* 方向具有十二元环直 孔道,直径为 0.76 nm×0.64 nm;沿 *c* 方向具有稍扭 曲的十二元环孔道,直径为 0.55 nm×0.55 nm. Beta 分子筛结构中存在 9 个不同的骨架 T 位置(见图 1). 由于 Beta 分子筛具有独特的孔结构和高酸性,其工 业前景非常出色. 已经成功地应用于异构化^[4],催化 裂化^[6]和芳烃的烷基化^[6].酸性中心是沸石具有催化 活性的根本原因. 目前,人们普遍接受了强 Brønsted 酸是分子筛催化反应的活性中心的观点. Brønsted 酸主要存在于沸石晶体内,当分子筛骨架上硅原子 被铝原子取代时,形成四面体配位的铝引入一个负 电荷,这个负电荷可以被质子 H 所平衡,形成了 Brønsted 酸.因此,分子筛中骨架 Al 原子的含量和分 布直接关系到 Brønsted 酸的强度和催化剂的性能^[7]. Beta 分子筛的表面酸性质可以通过羟基红外光谱 和骨架振动红外光谱来表征. Borade 等人^[8]在 H-Beta 沸石中发现一个波数为3602 cm⁻¹ 羟基吸收带,在低 硅 H-Beta 分子筛中发现有两个吸收带(3602 和 3660 cm⁻¹); Hedge 等人^[9]在用红外光谱测定 Hβ 分子筛的 酸性时发现在 3740,3602 和 3540 cm⁻¹ 处有三个吸

Received: January 13, 2009; Revised: March 14, 2009; Published on Web: April 13, 2009.

^{*}Corresponding author. Email: huangcp@mail.buct.edu.cn; Tel: +8610-64412054.

国家重点基础研究发展规划(973)(2004CB217804)和国家杰出青年科学基金(20625621)资助

C Editorial office of Acta Physico-Chimica Sinica

收带, 3540 cm⁻¹ 吸收峰是宽峰, 归属为氢键化的硅 羟基. Bourgeat-Lami 等人¹⁰⁰研究发现 NH₄-Beta 分 子筛经 550 ℃空气中焙烧脱模板剂后, 红外谱图出 现了 3615、3665、3747、3780 和 3750-3000 cm⁻¹ 五 个羟基吸收带, 并给出了它们的归属, 分别对应于硅 铝桥羟基、水解铝物种、末端硅羟基、独立的 AlOOH 和骨架缺陷位的硅羟基(SiOH). 尽管这些实验结果 为 Beta 分子筛酸性的研究提供了很多有用的信息, 但都不能给出 Al 的替代位及 Brønsted 酸分布的准 确位置.

近年来,随着计算机科学与催化技术领域的发 展,量子化学计算已成为解决催化领域中实际问题 的重要手段,能够从原子水平上对分子筛的酸性分 布及强度进行研究[11-15]. 同时,由于 Al 原子取代 Si 原子后,将影响周围骨架的结构和电子环境,因此应 用 DFT 计算可以预测骨架 Al 原子的位置和分子筛 酸性. 关于分子筛中 Al 原子的分布和Brønsted 酸的 分布的理论研究一直是研究的热点. Deng 等人¹⁴、 Zhou等人^{15]}采用了密度泛函理论对 MCM-22 分子 筛中 Al 原子分布和分子筛酸性进行了研究, 预测 了 Brønsted 酸分布和强度,同时也提供了实验无法 得到的重要信息.目前,对于Beta分子筛的同晶替 代和酸性的理论计算研究还比较少. 文献[16-20]报 道了 Al、Ti、Sn、Ga 杂原子对 Beta 分子筛骨架的同 晶替代,考察了 Beta 分子筛经过杂原子替代后的不 同骨架 T 位置的结构和电子性质,并从理论上计 算了不同 T 位置的替代能, 对杂原子在 Beta 分子 筛中的分布进行了讨论. 文献[21-23]从理论上研 究了 Beta 分子筛的酸性, 并探讨了 Beta 分子筛中 Brønsted 酸位的相互作用情况. 有关 Beta 分子筛中 Al 原子和 Brønsted 酸分布的报道中, Papai 等人^[16] 采用的是 5T 模型 T(OSiH₃)₄(T=Si, Al)和LCGTO-DF 方法, 得到的各个位置的替代能差别很小, 每个位置 的(Al, H)/Si 替代能最大差值仅为 6.4 kJ·mol⁻¹.

为了提高理论计算的准确性,从而给出更精确 合理的计算结果.在本工作中选用 Beta 分子筛的 8T 模型(H₃SiO)₃Si—O(H)—T(OSiH₃)₃(T=Si, Al), 采 用密度泛函理论^[24]中的 B3LYP^[25]方法,在 6-31G(*d*, *p*)基组水平上,对 Beta 分子筛中 Al 和 Brønsted 酸 的分布进行了研究,同时对各个 Brønsted 酸的酸性 强弱进行了探讨.

1 分子筛的模型和计算方法

计算模型取自 Higgins 等人¹³报道的 Beta 分子 筛的晶体结构,其中 T 原子为相应的骨架 Si 原子所 在的位置.8T 簇模型(H₈SiO)₃Si—O(H)—T(OSiH₃)₃ (T=Si, Al)是以 T—O—T 桥基为中心,来代表分子 筛的活性区间,含有 34 个原子,用于计算 Al 的替代 能.如图 2 所示,图中列出了 T1 至 T9 位的 8T 簇模 型.计算采用密度泛函理论^[24]中的 B3LYP 方法^[25]在 6-31G(*d*,*p*)基组水平上对簇模型进行结构优化.在计 算过程中,采用部分优化的方法,中心部分原子 O₃—Si—O(H)—Al—O₃ 在优化的过程中保持松弛, 进行全优化,其它的外层原子固定在晶体结构原来

图 2 Beta 分子筛 8T 簇模型(含 34 个原子) Fig.2 8T cluster models of Beta zeolites (34 atoms)

的位置上, 以避免因为完全结构优化而丧失分子筛 的固有结构. 计算(H₃SiO)₃Si—O—Al(OSiH₃)₃ 模型 时, 整个体系带一个负电荷. 在所有的簇模型中, 最 外层的骨架 O 原子都用 H 原子代替, 用来饱和因截 取骨架所形成的悬断键, 同时固定 Si—H 键长为 0.149 nm²⁶, Si—H 的长度为全优化时的键长. 根据振 动分析, 对相应的基组水平下的能量进行了零点能 校正. 所有计算工作均采用 Gaussian 03 程序^[27]完成.

2 结果和讨论

2.1 Al/Si 模型的几何结构优化

在 8T 模型的桥基中心上, Beta 分子筛中的 T1 至 T9 位分别用 Al 原子替代. 表 1 列出了采用 B3LYP/6-31G(d,p)方法计算优化得到 T1 至 T9 位的 主要几何结构参数. Si-Beta 分子筛的平均Si-O 键 长为(0.1622±0.0002) nm, 8T 模型中心的 Si-O-Si 键角为(149.25°±1.5°)^[19]. 经过 Al 原子替代后, 平均T ---O 键长约增加了 0.01 nm, T---O---T 的键角约减 少了 10°. 虽然 Al-O-Si 键角比 Si-O-Si 键角 减少了,但 Al-Si 距离比 Si-Si 距离(0.3000 nm^[17]) 还是有所增加,这个变化主要是由于 Al-O 键的 距离增大. 这同 Shetty 等人¹⁰在对 Sn-Beta分子筛的 替代中得到的结果相一致.从表1中还可以看出,骨 架 T5、T6 位置的 Al-O-Si 键角最大,分别为 148.3°和 146.3°. 同时, T5、T6 位置的 Al-Si 的距离 也最大,分别为 0.3207 和 0.3182 nm, 这主要是 Al-O-Si 键角最大的原因. Al 替代 Si 原子后, 分子筛 中每个 T 位结构参数的变化, 将直接对分子筛的能 量产生明显的影响.因此,每个T位置的Al原子的 稳定性也会不同.

2.2 Al/Si 的替代能

Beta 分子筛的三维十二元环孔道是由四元环、 五元环和六元环连接而成.结构中9种不同的T位 置都处在三维的十二元环孔道上,能够很好地跟反 应物分子接触.在9种不同的T位中,T1-T4主要 分布在四元环上,T7-T9主要分布在五元环上,而 T5和T6主要分布在六元环上.表2列出了采用8T 簇模型和B3LYP/6-31G(*d*,*p*)方法计算优化得到T1 至T9位的Al/Si的替代能.Al/Si的替代能可以表 示为

$\Delta E_{\text{(Al)}} = E_{\text{(Al-O-Si)}} - E_{\text{(Si-O-Si)}}$

 $E_{(Al-OSi)}$ 表示(H₃SiO)₃Si—O—Al(OSiH₃)₃模型的能量, $E_{(Si-OSi)}$ 表示(H₃SiO)₃Si—O—Si(OSiH₃)₃模型的能量. 为了便于比较,以Al6-O18-Si8 模型的 Δ $E_{(Al)}$ 作为参 考,得到各相对替代能 Δ $E'_{(Al)}$.

通过计算发现, Al 替代后, 替代能最小的位置 是 T6, 替代能最大的位置是 T1, 各位点能量的最大 差值为 16.77 kJ·mol⁻¹. 这表明各中心 T 原子周围的 骨架结构稳定性存在差异, 因此 Al 原子的替代具有

	表 1	不同 T 位的几何构型参数
Table 1	Mol	ecular structure parameters of the
		different T sites

T site	R(Al—O)/nm	$A(Al-O-Si)/(^{\circ})$	R(Al—Si)/nm
T1	0.1730	138.3	0.3084
T2	0.1735	132.6	0.3032
T3	0.1730	139.5	0.3096
T4	0.1735	133.7	0.3044
T5	0.1731	148.3	0.3207
T6	0.1736	146.3	0.3182
Τ7	0.1730	138.1	0.3082
T8	0.1732	139.3	0.3095
T9	0.1734	133.4	0.3042

表 2 不同 T 位上的 Al/Si 替代能 $\Delta E_{(A)}$

Table 2 Al/Si substitution energies $\Delta E_{(Al)}$ at different T sites					
Model	E _(Si-O-Si) (a.u.)	E _(Al-O-Si) (a.u.)	$\Delta E_{(AI)}(a.u.)$	$\Delta E'_{(Al)}/(kJ \cdot mol^{-1})$	
Al1-O3-Si7	-2853.77503	-2806.82609	46.94894	16.77	
Al2-O6-Si8	-2853.77496	-2806.82671	46.94825	14.96	
Al3-O10-Si8	-2853.77489	-2806.82657	46.94832	15.15	
Al4-O12-Si9	-2853.77485	-2806.82715	46.94770	13.52	
Al5-O16-Si8	-2853.77717	-2806.83422	46.94294	1.02	
Al6-O18-Si8	-2927.92087	-2880.97831	46.94255	0.00	
A17-O3-Si1	-2853.77503	-2806.82647	46.94856	15.78	
Al8-O10-Si3	-2853.77489	-2806.82686	46.94803	14.38	
Al9-O12-Si4	-2853.77484	-2806.82677	46.94807	14.49	

结构选择性, Al 原子将优先位于替代能较小的位置上. 从表 2 中可以看出, 只有 T5、T6 位置的替代能较低, 其它位置的替代能都较高, 比 T6 位要高出 13 kJ·mol⁻¹以上. 所以, 有利于 Al 的替代位置的是 T5 和 T6, 其它位置相对不利于 Al 的替代. Al 原子容易分布在 Beta 分子筛孔道中的六元环位置, 不容易分布在四元环和五元环上. 这同 Papai 等人¹⁰⁰研究的 Beta 分子筛中 Al 原子分布的结论基本一致, 他们采用 5T 模型得到的预测结果是 Al 原子最不容易落位于四元环上.

2.3 (Al, H)/Si 模型的几何结构优化

进一步考察 Al 原子替代后产生的 Brønsted 酸 分布,每个中心 Al 原子有四种可能性,这样共有36 个 Al-OH-Si 位点.我们排除了极少数的酸性位于孔 壁内部的情况,这些酸性位几乎不能与反应物分子 接触,计算时可以忽略.表3列出了计算优化得到的 主要 Brønsted 酸位的主要几何结构参数.同 Al/Si 替代相比,经过 (Al, H)/Si 替代后,每个 T 位的Al— O 键长增加了大约 0.015 nm,变化比较明显.键角的 变化没有明显规律.分子筛中不同 T 位的 Brønsted 酸性位的结构参数都有所不同.这样,必然会对每个 T 位周围的酸性位酸性产生影响.

2.4 (Al, H)/Si 的替代能

分子筛中 Brønsted 酸的分布可以用(Al, H)/Si 替代能来考察,

$\Delta E_{(\text{AI, H})} = E_{(\text{AI-OH-Si})} - E_{(\text{Si-O-Si})}$

 $E_{(AI-OH-Si)}$ 表示(H₃SiO)₃Si—OH—Al(OSiH₃)₃ 模型的能量. $\Delta E_{(AI,B)}$ 越低越有利于 Brønsted 酸的分布. 表 4 列 出了 Beta 分子筛中的 Al-OH-Si 位点的替代能. T5 和 T6 之间的两个酸性位完全位于骨架的笼内,可 以忽略. 同样,为了便于比较,以 All-O2-Si2 模型的 $\Delta E_{(AI,B)}$ 作为参考,用 $\Delta E'_{(AI,B)}$ 表示各相对替代能.

通过计算发现,这些酸性位的质子 H 主要分布

在三维十二元环孔道中和交界处.其中,如图3所 示,分布在交界处的质子 H 都是指向孔道的(图 3a), 而分布在孔道中的质子 H 有的指向孔道(图 3b),有 的是平行靠近孔壁指向(图 3c). 由表 4 可以看出, 对 于 T1-T4位, 处在孔道交界处的替代能较低. 处在 孔道中的酸性位,质子H都是平行靠近孔壁指向, 替代能较高.对于 T5 和 T6 位,酸性位都处在孔道 中, 替代能都比较低. T7-T9 位, 位于孔道交界处的 替代能较低,孔道中的质子 H 都指向孔道,但替代 能也较高.处在孔道交界处的酸性位的替代能都很 低,在4kJ·mol⁻¹以内.对于处在孔道中的T位,其 中 T1-T4 的质子 H 替代能都较高,在 14.18-27.80 kJ·mol⁻¹. T5 和 T6 替代能较低, Al5-O14-Si9 为 0.37 kJ·mol⁻¹, Al6-O18-Si8 为 1.02 kJ·mol⁻¹, T7-T9 的质 子 H 替代能比较高, 为 21.66-24.39 kJ·mol⁻¹. 在孔 道的交界处比较容易形成 Brønsted 酸位, 在孔道中 的 T5 和 T6 周围也容易形成 Brønsted 酸位, 而在孔 道中的其它位置相对不利于形成 Brønsted 酸.

存在 Brønsted 酸是由于 Al 的引入,因此,为了 同前面计算的 Al 最可能取代位置相对比,我们又从 Beta 分子筛中每个 T 位周围的所有酸性位进行综 合考虑,每个 T 位周围都有四个酸性位. T5 和 T6

表 3 不同 Brønsted 酸位的几何构型参数 Table 3 Molecular structure parameters of the different Brønsted sites

Model	R(Al—O)/nm	$A(Al-O-Si)/(^{\circ})$	<i>R</i> (O—H)/nm
All-O2-Si2	1.872	130.0	0.972
Al2-O2-Si1	1.878	130.3	0.972
Al3-09-Si4	1.873	130.0	0.972
Al4-09-Si3	1.879	130.4	0.972
Al5-O14-Si9	1.897	138.4	0.972
Al6-O18-Si8	1.896	138.1	0.972
Al7-O3-Si1	1.870	134.2	0.971
Al8-O10-T3	1.870	134.8	0.971
Al9-O12-Si4	1.877	131.0	0.970

Table 4 (Al, H)/Si substitution energies $\Delta E_{(Al, H)}$ at different T sites					
	Model	<i>E</i> _(Si-O-Si) (a.u.)	E _(Al-OH-Si) (a.u.)	$\Delta E_{\rm (Al, H)}$ (a.u.)	$\Delta E'_{(Al)}/(kJ \cdot mol^{-1})$
interface	All-O2-Si2	-2927.91616	-2881.44150	46.47466	0.00
	Al1-O3-Si7	-2853.77503	-2807.29912	46.47591	3.28
ring channel	All-O5-Sil	-2927.91733	-2881.43606	46.48127	17.35
	All-O4-Si3	-3002.06087	-2955.57562	46.48525	27.80
interface	Al2-O6-Si8	-2853.77496	-2807.29900	46.47596	3.41
	Al2-O2-Si1	-2927.91616	-2881.44046	46.47570	2.72
ring channel	Al2-O8-Si6	-2927.91917	-2881.43911	46.48006	14.18
	Al2-07-Si4	-3002.06013	-2955.57837	46.48176	18.64
interface	Al3-O9-Si4	-2927.91628	-2881.44157	46.47471	0.13
	Al3-O10-Si8	-2853.77489	-2807.29873	46.47616	3.94
ring channel	Al3-O4-Si1	-3002.06049	-2955.57592	46.48457	26.02
	Al3-O11-Si3	-2927.91743	-2881.43554	46.48189	18.98
interface	Al4-O12-Si9	-2853.77485	-2807.29868	46.47617	3.96
	Al4-O9-Si3	-2927.91627	-2881.44057	46.47569	2.70
ring channel	Al4-07-Si2	-3002.06006	-2955.57857	46.48149	17.93
	Al4-O13-Si5	-2927.91930	-2881.43874	46.48056	15.49
ring channel	Al5-O13-Si4	-2927.91916	-2881.44338	46.47578	2.94
	Al5-O14-Si9	-2853.77736	-2807.30256	46.47480	0.37
	Al5-O16-Si8	-2853.77717	-2807.29774	46.47943	12.52
ring channel	Al6-O8-Si2	-2927.91929	-2881.44319	46.47610	3.78
	Al6-O18-Si8	-2853.77735	-2807.30230	46.47505	1.02
	Al6-O15-Si7	-2853.77713	-2807.29728	46.47985	13.60
interface	Al7-O3-Si1	-2853.77503	-2807.30008	46.47497	0.81
ring channel	Al7-O15-Si6	-2853.77717	-2807.29322	46.48394	24.36
interface	Al8-O10-Si3	-2853.77489	-2807.29928	46.47561	2.49
	Al8-O6-Si2	-2853.77496	-2807.29900	46.47596	3.41
ring channel	Al8-O16-Si5	-2853.77738	-2807.29441	46.48297	21.82
	Al8-O18-Si6	-2853.77717	-2807.29322	46.48395	24.39
interface	Al9-O12-Si4	-2853.77484	-2807.29853	46.47632	4.35
ring channel	Al9-014-Si5	-2853.77736	-2807.29445	46.48291	21.66

表 4 不同 T 位上的(Al, H)/Si 替代能 Δ*E*_(Al, H) Sable 4 (Al_H)/Si substitution energies Δ*E*...., at different T sit

位周围的每个酸性位的替代能都比较低.而其它 T 位周围酸性位的替代能相对比较高,大约比 T5、T6 高出大约 5-12.5 kJ·mol⁻¹.那么,就每个 T 位周围总 体替代能的角度来看, Brønsted 酸比较容易落位于 T5 和 T6 周围,这同前面计算的 Al/Si 替代能的结 论是一致的. Bare 等人^[28]在 Sn-Beta 分子筛的同晶 替代中认为 Sn 最容易落位于六元环的 T5、T6 位, 同本文 Al 落位的结论相一致.

为了表征各位点的酸性强度,我们计算了去质 子化能、羟基伸缩振动频率、羟基键长以及质子氢的 电荷强度.

2.5 去质子化能

分子筛固体酸的质子亲和力可以用去质子化能 Δ*E*_D来表示:

Fig.3 8T cluster models of Beta zeolites at different Brønsted acid sites (a) bridged O—H group of the interface; (b) bridged O—H group of the ring channel; (c) bridged O—H group point to zeolite lattice

表 5 不同 T 位上的去质子化能 $\Delta E_{\rm D}$ Table 5 Deprotonation energies $\Delta E_{\rm D}$ at different

		1 sites		
Model	Ezeo-O-(a.u.)	Ezeo-OH(a.u.)	$\Delta E_{\rm D}({\rm a.u.})$	$\Delta E'_{\rm D}/({\rm kJ} \cdot {\rm mol}^{-1})$
Al1-O2-Si2	-2880.97303	-2881.44150	0.46847	14.28
Al2-O2-Si1	-2880.97220	-2881.44046	0.46826	13.73
Al3-O9-Si4	-2880.97295	-2881.44157	0.46863	14.70
Al4-O9-Si3	-2880.97214	-2881.44057	0.46844	11.20
Al5-O14-Si9	-2806.83425	-2807.29728	0.46303	0.00
Al6-O18-Si8	-2806.83618	-2807.30231	0.46666	9.53
Al7-O3-Si1	-2806.82647	-2807.30008	0.47361	27.78
Al8-O10-Si3	-2806.82686	-2807.29928	0.47275	25.52
Al9-012-Si4	-2806.82677	-2807.29853	0.47176	22.92

Zeo-OH→Zeo-O⁻+H⁺

$\Delta E_{\mathrm{D}} = E_{(\mathrm{Zeo-Or})} - E_{(\mathrm{Zeo-OH})}$

 $E_{(ZeoOr)}$ 表示(H₃SiO)₃Si—O—Al(OSiH₃)₃模型的能量, $E_{(ZeoOr)}$ 表示(H₃SiO)₃Si—OH—Al(OSiH₃)₃模型的能量. ΔE_{D} 越小,给予质子的能力越大,酸性越强.对各个T位周围(Al, H)/Si 替代能最低的酸性位,也就是最可能的酸性位点去质子化能的计算结果见表 5, 以 Al5-O14-Si9 作为参考,得到各位点的相对去质子化能 ΔE_{D} .从表中数据来看,Al5-O14-Si9 和 Al6-O18-Si8 位的去质子化能较低,Al7-O3-Si1、Al8-O10-Si3和 Al9-O12-Si4 位的去质子化能较高,比前两者高出大约 20 kJ·mol⁻¹.因此,酸性最强的位置是 Al5-O14-Si9,酸性最弱的位置是 Al7-O3-Si1.

2.6 O-H 伸缩振动频率、键长和电荷强度

分子筛的酸性强度还可以用 O—H 伸缩振动频 率、键长和质子氢的电荷密度来表征. 伸缩振动频率 越小,键长越长或电荷密度越高,则酸性强度越大¹¹⁵. 其中质子氢的电荷以 Mulliken 电荷表示,有关计 算结果列于表 6. 从表中可见, 六元环上的 T5 和T6

表 6 不同酸性位上桥羟基的伸缩振动频率、OH 键长及 Mulliken 电荷

Table 6Calculated O—H stretching frequencies,bond distances and Mulliken charges at differenthvdroxvl bridges

Model	$\nu_{\rm OH}/{\rm cm}^{-1}$	R(O—H)/nm	$q_{\rm H}$ /e			
All-O2-Si2	3643.6	0.0972	0.395			
Al2-O2-Si1	3640.1	0.0972	0.395			
Al3-O9-Si4	3642.7	0.0972	0.395			
Al4-09-Si3	3640.7	0.0972	0.394			
Al5-O14-Si9	3629.6	0.0972	0.383			
Al6-O18-Si8	3631.7	0.0972	0.382			
Al7-O3-Si1	3664.5	0.0971	0.392			
Al8-O10-Si3	3662.6	0.0971	0.391			
Al9-O12-Si4	3660.8	0.0970	0.392			

位的振动频率最低,分别为 3629.6 和 3631.7 cm⁻¹, 然后是 T1-T4 位, T7-T9 位的振动频率较高,其中 T7 的最高,为 3664.5 cm⁻¹.这个顺序同去质子化能的 结果基本一致,也验证了 T5 位置的酸性最强. Beta 分子筛硅铝桥羟基吸收峰的实验值为 3615 cm^{-1[10]}, 理论计算值同实验值相比,最小相对误差为 0.4%, 最大的相对误差也仅为 1.4%,说明理论计算同实验 结果能很好地吻合.对于键长,各个 T 位的键长相 差不大,只有去质子化能很高的 T7-T9 位的键长相 其他位置小 0.0001 nm.不同 T 位的质子氢电荷强 度的差别同前面其它计算结果得到的规律略有不 同.这主要是由于 Mulliken 电荷的计算与结构因素 有很大关系.

2.7 NH₃ 探针分子对 Beta 分子筛酸性的探测

探针分子与分子筛作用后都朝骨架 Al 一端倾斜, 见图 4. 这是因为探针分子 NH₃ 与分子筛作用后, 分子筛桥羟基上的 H 质子转移到探针分子上, 形成了质子化的 NH[‡], 其正电荷被分子筛负电中心 AlO₄ 共同补偿, 形成"离子型"络合物.

分子筛和探针分子之间的相互作用及相互作用 能 Δ*E* 可以用下式表示:

 $Zeo-OH+NH_3 \rightarrow Zeo-OH-NH_3$

 $\Delta E = E_{(\text{Zeo-OH-NH}_3)} - E_{(\text{Zeo-OH})} - E_{(\text{NH}_3)}$

其中 *E*_{(ZeoOHNH3})表示(H₃SiO)₃Si-OH-Al(OSiH₃)₃-NH₃体系的能量, *E*_{(ZeoOH}表示(H₃SiO)₃Si-OH-Al(OSiH₃)₃的能量. Δ*E* 越负,说明探针分子与分子筛之间的相互作用越强,那么该位置的酸性就越强.碱性相对较强的探针分子 NH₃ 与分子筛作用后的数据见表 7. NH₃ 与分子筛的吸附主要从质子转移的角度讨论分子筛的 Brønsted 酸性. 从相互作用能可以得到 9

图 4 Beta 分子筛的酸性位与 NH₃ 碱性探针分子的吸附 复合物结构

Fig.4 Calculated structure of adsorbing complex of the basic probe NH_3 on the acid sites of Beta zeolite

表 7	分子	- 筛和探针分子相互作用的相互作用能 ΔΕ
Tabl	e 7	Interaction energies ΔE of the probe
		mologulos and goalita

molecules and zeonte						
Model	Ezeo-OH(a.u.)	E _{Zeo-OH-NH3} (a.u.)	$\Delta E/(kJ \cdot mol^{-1})$			
All-O2-Si2	-2881.44150	-2938.00727	-111.38			
Al2-O2-Si1	-2881.44046	-2938.00640	-111.83			
Al3-09-Si4	-2881.44157	-2938.00725	-111.15			
Al4-O9-Si3	-2881.44057	-2938.00655	-111.96			
Al5-O14-Si9	-2807.29728	-2863.86455	-115.33			
Al6-O18-Si8	-2807.30231	-2863.86836	-112.14			
Al7-O3-Si1	-2807.30008	-2863.86524	-109.78			
Al8-O10-Si3	-2807.29928	-2863.86457	-110.12			
Al9-012-Si4	-2807.29853	-2863.86426	-111.27			

The energy of the probe molecule (NH₃) is 56.52334 a.u.

个 T 位发生质子转移的能力相差不大,其中质子 转移能力最强的是 Al5-O14-Si9 位置,其相互作用 能为-115.33 kJ·mol⁻¹,质子转移能力最弱的是 Al7-O3-Si1. 这同前面其它计算结果对酸性的讨论情况 是一致的.

3 结 论

采用 8T 簇模型来模拟 Beta 分子筛的不同骨架 位置,基于密度泛函方法,研究了 Beta 分子筛中 Al 和 Brønsted 酸的分布及其酸性强度.得到如下结论: 根据 Al/Si 和(Al, H)/Si 替代能,最有利的骨架铝和 Brønsted 酸落位在 T5 和 T6 位置.根据去质子化 能、O—H 伸缩振动频率和碱性探针分子 NH₃ 在 Beta 分子筛酸性位的吸附能的计算,确认 Al5-O14-Si9 位置的酸性最强, Al7-O3-Si1 的酸性最弱.理论 计算得到的 O—H 伸缩振动频率同实验值相比,最 小相对误差为 0.4%,最大的相对误差也仅为 1.4%, 说明理论计算同实验结果有很好的一致性.

References

- Wadlinger, R. L.; Kerr, G. T.; Rosinski, E. J. Catalytic composition of a crystalline zeolite. U.S. Patent, 3308069. 1967
- 2 Newsam, J. M.; Treacy, M. M. J.; Koetsier, W. T. Proc. R. Soc. A-Math. Phys. Eng. Sic., 1988, 420: 375
- Higgins, J. B.; LaPierre, R. B.; Schlenker, J. L. Zeolites, 1988, 8
 (6): 446
- 4 Chica, A.; Corma, A. J. Catal., 1999, 187: 167

- 5 Bonetto, L.; Camblor, M. A.; Corma, A.; Pérez-Pariente, J. *Appl. Catal. A*, **1992**, **82**: 37
- Bellusi, G.; Pazzuconi, G.; Perego, C.; Girotti, G.; Terzoni, G.
 J. Catal., 1995, 157: 227
- 7 Steve, M. S.; Nicholas, J. B. J. Phys. Chem., 1993, 97: 9630
- 8 Borade, R. B.; Clearfield, A. J. Phys. Chem., 1992, 96: 6729
- 9 Hedge, S. G.; Kumar, R.; Bhat, R. N.; Ratnasamy, P. Zeolites, 1989, 9: 231
- Bourgeat-Lami, E.; Massiani, P.; Di Renzo, F.; Espian, P.; Fajula,
 F. *Appl. Catal.*, **1991, 72**: 139
- Brand, H. V.; Curtiss, L. A.; Iton, L. E. J. Phys. Chem., 1992, 96: 7725
- Nicholas, J. B.; Winans, R. E.; Harrison, R. J.; Iton, L. E.; Curtiss, L. A.; Hopfinger, A. J. J. Phys. Chem., **1992**, **96**: 10247
- Alvarado-Swaisgood, A. E.; Barr, M. K.; Hay, P. J.; Redondo, A. J. Phys. Chem., 1991, 95: 10031
- Zheng, A. M.; Chen, L.; Yang, J.; Zhang, M. J.; Su, Y. C.; Yue, Y.;
 Ye, C. H.; Deng, F. J. Phys. Chem. B, 2005, 109: 24273
- 15 Zhou, D. H.; Bao, Y.; Yang, M. M.; He, N.; Yang, G. Journal of Molecular Catalysis A, 2006, 244: 11
- 16 Papai, I.; Goursot, A.; Fajula, F. J. Phys. Chem., 1994, 98: 4654
- 17 Blasco, T.; Camblor, M. A.; Corma, A.; Perez-Pariente, J. J. Am. Chem. Soc., 1993, 115: 11806
- 18 Dimitrova, R.; Popova, M. Mol. Eng., 1998, 8: 471
- Shetty, S.; Pal, S.; Kanhere, D. G.; Goursot, A. *Chem. Eur. J.*, 2006, 12: 518
- 20 Wei, A. C.; Liu, P. H.; Chao, K. J.; Yang, E.; Cheng, H. Y. *Micropor. Mesopor. Mater.*, 2001, 47: 147
- 21 Sastre, G.; Corma, A. Chemical Physics Letters, 1999, 302: 447
- Li, H.; Mahanti, S. D.; Pinnavaia, T. J. J. Phys. Chem. B, 2005, 109: 2679
- Fujita, H.; Kanougi, T.; Atoguchi, T. Applied Catalysis A, 2006, 313: 160
- (a) Hohenberg, P.; Kohn, W. *Phys. Rev.*, **1964**, **136**: B 864
 (b) Kohn, W.; Sham, L. J. *Phys. Rev.*, **1965**, **140**: A 1133
- (a) Becke, A. D. J. Chem. Phys., **1993**, **98**: 5648
 (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, **1988**, **37**: 785
- Boronat, M.; Corma, A.; Renz, M. J. Phys. Chem. B, 2006, 110: 21168
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; *et al.* Gaussian 03, Revision B.04. Pittsburgh PA: Gaussian, Inc., 2003
- 28 Bare, S. R.; Kelly, S. D.; Sinkler, W.; Low, J. J.; Modica, F. S.; Valecia, S.; Corma, A.; Nemeth, L. T. *J. Am. Chem. Soc.*, 2005, 127: 12924